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Abstract

The hypothalamus is composed of many heterogeneous nuclei that control distinct physiological 

functions. Investigating molecular mechanisms that regulate the specification of these nuclei and 

specific neuronal subtypes, and their contribution to diverse hypothalamic functions, is an exciting 

research focus. Here, we begin by summarizing the hypothalamic functions of feeding regulation, 

sleep-wake cycles, stress responses, and circadian rhythm, and describing their anatomical bases. 

Next, we review the molecular regulation of formation of hypothalamic territories, specification of 

nuclei and subnuclei, and generation of specific neurons. Finally, we highlight physiological and 

behavioral consequences of altered hypothalamic development. Identifying molecules that regulate 

hypothalamic development and function will increase our understanding of hypothalamus-related 

disorders, such as obesity and diabetes, and aid in the development of therapies aimed specifically 

at their etiologies.
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Introduction

The hypothalamus can be rostrocaudally divided into four regions: preoptic, supraoptic, 

tuberal, and mammillary regions (Fig. 1). Each region consists of several nuclei, whose 

functions were defined mainly using lesions, stimulations, and genetic approaches. It has 

been found that besides the conventional neurotransmitters such as 5-hydroxytryptamine (5-

HT), dopamine (DA), glutamate (Glu), and gamma-aminobutyric acid (GABA), the 

hypothalamus predominantly and selectively produces various restricted neuropeptides and 

hormones, which contribute to diverse basic physiological functions, such as feeding, sleep-

wake cycles, body temperature, sex behaviors and reproduction, stress responses, and 

circadian rhythm [1]. In addition, these nuclei in the hypothalamus are frequently connected 
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by neuronal projections, which indicates neurobiological interactions between different 

physiological functions. In this review, we first summarize hypothalamic functions that are 

regulated by specific nuclei. We then highlight molecules such as mitogens, transcription 

factors, and microRNAs (miRNAs), which play crucial roles in the development of the 

hypothalamus. Finally, we elaborate pathophysiologic functional consequences of abnormal 

development of the hypothalamus.

Functions of the hypothalamus

Feeding and energy expenditure

Roles of the hypothalamus in feeding and expenditure were recognized as early as 1940s, as 

some studies showed that ablation of the arcuate nucleus (ARC) and ventromedial nucleus 

(VMN) led to excessive eating and obesity, while ablation of the lateral hypothalamus (LH) 

caused aphagia and weight loss [2–4]. Later, the dorsomedial nucleus (DMN) and 

paraventricular nucleus (PVN) were also proven to regulate food intake and body weight, 

with aphagia and weight loss caused by lesions in the DMN, and overeating and obesity due 

to lesions in the PVN [5, 6]. Neurocircuits composed of these hypothalamic nuclei and other 

brain areas seem to play important roles in determining whether to eat, when to eat, what to 

eat, and how much to eat [7].

The ARC is a major site of feeding regulation, whose neurons mainly project to other nuclei 

of the hypothalamus, including the LH, PVN, and VMN [8, 9] (Fig. 2), and release the 

orexigenic neuropeptides (neuropeptide Y, NPY, and agouti-related protein, AgRP) to 

increase food intake, and the anorexigenic neuropeptides (proopiomelanocortin, POMC; and 

cocaine- and amphetamine-regulated transcript, CART) to decrease food intake [8, 10, 11]. 

Nutrient-related signals and hormones such as leptin [12], insulin [13], glucose [14], peptide 

YY3-36 (PYY3-36) [15], ghrelin [16], and cholecystokinin (CCK) [17] have been reported 

to repress these orexigenic neuropeptides and promote anorexigenic neuropeptides to 

decrease food intake. VMN neurons have been found to project to the ARC and activate 

anorexigenic pathways [18], as well as express abundant oxytocin receptor to mediate 

oxytocin action on food intake [19, 20]. In addition, LH and PVN neurons have been found 

to relay information from other food-related neurons, such as the parabrachial nucleus 

(PBN) in the midbrain and the nucleus of the solitary tract (NTS) in the hindbrain, which 

receive visceral inputs, to the ARC to influence satiety [7]. LH and PVN neurons also 

receive reward-related inputs from the nucleus accumbens (NAc) and amygdala (AMY), and 

project to the ARC to regulate appetite [7] (Fig. 2). Moreover, studies have shown that LH 

neurons produce orexigenic neuropeptides orexin, melanin concentrating hormone (MCH), 

and CART to promote food intake [21], while PVN neurons produce hormones such as the 

corticotropin-releasing hormone (CRH), the thyrotropin-releasing hormone (TRH), and 

oxytocin (OXT) to participate in the metabolic process to regulate food intake [20, 22]. The 

DMN has been shown to receive information from the suprachiasmatic nucleus (SCN) and 

export to the PVN and LH, and participate in regulating circadian rhythm of feeding [23–25] 

(Fig. 2).

Roles of specific neuronal circuits and substances involved in food intake and expenditure in 

the adult hypothalamus were well studied in the past. Not surprisingly, because maternal 
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obesity and diabetes increase risks for obesity and diabetes in the offspring, studies on 

correlations between hypothalamic development and feeding-related disorders are now 

emerging [26–28].

Sleep and wakefulness

Sleep and wakefulness are complex behaviors whose regulation is involved in coordination 

of neural networks, homeo-static drive, and circadian system, which are all associated with 

the hypothalamus [29, 30]. The ventrolateral preoptic nucleus (VLPO) and the median 

preoptic nucleus (MnPO) of the hypothalamus are two main sleep centers that promote sleep 

and repress wakefulness (Fig. 3). GABA and galanin neurons in the VLPO and MnPO are 

active during sleep and, in turn, repress the ascending arousal system that consists of the 

brain stem, hypothalamus, thalamus, basal forebrain, and cortex [31, 32]. On the other hand, 

as a part of the ascending arousal system, the LH and tuberomammillary nucleus (TMN) 

consist of arousal neurons that produce orexin and histamine/gamma-aminobutyric acid 

(His/GABA), respectively, which are all active during wakefulness [32–35] (Fig. 3). It has 

been found that orexin mutation in human or deletion in mice causes narcolepsy [36–38]. 

Moreover, the SCN, the subparaventricular zone (SPZ), and the dorsomedial nucleus (DMN) 

form a SCN-SPZ-DMN network, which is responsible for the regulation of the sleep-wake 

circadian rhythm [29, 39] (Fig. 3). Notably, diverse neuropeptides and hormones such as 

NPY, CRH, and Growth Hormone Releasing Hormone (GHRH) in the hypothalamus take 

part in the homeostatic regulation of sleep and wakefulness likely by the interaction with 

neuronal networks [31].

Dysregulation of hypothalamic development has been found to be associated with sleep 

disturbance, such as in Prader-Willi syndrome [40]. As a result, the hypothalamus is 

considered an important target for potential therapies for sleep disorders, for example, 

dexmedetomidine (a sleep-promoting drug) promotes sleep by activating the VLPO [41].

Responses to stress

When an organism confronts stress such as an adverse environment or threats, a series of 

physiological responses, also called stress responses, are triggered to adapt to these changes. 

Multiple nuclei and molecules of the hypothalamus participate in stress responses. The 

PVN, which interacts with the medial preoptic area (mPOA), DMN, LH, SCN, and some 

other non-hypothalamus nuclei, has been found to regulate stress by activating the 

hypothalamic–pituitary–adrenal (HPA) axis [42, 43]. Under stress, the PVN secrets CRH 

and arginine vasopressin (AVP) to stimulate release of the adrenocortico-tropic hormone 

(ACTH) in the pituitary, in turn to regulate the level and activity of the cortisol in the adrenal 

[44]. In addition, peptides such as orexin, NPY, and OXT participate in stress responses by 

regulating the HPA activity in a specific stress context, for example sleep loss and fear [45, 

46].

Other functions of the hypothalamus

It has been shown that the SCN is a major circadian pacemaker in vertebrates. Lesions of the 

SCN lead to arrhythmic motor activity in rodents [47, 48]. The vasoactive intestinal peptide 

(Vip) or its receptor Vipr2, gastrin-releasing peptide (Grp), AVP, and prokineticin-2 have 
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been shown to be crucial for regulating rhythm of clock gene expression and neuronal firing 

in the SCN [49–53]. Moreover, lesion studies have shown that the mammillary body in the 

hypothalamus is related to memory, but its molecular mechanism is still unknown [54–57]. 

Thus, the hypothalamus regulates complex physiological behaviors related to feeding, sleep, 

stress responses, and rhythms. Investigation of molecular mechanisms that regulate 

formation of distinct nuclei and productions of specific neurons will shed light on 

understanding neurological bases of hypothalamus functions.

Molecular regulation of hypothalamic development and functions

The development of the hypothalamus, derived from prechordal mesoderm, is a complex 

series of events that includes establishment of the hypothalamic regional territory, 

specification of subdivision of regional territories, neuronal differentiation, neuronal 

migration, and formation of subnuclei. A gene expression profiling study has identified 

altered expression of over 1000 transcripts in the mouse hypothalamus during different 

developmental stages, suggesting that a large number of genes contribute to hypothalamic 

development and may play multiple roles in the process [58]. We here summarize major 

signaling pathways and molecules that regulate the process of hypothalamic development, 

and highlight their effects on behaviors.

Signaling pathways that determine hypothalamic regional territories

The Wnt and sonic hedgehog (Shh) signaling pathways play essential roles in neural 

development. They normally function as mitogens that control proliferation of progenitor 

cells and affect expression of downstream genes. Studies have shown that the Wnt and Shh 

pathways are also crucial for formation of hypothalamic regional territories (Fig. 4a).

Wnt signaling pathway

It has been shown that a gradient expression of the Wnt signaling contributes to the 

formation of the anterior-posterior (A-P) axis in the neural plate [59–61]. Wnt components 

are expressed in a distinct pattern to form a temporal local gradient Wnt activity and to 

participate in self-renewal and differentiation of prechordal mesoderm cells [62, 63]. For 

example, Wnt7b and Wnt8b are highly expressed in the central nervous system in mice 

between embryonic day 11 (E11) and E16 (http://www.brain-map.org/). Specifically, Wnt7 

is expressed in the anterior hypothalamus and Lef1 is expressed in the premammillary area 

[58] (Fig. 4a). In zebrafish embryos, Wnt8 is expressed in the posterior area, Lef1 in the 

mammillary area, and Axin1 and Tcf3 in the posterior area [64–67]. Specific expression of 

molecules in the Wnt signaling pathway implies their roles in regulating hypothalamic 

regional territories.

In the zebrafish, functional deletion of Wnt8b leads to loss of expression of the proneuron 

marker Zash1a and the neurogenesis marker Sox3 [64]. Moreover, abrogation of Lef1, the 

essential mediator of the Wnt pathway, results in absence of expression of Sox3, Zash1a, 

and the postmitotic neuron marker HuC/D [64]. This suggests that the Wnt-Lef1 signaling is 

crucial for hypothalamic neurogenesis. Deletion of Axin1, a Wnt signaling inhibitor, leads to 

a reduced expression of the early posterior hypothalamic marker Nkx2.1a, and adding Axin1 
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to the mutant can restore its expression in the zebrafish [65]. Similarly, it has been found that 

Tcf3, another Wnt repressor, is expressed in the posterior hypothalamus of the zebrafish 

[67], and overexpression of Tcf3 results in an ectopic expression of Nkx2.1a [68]. This 

suggests that Axin1 and Tcf3 play an important role in specifying identity of the posterior 

hypothalamus (Fig. 4b).

Shh signaling pathway

Dynamic and transient expression of Shh in the prechordal plate has been shown to control 

the dorsal and ventral patterning of the developing brain [69, 70]. Sonic hedgehog (Shh) has 

a peak expression at E9.5 when it mainly plays a role in patterning the mouse hypothalamus. 

Later on, its expression becomes progressively reduced and does not reach another peak 

until E12.5 when it participates in hypothalamic glial differentiation [58, 71].

At the early stage of the hypothalamic development, Shh is specifically expressed in the 

ventral area [58] (Fig. 4a). Conditional knockout of Shh using the Foxb1-Cre line in the 

neural plate in mice disrupts the expression of Dbx1 and Dlx2, and causes a reduction of the 

ventral domain and a reversion to dorsal identity in the hypothalamus [72]. Similarly, Shh 
deletion in the hypothalamic basal plate using the Nkx2.1-Cre line results in loss of the 

anterior hypothalamus including the ARC, PVN, and VMN, and a thinner posterior 

hypothalamus [58]. Moreover, the Shh signaling repressor Gli3 is expressed in presumptive 

hypothalamus region by E7.5 in mice and plays a role of specifying the hypothalamic 

subregions by balancing the Shh-Gli pathway [73] (Fig. 4). These studies suggest that Shh is 

required for formation of the ventral and anterior hypothalamus.

Genes interacting with the Wnt and Shh pathways

Previous work has shown that BMP7, expressed in the posteroventral hypothalamus, is 

crucial for repressing Shh expression and in turn contributes to the Shh dynamic expression 

[71, 74, 75]. Deletion of Foxg1, which marks the boundary between the telencephalon and 

basal diencephalon [58], results in expansion of the hypothalamus [76]. It has been found 

that Foxg1 is induced by Shh to directly repress the expression of Wnt8b ligand [76], 

suggesting that Foxg1 may regulate formation of the hypothalamic regional territory by 

integrating the Wnt and Shh signalings (Fig. 4b). Furthermore, Vax1, which marks the 

ventral anterior area, is induced by Shh to repress Wnt activity by activating the inhibitor 

Tcf4 (also called Tcf7l2) [77, 78] (Fig. 4b). Six3 is expressed in the ventral area and may 

promote Shh expression by functioning as a remote enhancer [79].

Studies have shown that the combinatory expression of transcription factors such as Nkx2.1, 

Emx2, Dlx2, and growth factors such as fibroblast growth factors (Fgfs) also regulates 

hypothalamic borders [80]. For instance, Nkx2.1 specifies the posteroventral hypothalamus 

[81], while Rx3 is important for the anterior hypothalamus [82]. Irx5 is expressed in the 

supramammillary nucleus, and SF-1 and Pomc are expressed in the VMN and ARC, 

respectively [83, 84]. The combination of Lhx6, Arx, and Nkx2.1 expression demarcates the 

tuberomammillary area, and positive expression of Foxg1 and negative expression of Sim1 

and Nkx6.2 define the preoptic area [58]. These transcription factors appear to be regulated 
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by the combinatory effect of the Wnt and Shh signalings directly or indirectly [80], 

suggesting downstream genes of the Wnt and Shh pathways (Fig. 4b).

Genes determining formation of hypothalamic nuclei and their functions

Formation of hypothalamic nuclei is organized by generation and migration of specific 

neurons. Neurogenesis in the developing hypothalamus occurs between E10 and E16 in the 

mouse. Genetic studies have shown that deletion of specific genes leads to neurogenesis 

defects and failure in organization of diverse nuclei, and in turn affects distinct hypothalamic 

functions, and results in physiological or behavioral changes (Table 1).

Genes regulating development and functions of the ARC and VMN

Studies have shown that Mash1 is expressed in the ARC and VMN of the hypothalamus and 

contributes to neurogenesis. Mash1 deletion results in loss of distinct neurons, including 

neurons secreting neuropeptides, GHRH, and dopamine neurons [85–87]. It has been shown 

that Mash1 is induced by the Shh signaling in vivo, suggesting that the Shh signaling 

controls the development of the ARC and VMN by regulating Mash1 expression [88] (Fig. 

4b). Moreover, Ngn3 plays a role in mediating differentiation of the ARC and VMN. It has 

been found that Ngn3 promotes the development of neurons expressing POMC and SF-1 (a 

VMN marker), and inhibits the expansion of the NPY neuronal population [89]. Conditional 

deletion of Ngn3 in the ventral hypothalamus causes hyper-phagia and reduces energy 

expenditure, and eventually results in obesity [90]. This indicates that Ngn3 may control 

energy balance by promoting differentiation of appetite-related neurons. Moreover, a recent 

work has found that Ngn3 is regulated by the sex-determining gene Sry on the Y 

chromosome and mediates sex-specific development in the hypothalamus [91].

In addition, NHLH2 is expressed in the hypothalamus, and NHLH2 knockout mice present 

adult-onset obesity and infertility [92]. It appears that NHLH2 mediates infertility by 

regulating migration of neurons expressing GnRH, while it affects energy balance by 

mediating cleavage of the proneuropeptide POMC [93]. Furthermore, SF-1 is specifically 

expressed in the VMN, and SF-1 deletion in the VMN makes cells more scattered, and in 

turn results in failure in VMN formation [94, 95]. The VMN-specific SF-1 knockout mice 

are less sensitive to leptin and subsequently become obese in high fat diet (HFD), which 

suggests that the VMN regulates energy balance possibly by the leptin signal [96–98].

Moreover, VMN specific SF-1 knockout mice display anxiety-like behaviors, which 

indicates that the VMN also participates in stress regulation [99].

SCN formation and rhythm

Studies have shown that Six3, Six6, and Lhx2 are required for SCN neuronal development, 

and deletion of any of them fails to specify the SCN [100–102]. Moreover, deletion of Lhx1 
specifically in the SCN selectively affects development of SCN neurons that produce 

neuropeptides AVP, Vip, and Grp, but has no effects on generation of neurons that secrete 

GABA, Gal, and SST [103]. Lhx1-deficient mice show disrupted SCN cellular rhythm and 
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circadian activity rhythm [103]. These studies indicate that normal development of SCN is 

also important for acquirement of its circadian properties.

Genes determining formation of nuclei related to the neuroendocrine 

system

The aPV, PVN, and SON consist of parvicellular neurons that secrete CRH, TRH, GHRH, 

and somatostatin (SST), and magnocellular neurons that produce AVP and OXT. These 

nuclei are the major developmental centers of the neuroendocrine system, where many 

endocrine progenitors are produced and then migrate to other brain sites [104–106].

The homeobox gene Orthopedia (Otp) is strongly expressed in the putative anterior 

paraventricular (aPV), PVN, and the supraoptic nucleus (SON) at the early stage, and 

deletion of Otp leads to failure in formation of the aPV/PVN/SON and causes loss of distinct 

neurons including neuroendocrine neurons secreting SST, AVP, OXT, CRH, TRH, and 

dopamine neurons [107–109]. Otp is found to be promoted by Shh and repressed by Fgf8 in 

the zebrafish [110], which indicates that Shh may participate in specification of endocrine 

cells (Fig. 4b). While deletion of Otp leads to embryonic lethality in mice, deletion of Otp 
only affects stress adaptation in the zebrafish [111].

Sim1 is an important gene for organization and neuronal neurogenesis of the aPV/PVN/

SON, and its expression is controlled by Otp [112, 113]. It has been shown that Sim1 
mutation causes decrease of almost all endocrine cells in mice. Together with Arnt2, Sim1 

regulates Brn2 expression to promote differentiation of cells secreting AVP, CRH, and OXT 

in the PVN and SON, and also controls Sim2 expression to determine differentiation of cells 

secreting SST and TRH in the aPV [114–116]. In humans, patients without SIM1 show 

Prader-Willi-like symptoms [117–119]. Decreased SIM1 expression in humans has been 

reported to cause obesity [120]. Similarly, Sim1 haploinsufficient mice show hyperphagic 

obesity due to profound reduction of OXT [121–123]. In contrast, Sim1 overexpressing mice 

show reduced diet-induced obesity [124]. This suggests that OXT is important for weight 

control and its function is regulated by Sim1 expression.

Formation of neurocircuits and hypothalamic functions

Besides main outputs to pituitary and autonomic neurons in the midbrain and hindbrain, one 

of the most significant characterizations of the hypothalamus is that its efferent fibers reach 

the internal nuclei, especially the ARC. Neurons that produce NPY and POMC in the ARC 

send a bundle of projections to the VMN, LH, and PVN to regulate feeding and expenditure 

(Fig. 2). Interestingly, the number of these efferent fibers in the ARC influences energy 

metabolism. For example, decrease of outputs of ARC neurons due to the maternal HFD 

causes obesity and disorders of glucose metabolism in the offspring [125]. It has been found 

that Fgf8 is expressed in the hypothalamus and contributes to growth of GnRH axons, and 

netrin-1 and its receptor DCC participate in orientation of retinal ganglion cell (RGC) axons 

in the ventral hypothalamus [126]. However, it is unclear what developmental genes play a 

role in formation of hypothalamic functional circuits.
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Roles of miRNAs in the development and functions of hypothalamus

miRNAs are a large family of endogenous noncoding small RNAs. They are ~22 nucleotides 

long and function through degradation or posttranscriptional repression of target genes by 

imperfect complementary pairing. Studies have shown that miRNAs participate in 

neurogenesis, neuronal differentiation and migration, and regulate brain functions by 

silencing specific target molecules [127–129]. It has been found that some miRNAs are 

highly expressed in the hypothalamus, for example, miR-7, let-7, and miR-9 [130, 131]. Of 

these, let-7 has been shown to inhibit Mash1 to reduce neurogenesis in vitro [132]. 

Additionally, specific deletion of Dicer, an essential enzyme that processes miRNA 

precursors, in the POMC-expressing cells leads to failure in development of neurons 

secreting POMC, and in turn causes obesity and disrupted glucose metabolism [133]. 

However, what and how specific miRNAs affect development and functions of hypothalamic 

nuclei and its neuronal lineages are still unknown.

Perspectives

The hypothalamus is a brain region consisting of many nuclei that control a variety of 

endocrine, autonomic, and behavioral functions. Besides functions discussed above, the 

hypothalamus also participates in many other basic life functions including fluid and 

electrolyte balance, aggressive behaviors, and so on [1]. Molecular mechanisms that regulate 

hypothalamic development, especially specification of subnuclei and neuronal lineages, and 

formation of neurocircuits, and their consequences to hypothalamic physiological functions, 

need to be further studied. Genetic rescue will be helpful to further reveal the role of specific 

genes in regulating hypothalamic development and physiological functions. Roles of 

noncoding RNAs such as miRNAs in development of distinct hypothalamic subnuclei and 

functions are of great interests to be further explored. Revealing molecular mechanisms of 

genes that regulate hypothalamic development and physiological functions will provide 

significant insights into understanding the etiology of hypothalamus-associated diseases 

such as adolescent obesity, diabetes, and depression, and developing a means for treatment.
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Fig. 1. 
An overview of hypothalamic nuclei and functions. Nuclei and their functions in the 

preoptic region are denoted in red, including the preoptic area (POA) and the 

suprachiasmatic nucleus (SCN). Relative locations and functions of the supraoptic region are 

denoted in blue, including the supraoptic nucleus (SON). The tuberal region is denoted in 

green, including the arcuate nucleus (ARC), the paraventricular nucleus (PVN), the lateral 

hypothalamus (LH), the ventromedial hypothalamus (VMH), and the dorsomedial 

hypothalamus (DMH). The mammillary region, including the mammillary area (MM) and 

the tuberomammillary nucleus (TMN), is denoted in purple
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Fig. 2. 
Hypothalamic neurocircuits involved in feeding and energy expenditure. The brain outline 

(left) shows relative locations of the hypothalamus and other related nuclei including the 

nucleus accumbens (NAc) and amygdala (AMY) in the forebrain, the parabrachial nucleus 

(PBN) in the midbrain, and the nucleus of the solitary tract (NTS) in the hindbrain. The 

highlighted image (right) shows nuclei and projections among nuclei and other brain sites in 

the hypothalamus. Projections between the arcuate nucleus (ARC) and other nuclei, which 

play important roles in mediating intrahypothalamic interactions, are denoted in purple.

Pathways between hypothalamic subnuclei and other feeding-related (PBN and NTS) and 

reward-related (NAc and AMY) information are denoted in red. The paraventricular nucleus 

(PVN) and lateral hypothalamus (LH) seem to relay nuclei from feeding-related and reward-

related sites to the ARC. Projections from the supraoptic nucleus, which are denoted in blue, 

indicate that circadian rhythm influences when to feed during the day. The interrupted 
arrows stand for indirect projections from suprachiasmatic nucleus (SCN) to the 

dorsomedial nucleus (DMN)
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Fig. 3. 
Hypothalamic neurocircuits involved in sleep and wakefulness. The ascending arousal 

pathways, which originate from the locus coeruleus (LC) in the hindbrain and are all active 

during wakefulness, are denoted in purple. Sleep-promoting pathways, in which neurons in 

the lateral hypothalamus (LH) and tuberomammillary nucleus (TMN) are repressed by 

neurons producing GABA and galanin in the ventrolateral preoptic nucleus (VLPO) and 

median preoptic nucleus (MnPO) during sleep, are denoted in red. Outputs of orexin, which 

are important for stabilizing sleep, are shown in green, and pathways of circadian rhythm 

involved in sleep-wake cycles are shown in blue
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Fig. 4. 
The Wnt-Shh signaling network and hypothalamic development. a Schematic drawing of 

expression regions of Shh and Wnt components in the hypothalamus of the E12.5 mouse 

brain. The expression region of Shh is denoted in green; Lef1 is denoted in red; Wnt7 is 

denoted in blue. Both Shh and lef1 are expressed in regions with red dots and green 
background. Other brain areas are shown in gray. AH anterior hypothalamus, ARC arcuate 

nucleus, MM mammillary area, PM premammillary region, POA preoptic area, PVN 
paraventricular nucleus, VMN ventrome-dial nucleus. The anterior-posterior (A-P) and 

dorsal-ventral (D-V) directions of the hypothalamus in the E12.5 mouse brain are shown. b 
Genes of the Wnt-Shh signaling network in the developing hypothalamus. Shh signaling is 

mainly located in the ventral hypothalamus while Wnt signaling is in the dorsal area. The 

essential mediator of the Wnt pathway Lef1 and inhibitors of Wnt signaling Axin1 and Tcfs 

regulate Wnt activity. Shh components Gli3 represses Shh activity in the developing 

hypothalamus. Early developmental genes Vax1 and Foxg1 regulate interactions between 

Wnt and Shh pathways. The Wnt-Shh signaling network regulates expression of downstream 

genes related to neurogenesis such as Nkx2.1, Nkx2.2, Pax6, Emx2, and Dlx2, and 

molecules that specify subnuclei and neuronal lineage such as Mash1, Otp, and Fgfs
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Table 1

Roles of developmental genes in hypothalamic formation and physiological functions

Gene mutations Developmental phenotypes Functional consequences References

Mash1 deletion Failure of neurogenesis in the ARC and VMN Unknown [85–87]

Otp deletion Failure of formation of the aPV/PVN/SON Disrupted stress responses [107–109, 111]

Sim1 heterozygous deletion Reduction of OXT Obesity [121–123]

Ngn3 deletion Decrease in neurons expressing POMC and SF-1, and increase 
in NPY cells

Obesity [89, 90]

NHLH2 deletion Disrupted GnRH migration Infertility [92, 93]

SF-1 deletion Failure of formation of VMN Obesity and anxiety [94–99]

Lhx1 deletion Disrupted production of neuropeptides AVP, Vip, and Grp Disrupted SCN rhythm [103]

Mol Neurobiol. Author manuscript; available in PMC 2017 September 01.


	Abstract
	Introduction
	Functions of the hypothalamus
	Feeding and energy expenditure
	Sleep and wakefulness
	Responses to stress
	Other functions of the hypothalamus

	Molecular regulation of hypothalamic development and functions
	Signaling pathways that determine hypothalamic regional territories

	Wnt signaling pathway
	Shh signaling pathway
	Genes interacting with the Wnt and Shh pathways
	Genes determining formation of hypothalamic nuclei and their functions
	Genes regulating development and functions of the ARC and VMN
	SCN formation and rhythm
	Genes determining formation of nuclei related to the neuroendocrine system
	Formation of neurocircuits and hypothalamic functions
	Roles of miRNAs in the development and functions of hypothalamus
	Perspectives
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Table 1

