
Test for Rare Variants by Environment Interactions in 
Sequencing Association Studies

Xinyi Lin1,2,*, Seunggeun Lee3, Michael C. Wu4, Chaolong Wang1,5, Han Chen1, Zilin Li1, 
and Xihong Lin1,**

1Department of Biostatistics, Harvard School of Public Health, Boston, MA, U.S.A

2Singapore Institute for Clinical Sciences, Singapore

3Department of Biostatistics, University of Michigan, Ann Arbor, MI, U.S.A

4Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, U.S.A

5Department of Computational and Systems Biology, Genome Institute of Singapore, Singapore

Summary

We consider in this paper testing rare variants by environment interactions in sequencing 

association studies. Current methods for studying the association of rare variants with traits cannot 

be readily applied for testing for rare variants by environment interactions, as these methods do not 

effectively control for the main effects of rare variants, leading to unstable results and/or inflated 

Type 1 error rates. We will first analytically study the bias of the use of conventional burden based 

tests for rare variants by environment interactions, and show the tests can often be invalid and 

result in inflated Type 1 error rates. To overcome these difficulties, we develop the interaction 

sequence kernel association test (iSKAT) for assessing rare variants by environment interactions. 

The proposed test iSKAT is optimal in a class of variance component tests and is powerful and 

robust to the proportion of variants in a gene that interact with environment and the signs of the 

effects. This test properly controls for the main effects of the rare variants using weighted ridge 

regression while adjusting for covariates. We demonstrate the performance of iSKAT using 

simulation studies and illustrate its application by analysis of a candidate gene sequencing study of 

plasma adiponectin levels.
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1. Introduction

The advent of high-throughput next-generation sequencing technology has made a massive 

amount of genetic data available. A challenge for analyzing sequencing association studies is 
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the presence of rare variants which are defined here as genetic variants with minor allele 

frequency (MAF) less than 5%. Due to the low frequencies of rare variants, classical single 

marker tests commonly used in genome-wide association studies (GWAS) for studying 

common variants effects are not applicable. Numerous statistical methods have been 

developed for testing for association with rare variants effects, where gene-level analysis is 

often performed to jointly study the effects of the rare variants in a gene. See Lee et al. 

(2014) for a review. However little work has been done for testing for gene and environment 

interactions in the presence of rare variants. This paper aims at filling this gap.

This work is motivated by an investigation of the interaction effects between rare genetic 

variants and alcohol use on plasma adiponectin levels. The dataset is from the Cohorte 

Lausannoise (CoLaus) study, a population-based study in Lausanne, Switzerland (Warren et 

al., 2012). Information on plasma adiponectin levels, alcohol usage and other covariates are 

available. The genotypes of 11 rare genetic variants from sequencing the adiponectin 

encoding gene ADIPOQ are also obtained. Earlier analysis reported two rare genetic 

variants within the ADIPOQ gene that are independently associated with adiponectin levels 

(Warren et al., 2012). A question of interest is to study whether the association of rare 

genetic variants in the ADIPOQ gene with adiponectin levels is modified by alcohol usage.

To date, statistical methods for analyzing rare genetic variants have focused on assessing the 

association between rare variants and traits. In view of the lack of power of single marker 

analysis of rare variants, these methods are typically region-based tests where one tests for 

the cumulative effects of the rare variants in a region. These region-based methods can be 

broadly classified into three classes: burden tests, non-burden tests and hybrid of the two. 

The key difference between burden and non-burden tests is how the cumulative effects of the 

rare variants are combined for association testing. For the commonly used simple burden 

tests, one summarizes the rare variants within a region as a single summary genetic burden 

variable, e.g. the total number of rare variants in a region, and tests its association with a 

trait. Many variations of burden tests have been developed (Li and Leal, 2008; Madsen and 

Browning, 2009; Price et al., 2010; Morris and Zeggini, 2010). Burden tests implicitly 

assume all the rare variants in the region under consideration are causal and are associated 

with the phenotype in the same direction and magnitude. Hence, they all share the limitation 

of substantial power loss when there are many non-causal genetic variants in a region and/or 

when there are both protective and harmful variants (Basu and Pan, 2011).

Several region-based non-burden tests have been proposed by aggregating marginal test 

statistics (Neale et al., 2011; Basu and Pan, 2011; Lin and Tang, 2011). One such test is the 

sequence kernel association test (SKAT) (Wu et al., 2011), where one summarizes the rare 

variants in the region using a kernel function, and then test for association with the trait of 

interest using a variance component score test. SKAT is robust to the signs and magnitudes 

of the associations of rare variants with a trait. It is more powerful than the burden tests 

when the effects are in different directions or the majority of variants in a region are null, but 

is less powerful than burden tests when most variants in a region are causal and the effects 

are in the same direction. Several hybrids of the two methods have been proposed to 

improve test power and robustness (Lee et al., 2012; Derkach et al., 2013; Sun et al., 2013).
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The tests discussed above are designed to assess the association of the main effects of rare 

variants with traits and cannot be readily adapted to assess the interactions between rare 

variants and environmental factors. A naive approach to assess rare variants by environment 

interactions is to extend the burden test by fitting a model with both the summary genetic 

burden variable, environment, and their interaction, and performing a one degree of freedom 

test for the interaction. However, as we will show in this paper, when there are multiple 

causal variants with their main effects having different magnitudes and/or signs, such a 

burden rare variant by environment test fails, and may lead to inflated Type 1 error rates. 

This is because adjusting for the main effects of the multiple causal variants using a single 

summary genetic burden variable is inappropriate. Likewise, a naive approach to assess rare 

variants by environment interactions using SKAT by including the main effects of rare 

variants as part of covariates and applying SKAT to the interaction terms is problematic. 

This is because SKAT only allows adjustment of a small number of covariates and cannot 

handle the presence of a large number of rare variants in a region. Furthermore since the rare 

variants are observed in low frequency, a model with all the rare variants as main effects will 

be highly unstable and may not even converge.

Existing methods for assessing common variants by environment interactions such as Gene-

Environment Set Association Test (GESAT) (Lin et al., 2013) have several limitations when 

applied for rare variants. GESAT estimates the main effects of the common variants by 

applying a L2 penalty on the genotypes scaled to unit variance; this assumes that the main 

effects of the scaled genotypes are comparable in magnitudes, which may not hold in the 

case of rare variants. GESAT also assumes that the regression coefficients of the rare 

variants by environment interactions are independent of each other, and suffers from power 

loss when most rare variants in a gene interact with the environmental factor and the 

interaction effects have the same direction.

In this paper, we consider testing for rare variants by environment interactions in sequencing 

association studies. First, we investigate the analytic bias of burden tests in testing for rare 

variants by environment interactions and show that it is generally biased. Our bias analysis 

provides insight for studying gene-environment (GE) interaction effects in sequencing 

association studies. Second, to overcome the limitations of aforementioned tests in testing 

for rare variants by environment interactions, we propose a novel optimal test called 

interaction sequence kernel association test (iSKAT) for assessing the rare variants by 

environment association with traits. The proposed test iSKAT is optimal within a class of 

tests and is powerful and robust to the proportion of causal variants in a gene and the signs 

and magnitudes of the rare variants by environment interactions, and properly controls for 

the main effects of the rare variants. We demonstrate iSKAT via simulation studies and 

analysis of the sequencing data from the CoLaus study.

2. The Model

Assume n unrelated subjects are sequenced in a region with p variants. For ease of 

presentation, we consider a single environmental factor, in which we are interested in 

studying the rare variants by environment interactions. The method extends easily to the case 

where there is more than one environmental factor. Let Yi, Gi = (Gi1,···,Gip)⊺, Ei, Xi = 
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(Xi1,···,Xiq)⊺ be the phenotype, genotypes for the p variants in a region, environmental factor 

and q covariates for the ith sample respectively, for i = 1,···, n. The q covariates might include 

variables like age, gender or principal components derived from common genetic variants to 

correct for population stratification (Price et al., 2006). Let Si = (EiGi1,···,EiGip)⊺, which is a 

vector of rare variants by environment interaction terms for the ith individual. We further 

define an n × 1 phenotype vector Y = (Y1,···, Yn)⊺, an n × 1 environmental factor vector E = 

(E1,···,En)⊺, an n × q covariate matrix X = [X1 . . .Xn]⊺, an n × p rare variant genotype matrix 

G = [G1 . . .Gn]⊺ and an n × p GE interactions matrix S = [S1···Sn]⊺.

To present the model for both continuous and binary phenotypes concisely, we assume a 

generalized linear model framework. Let f (Yi) = exp [(Yiθi − b(θi)/{ai (ϕ)} + c(Yi, ϕ)] be 

the density of Yi, for some functions a (·), b (·), and c (·). θi and ϕ are the canonical 

parameter and dispersion parameter respectively. Without loss of generality, we assume ai 

(ϕ) is the same for all i = 1,···,n. Let g (·) be a canonical link function. The mean 

 of the phenotype (Yi) is related to Xi, Ei, Gi and Si by:

(1)

where  and . We are interested in testing if there are any 

GE interactions, i.e. the null hypothesis H0 : β = 0. This test is challenged by the fact that the 

dimension of rare variants in a region might not be small and estimation of the regression 

coefficients α involving rare variants by directly fitting (1) is diffcult.

3. Bias Analysis of Burden Tests

In view of the difficulty in estimating regression coefficients of rare variants, burden tests are 

typically used for analyzing the association of rare variants with traits by summarizing rare 

variants in a region by a summary genotype score. In this section, we study the bias of using 

conventional burden tests for GE interactions in the presence of rare variants, and show that 

using burden tests for analyzing rare variants by environment interactions can often be 

invalid and result in inflated Type 1 error rates. Without loss of generality, we focus on a 

commonly used burden test that summarizes rare variants in a region by the total number of 

rare variants. Results for other burden tests follow analogously.

For simplicity we assume that there are no covariates present. We assume that data are 

generated from the following simplified model of (1):

(2)

Define the summary genetic variable in the burden test to be , which is the 

total number of rare variants in a region. To assess rare variants by environment interactions, 

one fits the burden GE regression model as:

(3)

Lin et al. Page 4

Biometrics. Author manuscript; available in PMC 2016 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A comparison of (2) and (3) shows that the burden GE model (3) generally mis-specifies the 

true model (2) in both the genetic main effects and interaction effects. Testing the null 

hypothesis of no rare variants by environment interactions using burden test model (3) 

corresponds to testing H0 : β* = 0. In order for burden test model (3) to be valid, we will at 

least require β* = 0 when the null hypothesis H0 : β = 0 holds.

In general, under the null hypothesis of no rare variants by environment interactions H0 : β = 

0 in the true model (2), β* in burden test model (3) will not be zero. As a consequence, the 

burden based test for rare variants GE interactions is generally biased and can have an 

inflated Type 1 error rate. For example, if the asymptotic limit of the MLE of β* by fitting 

(3) is a function of , β* will be capturing the main effects instead of the interaction 

effects. This implies that the Type 1 error is generally wrong and the results can be 

misleading. In Web Appendix 1.3., we consider the scenario when G and E are dependent 

and show that the asymptotic limit of the MLE of β* can be a function of the main rare 

variants effects  and is thus generally biased, and the bias generally worsens with 

increasing G – E dependence and main effects. Below we discuss the special case of G – E 
independence for linear regression and logistic regression when disease prevalence is low.

3.1 Bias analysis of β* under G – E independence for linear and logistic regressions (rare 
disease)

It is of interest to identify cases when β* = 0 under the null hypothesis H0 : β = 0 when (2) is 

the true model. Burden test model (3) imposes a model on . Based on the true 

model (2), we can calculate . We show in Web Appendix 1 that 

from the true model (2) can be approximated by:

(4)

Note that equation (4) is exact for linear regression, but holds only approximately for logistic 

regression under the rare disease assumption.

When G and E are independent, we show in Web Appendix 1 that (4) simplifies to:

(5)

where  for j = 1,···p and MAFj is the MAF of the jth variant. 

Comparing (5) and burden test model (3), we can express the parameters in the mis-specified 

burden test model (3) in terms of the parameters in the true model (2) as:
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It follows that when G and E are independent, β* in the mis-specified burden test model (3) 

is a weighted average of the interaction effects in the true model β1,···, βp. Hence for both 

linear and logistic regressions under the rare disease assumption, we have that β* = 0 

approximately when the null hypothesis H0 : β = 0 holds and (2) is the true model.

3.2 Var(Y|E, G*) under G – E independence for linear and logistic regressions (rare 
disease)

Even if β* = 0 when the null hypothesis H0 : β = 0 holds, inference based on the burden test 

model (3) can still be wrong, as  might be mis-specified. Specifically, from 

the true model (2), we can calculate the true . For linear regression, we have:

where σ2 = Var (Yi|Ei, Gi). Since  depends on  which differs for each 

individual, the homoscedasticity assumption is violated for the mis-specified burden test 

linear regression model (3). When we have a continuous outcome, the burden test linear 

regression model will generally be biased and cannot be used for testing for GE interactions 

even when G and E are independent unless a sandwich estimator for the variance is used.

For logistic regression with rare disease assumption, some calculations show that:

which is what the burden test logistic regression model (rare disease) assumes. Consequently 

the burden test logistic regression model (rare disease) can provide approximate correct 

testing for rare variants by environment interactions when G and E are independent.

4. Testing for Rare Variants by Environment Interactions using interaction 

Sequence Kernel Association Test (iSKAT)

To overcome the difficulties of burden tests in testing for rare variants by environment 

interactions, we develop the interaction sequence kernel association test (iSKAT). In general 

the test for H0 : β = 0 can proceed using a p degrees of freedom test. However since p might 

be large, such an approach might suffer from considerable power loss. Let W1 = 

diag(w11,···,w1p) be a p × p matrix of weights. Assume that the βj's (j = 1,···,p) have mean 

zero and variance , and an exchangeable correlation ρ. The exchangeable correlation 

assumption is only imposed on the regression coefficients of the interaction effects, no 

assumption is imposed on the correlation between the genetic variants. This extends the 

SKAT-O test (Lee et al., 2012) for rare variant main effects to test for rare variants by 

environment interactions in the GE interaction model. The null hypothesis H0 : β = 0 thus 

reduces to testing for H0 : τ = 0.
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If ρ = 1, the βj's are perfectly correlated. The interaction term aggregates rare variants into a 

summary variable as , in the same spirit as burden 

tests, and one would expect it is more powerful when there are many rare variants by 

environment interactions and the interaction effects are in the same direction. Note that this 

model becomes , which differs from 

the naive burden test model (3) in that the main effects are correctly. If ρ = 0, the βj's are 

assumed to be independent in the same spirit as SKAT, and one would expect that it is more 

powerful when the effects of rare variants by environment interactions are in different 

direction or most variants have no interaction effects.

For a fixed ρ, a score test statistic for testing the variance component H0 : τ = 0 is:

(6)

where Rρ = (1 − ρ)I + ρ11⊺, and  is estimated under the null model:

(7)

We use weighted ridge regression to estimate α in null model (7), imposing a penalty on α3, 

where the penalty on α3j depends on the weights w2j (Web Appendix 2.1.). For fixed ρ, if 

, Qρ asymptotically follows a mixture of chi-squares distribution and a p-value can 

be obtained using characteristic function inversion (Web Appendix 2.2.).

As ρ is unknown in practice, we construct an optimal test, iSKAT, that minimizes the p-

values of Qρ over the range of ρ (0 ≤ ρ ≤ 1). Specifically, we consider the test statistic:

(8)

where pρ is the p-value computed based on Qρ. In practice, a grid search over ρ ∈ [0,1] is 

used, for example in the simulations and data application we used a grid search at intervals 

of 0.1. Note that the optimal ρ depends on the proportion of non-zero β coefficients and the 

proportion of β coefficients that are positive (Lee et al., 2012). We describe how a p-value 

for QiSKAT is obtained using one-dimensional integration in Web Appendix 2.3.

5. Simulation Studies

We conduct numerical studies to (a) evaluate the performance of iSKAT for assessing rare 

variants by environment interactions and (b) demonstrate that using burden tests for testing 

rare variants by environment interactions can have inflated Type 1 error rates. We examine 

the performance of five methods. The first method is iSKAT with weights w1j = w2j = 

Beta(MAFj; 1,25), the beta distribution density function with parameters 1 and 25 evaluated 

at the sample MAF, which is the recommended weights for SKAT when there is no prior 

information (Wu et al., 2011). The second and third methods are special cases of iSKAT 

with ρ = 0 and ρ = 1 respectively. The last two methods are burden tests in which we 

summarize the genetic variants in a region using a single summary variable and then test for 
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association of this summary genetic variable with the environmental factor after adjusting 

for the main effect of this summary genetic variable. Specifically, the fourth method (CAST) 

is an extension of the cohort allelic sum test (Morgenthaler and Thilly, 2007), where the 

summary genetic variable is an indicator function of whether or not there is any rare variant 

within the region. For the fifth method (Counting), the summary genetic variable is the 

weighted counts (with weights wj = Beta(MAFj; 1,25)) of the total number of rare variants 

alleles in the region.

We note that when Gj and GjE are perfectly collinear for the jth rare variant, the main and 

interaction effects of the jth rare variant in model (1) are not identifiable. Due to the low 

observed MAF of the rare variants, such high collinearity is common. For example, for 

singletons, Gj and GjE are always perfectly collinear. For identifiability, for all five methods, 

we only include the jth rare variant in the interaction terms if Gj and GjE are not perfectly 

collinear, while still accounting for its main effect. For iSKAT, we include the jth rare variant 

in the G matrix, but exclude it from the S matrix in model (1) if Gj and GjE are perfectly 

collinear. The burden tests are modified to have two “collapsed” main effects: the first 

“collapsed ” main effect collapses over the Gj's that are not perfectly collinear with GjE, and 

the second “collapsed ” main effect collapses over the Gj's that are perfectly collinear with 

GjE. In the simulations, the two burden tests include both “collapsed” main effects, but only 

test the first “collapsed” variable for interaction effects.

For all methods, we restrict testing to rare variants with MAF < 0.05. We generate datasets 

by sampling the genotypes and covariates (including the environmental variable) jointly with 

replacement from the CoLaus dataset in Section 6. The environmental factor is binary. We 

consider n = 1945 and n = 4000:

(9)

where α1 = (3.6, −0.030, −1.4, 8.3, −4.1, 2.2, 0.005, −0.015, −0.0056, 0.0069, −0.033, 

0.15)⊺, α2 = 0.015 and εi ~ N(0, 0.27). α1, α2 and ε are chosen to mimic the CoLaus dataset 

in Section 6. For each scenario, we evaluate the Type 1 error and power using 105 and 500 

simulations respectively.

To evaluate the empirical Type 1 error rates, phenotypes are generated under the null model 

i.e. β = 0. We consider two scenarios, when there are (a) main effects α3 = (−0.218, 0, 0, 

−0.476, 0, 0, −0.151, −0.845, 0.0945, 0, −0.133)⊺ and (b) no main effects β3 = 0. The value 

of α3 in scenario (a) is chosen to mimic the CoLaus dataset. The empirical Type 1 error rates 

are shown in Table 1. When there are (a) main effects α3 ≠ 0, iSKAT gives a correct Type 1 

error rate but burden tests can have inflated Type 1 error rates (top two panels of Table 1). 

When there are (b) no main effects α3 = 0, all five methods have correct Type 1 error rates 

(bottom two panels of Table 1). There is some evidence to suggest that G and E are 

dependent in the CoLaus dataset (Section 6). Since the genotypes and covariates are sampled 

jointly from the CoLaus dataset, this preserves the association between the rare variants and 

environmental factor. Thus the observed Type 1 error inflation of burden tests could be due 

to a mis-specification of the mean model, e.g. when G and E are dependent, and/or a mis-

specification of the variance model, which occurs even when G and E are independent.
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To evaluate empirical power, phenotypes are generated under the alternative. We only 

compare the power of iSKAT and burden tests for scenario (b) no main effects α3 = 0, since 

the burden tests have correct Type 1 error in this scenario. We vary the number of non-zero 

βj's, proportion of non-zero βj's that are positive and the magnitudes of the non-zero βj's. We 

set the magnitudes of the non-zero βj's as |βj| = c, and increased c from zero until 0.475.

The results for n = 1945 are given in Figure 1. Similar results for n = 4000 are given in Web 

Figure 6. The top, middle and bottom panels of Figure 1 give the three scenarios when there 

are 2, 6 and 10 non-zero βj's respectively. The left and right panels of Figure 1 give the two 

cases when 50% of the βj's are positive and 100% of the βj's are positive respectively. For 

each plot, we vary c, the magnitude of the non-zero βj's. As shown in Figure 1, iSKAT 

generally outperforms the burden tests in terms of power, except for the case when almost all 

variants interact with environment, in which case the two methods have similar performance.

In all the plots except the bottom right plot, iSKAT has power similar to iSKAT with ρ = 0. 

However, in the bottom right plot, iSKAT has power similar to iSKAT with ρ = 1, which is 

what we would expect since this is the case when virtually all rare variants have interaction 

effects and the interactions all have the same sign. This is because iSKAT with ρ = 0 does 

not make any assumption on the GE interaction coefficients and performs well in a range of 

situations, e.g. when the GE interaction coefficients have different magnitude and signs. In 

the extreme case where all of rare variants interacts with E and have the same magnitude and 

sign, iSKAT with ρ = 1 will have optimal power. These results also show that iSKAT has an 

omnibus performance for different scenarios.

Additional simulation results on the CoLaus dataset are in Web Appendix 3. We demonstrate 

that the rare variants main effects estimated using weighted ridge regression  are similar to 

the true rare variants main effects α3 (Web Appendix 3.1.) and that the asymptotic and 

empirical p-values are similar (Web Appendix 3.2. and 3.3.). Web Appendix 4 provides 

simulation results when genotypes are generated from a coalescent model. The empirical 

Type 1 error rates confirm the conclusions of the bias analysis presented in Section 3. When 

there are no main effects of the rare variants (α3 = 0), burden tests have correct Type 1 error 

rates for both continuous and binary outcomes (Web Figures 7-8, 17-18, Web Table 2-3). 

When there are main effects of the rare variants (α3 ≠ 0), for a continuous outcome, burden 

tests can have inflated Type 1 error rates, under both G – E independence (Web Figures 

9-10) and G – E dependence (Web Figures 11-12). For a binary outcome, where there are 

main effects of the rare variants, Type 1 error rates are inflated under G – E dependence 

(Web Figures 21-22), but not under G – E independence (Web Figures 19-20). For both 

continuous and binary outcomes, the bias generally worsens with increasing G – E 
dependence (Web Figures 15-16, 25-26) and increasing main effect sizes (Web Figures 

13-14, 23-24). The simulations also demonstrate that iSKAT has power that outperforms or 

is comparable to the burden tests (Web Figures 27-30).

6. Data Analysis

Low circulating levels of adiponectin are associated with multiple clinical conditions such as 

obesity, hypertension and metabolic abnormalities. Family studies have demonstrated that 
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adiponectin levels are highly inheritable. Furthermore rare genetic variants within the 

adiponectin coding gene ADIPOQ have been reported to be associated with adiponectin 

levels - Warren et al. (2012) reported two uncommon genetic variants, rs17366743 

(chr3:188054783) and rs17366653 (chr3:188053510), each with MAF of about 2%, that are 

independently associated with adiponectin levels. Alcohol usage has been found to be 

associated with both adiponectin levels and ADIPOQ expression levels (Sierksma et al., 

2004; Joosten et al., 2008). Our dataset is from the Cohorte Lausannoise (CoLaus) study, 

which is a population-based study in Lausanne, Switzerland. Information on plasma 

adiponectin levels, alcohol usage and rare genetic variants in the exon region of the 

ADIPOQ gene are available (Warren et al., 2012). The goal of this analysis of the CoLaus 

resequencing dataset is to study whether the association of adiponectin levels with rare 

genetic variants of the ADIPOQ gene is modified by alcohol usage.

Our analysis used individuals who passed quality control filtering and had complete 

information on phenotype (plasma adiponectin levels) and covariates (age, sex, waist 

circumference, hip circumference, body mass index, smoking usage and alcohol usage (yes/

no)). A log10 transformation was applied to the plasma adiponectin levels and extreme 

values of adiponectin levels (six observations exceeding lower 0.1% or upper 99.9% 

percentile) were set to the boundary value (value at 0.1% or 99.9%), to improve normality 

and lessen the impact of outliers (Web Figure 31). The data analysis used 1945 study 

subjects and 11 rare variants within the exon region of the ADIPOQ gene.

We first restricted the analysis to the 11 rare variants (MAF < 0.05). Web Table 6 provides 

the MAF and missing rates of each of these 11 rare variants. Of the 11 rare variants, 6 are 

singletons and of the 5 non-singletons, 2 have MAF from 0.02-0.05, 2 have MAF from 

0.001 to 0.02 and 1 has MAF less than 0.001. Missing rates ranged from 0.051% to 2.06%. 

Missing genotypes were imputed with the homozygote of the major allele, in view of the 

variants being rare. Association analysis results (Web Table 12) were similar when missing 

genotypes were imputed with the mean. We first applied SKAT-O (Lee et al., 2012) with 

Beta(MAFj; 1,25) weights to test for the main effects of the rare variants on adiponectin 

levels. We considered a linear regression of plasma adiponectin levels on the 11 rare variants 

in the ADIPOQ gene while adjusting for alcohol usage, age, sex, waist circumference, hip 

circumference, body mass index, smoking usage and population stratification using the first 

five components from multi-dimensional scaling (derived from GWAS data). Similar to 

iSKAT, SKAT-O assumes the correlation of the main effects of the rare variants is ρ, and 

uses the minimum p-value from different ρ values as the test statistic. In Web Table 7, we 

report SKAT-O p-values corresponding to each ρ value. Using a grid search of ρ ∈ [0, 1] at 

intervals of 0.1, SKAT-O gave a p-value of 1.8 × 10−14 (Table 2), confirming the strong 

association of rare variants in the exon region of the ADIPOQ gene with adiponectin levels. 

Next, to examine the G – E independence assumption, we applied SKAT-O to investigate if 

rare variants in the exon region of the ADIPOQ gene are associated with alcohol usage. 

SKAT-O gave a p-value of 0.042 (Table 2), suggesting that rare variants in the exon region of 

the ADIPOQ gene are associated with alcohol usage.

Finally we applied iSKAT to investigate ADIPOQ-alcohol interaction effects on plasma 

adiponectin levels. We did not apply the burden tests since as demonstrated in the simulation 
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studies in Section 5, the burden tests can have inflated Type 1 error. We considered a linear 

regression of adiponectin levels on the main effects of 11 rare variants in the ADIPOQ gene, 

alcohol usage, ADIPOQ-alcohol interactions and the aforementioned covariates. We note 

that even though the analysis adjusted for the main effects of all 11 rare variants, including 

the 6 singletons, these 6 singletons were not assessed for interaction effects due to 

collinearity (Section 5). Analysis adjusting only for the main effects of the 5 non-singletons 

gave similar results (Web Table 13). We used a grid search over ρ ∈ [0, 1] at intervals of 0.1. 

In Web Table 8, we report iSKAT p-values corresponding to each fixed ρ value. The iSKAT 

test statistic (Equation (8)) is the minimum of these 11 p-values, which was 0.022 and 

attained at ρ = 1 (Web Table 8). iSKAT gave a p-value of 0.037 (Table 2) for the GE 

interaction terms, suggesting a potential ADIPOQ gene and alcohol interaction effect on 

plasma adiponectin levels. For comparison, iSKAT with ρ = 0 gave a p-value of 0.23, while 

the other ρ values gave p-values between 0.022 and 0.23 (Web Table 8). iSKAT estimates the 

rare variants main effects  in the null model from ridge regression (Web Appendix 2.1.) 

and these are reported in Web Table 9.

For comparison, in Web Table 10, we report the estimated rare variants main effects from 

unpenalized linear regression (ridge regression with ridge parameter λ = 0). Both sets of 

estimates are similar in the CoLaus resequencing dataset. In addition, if unpenalized linear 

regression was used to estimate the rare variants main effects instead of weighted ridge 

regression, iSKAT would give the same p-value of 0.037 for ADIPOQ-alcohol interaction 

effects. This is consistent with the simulations presented in Web Appendix 4.3., where we 

find that both procedures of fitting the null model had similar performance when the null 

model without penalization converged. However, the null model without penalization did not 

converge for 71% of the simulations.

The p-value from iSKAT (p-valueiSKAT = 0.037) is bigger than that for iSKAT with ρ = 1 (p-

valueiSKAT with ρ=1 = 0.022), even though the minimum p-value was indeed attained at ρ = 1. 

This is because the p-value of iSKAT accounts for searching over a set of ρ values that is 

done through a grid search. The p-value from iSKAT controls the Type 1 error rate for a 

single region/test. If multiple regions are tested, i.e. in a whole-exome study, multiple testing 

correction can proceed via any method that controls the family-wise error rate. To illustrate, 

if a Bonferroni correction is used and 20,000 region-sets are tested, the threshold for 

significance for each of the 20,0000 region-sets (where each of the 20,000 p-values are from 

iSKAT) will be 0.05/20, 000, in order to have a family-wise Type 1 error rate of 0.05.

The CoLaus resequencing dataset had one common variant chr3:188053586 (rs2241766, 

MAF = 0.138) within the exon region of the ADIPOQ gene, and in Web Table 11, we report 

linkage disequilibrium (LD) measures between chr3:188053586 and the remainder 11 rare 

variants, suggesting a weak correlation between the common variant and the rare variants. In 

an individual marker analysis, both the main effect of chr3:188053586 (p-value = 0.045) and 

its interaction with alcohol usage (p-value = 0.014) were significantly associated with 

adiponectin levels. When both chr3:188053586 and rare variants of ADIPOQ were tested 

jointly for their interaction effects with alcohol use on plasma adiponectin levels, i.e. by 

including chr3:188053586 in X and its interaction with alcohol in S in model (1), in addition 

to rare variant terms, iSKAT gave a p-value of 0.040 (Table 2). To further investigate rare 
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variants interaction effects with alcohol use on plasma adiponectin levels after accounting 

for the common variant, we performed iSKAT using rare variants after adjusting additionally 

for both the main effect of chr3:188053586 and its interaction with alcohol usage by 

including both variables in X in model (1). This iSKAT analysis interrogating only rare 

variants interaction effects, after adjusting for interaction effect of common variant 

chr3:188053586, gave a p-value of 0.061 (fourth row of Table 2). This is slightly larger than 

the p-value interrogating only rare variants interaction effects without adjusting for the 

common variant (p-value = 0.037, third row of Table 2), providing suggestive evidence of 

interaction effects between rare variants in APIPOQ and alcohol usage on plasma 

adiponectin levels that are not due to the common variant.

7. Discussions

We have developed an omnibus test, iSKAT, for assessing rare variants by environment 

interactions. The test is optimal within a class of tests. Our proposed approach is robust to 

the signs and magnitudes of the rare variants by environment effects, while effectively 

controlling for the main effects of rare variants. The proposed test iSKAT has various 

practical advantages: it is computationally efficient as no permutation is needed and p-values 

are obtained analytically; it allows for prior biological information to be incorporated by 

using flexible weights, and allows for adjustment of covariates. We note that iSKAT is an 

association test and the results should be interpreted from an association analysis standpoint. 

Much stronger conditions are required in order to interpret the interactions as being causal.

We have considered a particular class of kernels for modeling the rare variants by 

environment interaction effects, where each kernel within the class has kernel matrix 

SW1RρW1S⊺. We constructed iSKAT to be a test that is optimal within this class. Other 

kernels can be used to model the GE interaction effects. To construct a test that is optimal 

within a set of candidate kernels, an approach similar to that utilized by Wu et al. (2013) can 

be used.

There are three classes of unified region-based association tests, corresponding to three 

different null hypotheses, that might be of interest in a rare variants association study. The 

first test is a test of main rare variants effects, see Lee et al. (2014) for an overview. The 

second test is a joint test of main rare variants effects and rare variants by environment 

effects; this test examines the effects of rare variants in the presence of plausible GE 

interactions. The third test is a test of rare variants by environment effects only after 

accounting for main rare variants effects. In the data application, we have illustrated how the 

first and third hypotheses can be tested using SKAT-O (Lee et al., 2012) and iSKAT 

respectively. It will be of future research interest to develop a joint test of the second class, 

by extending the work of Ionita-Laza et al. (2013) to the rare variant GE interaction context.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Empirical power curves for n = 1945 at α = 0.0001 level of significance for testing rare 

variant GE interaction effects on a continuous outcome when there are no main effects - 

iSKAT (solid line), iSKAT with ρ = 0 (dashed-and-dotted line), iSKAT with ρ = 1 (long 

dashed line), CAST (dotted line) and Counting (short dashed line). Top panel - 2 non-zero 

βj's; Middle panel - 6 non-zero βj's; Bottom panel - 10 non-zero βj's. Left panel - 50% of βj's 

are positive; Right panel -100% of βj's are positive. In each plot, we set the magnitudes of 

the non-zero βj's as |βj| = c, and increased c from zero until 0.475. Datasets were generated 

by sampling the genotypes and covariates jointly with replacement from the CoLaus dataset 
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to preserve the association between G and E. Note that the p-value for the association 

between G and E in the CoLaus dataset was 0.042, which suggests plausible G – E 
dependence.
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Table 1

Empirical Type 1 error rates for continuous outcomes in the presence of main effects (top two panels) and in 

the absence of main effects (bottom two panels) for n = 1945 and n = 4000 respectively. When there are main 

effects for rare variants (top two panels), iSKAT gives correct Type 1 error rates but burden tests can have 

inflated Type 1 error rates. When there are no main effects for rare variants (bottom two panels), all five 

methods have correct Type 1 error rates. Simulated datasets were generated by sampling the genotypes and 

covariates jointly with replacement from the CoLaus dataset to preserve the association between G and E. The 

p-value for the dependence between G and E in the the CoLaus dataset was 0.042, which suggests G – E 

dependence.

With Main Effects

α-level iSKAT iSKAT (ρ = 0) iSKAT (ρ = 1) CAST Counting

n = 1945 1e-02 1.11e-02 9.98e-03 9.76e-03 1.02e-01 8.51e-02

1e-03 9.80e-04 9.20e-04 1.00e-03 2.73e-02 2.10e-02

1e-04 1.20e-04 1.10e-04 1.20e-04 6.39e-03 4.70e-03

α-level iSKAT iSKAT (ρ = 0) iSKAT (ρ = 1) CAST Counting

n = 4000 1e-02 1.06e-02 9.77e-03 1.02e-02 2.26e-01 1.96e-01

1e-03 1.15e-03 1.02e-03 1.12e-03 7.96e-02 6.35e-02

1e-04 1.60e-04 1.10e-04 1.50e-04 2.55e-02 1.85e-02

Without Main Effects

α-level iSKAT iSKAT (ρ = 0) iSKAT (ρ = 1) CAST Counting

n = 1945 1e-02 1.11e-02 9.97e-03 9.71e-03 1.01e-02 9.91e-03

1e-03 9.70e-04 9.10e-04 9.90e-04 1.11e-03 8.80e-04

1e-04 1.20e-04 1.10e-04 1.20e-04 1.10e-04 1.10e-04

α-level iSKAT iSKAT (ρ = 0) iSKAT (ρ = 1) CAST Counting

n = 4000 1e-02 1.06e-02 9.74e-03 1.02e-02 1.03e-02 1.01e-02

1e-03 1.14e-03 1.02e-03 1.12e-03 1.04e-03 1.08e-03

1e-04 1.60e-04 1.10e-04 1.50e-04 1.80e-04 1.50e-04
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Table 2

Summary of association analysis results of the CoLaus resequencing dataset. The SKAT-O test (Lee et al., 

2012) was used to test for the main rare variant effects on adiponectin levels (first row) and their effects on 

alcohol usage (second row). The iSKAT test was used to test for interaction effects between ADIPOQ gene 

and alcohol use on adiponectin levels (third-fifth rows).

Analysis p-value

Main effects of rare variants of ADIPOQ gene on adiponectin levels 1.8e-14

Main effects of rare variants of ADIPOQ gene on alcohol usage 4.2e-02

Interaction effects of rare variants of ADIPOQ gene *alcohol on adiponectin levels 3.7e-02

Interaction effects of rare variants of ADIPOQ gene*alcohol on adiponectin levels, adjusting for effects of common variant 
chr3:188053586 and chr3:188053586*alcohol

6.1e-02

Interaction effects of ADIPOQ gene*alcohol (chr3:188053586*alcohol and rare variants*alcohol) on adiponectin levels 4.0e-02
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