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Abstract

Background—Higher dietary acid load can result in metabolic acidosis and is associated with 

faster kidney disease progression in patients with chronic kidney disease (CKD). However, the 

relationship between dietary acid load and incident CKD has not been evaluated.

Methods—We conducted prospective analyses of Atherosclerosis Risk in Communities study 

participants without CKD at baseline (1987–89, N=15,055). Dietary acid load was estimated using 

the equation for potential renal acid load by Remer and Manz, incorporating dietary intake data 

from a food frequency questionnaire. Incident CKD was assessed from baseline through 2010 and 

defined as eGFR <60 mL/min/1.73 m2 accompanied by 25% eGFR decline, CKD-related 

hospitalization or death, or end-stage renal disease identified by linkage to the U.S. Renal Data 

System registry.

Results—In the overall study population, 55% were female, 26% were African-American, and 

mean age at baseline was 54 years. During a median follow-up of 21 years, there were 2,351 

(15.6%) incident CKD cases. After adjusting for demographics (age, sex, race-center), established 

risk factors (diabetes status, hypertension status, overweight/obese status, smoking status, 

education level, physical activity), caloric intake, and baseline eGFR, higher dietary acid load was 

associated with higher risk of incident CKD [hazard ratio (HR) for quartile 4 vs. 1: 1.13, 95% 

confidence interval (CI): 1.01, 1.28, p for trend=0.02; HR per interquartile range increase: 1.06, 

95% CI: 1.00, 1.11, p=0.04].
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Conclusion—Dietary acid load is associated with incident CKD in a population-based sample. 

These data suggest a potential avenue for CKD risk reduction through diet.
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INTRODUCTION

The optimal diet for preventing kidney disease onset and progression has not been 

identified. Dietary acid load, or the balance between acid-inducing foods such as animal 

sources of protein and base-inducing foods such as fruits and vegetables, may be injurious to 

the kidney. Higher dietary acid load can increase metabolic acidosis and thereby lead to 

increased risk of kidney disease progression [1, 2]. The contemporary Western diet is largely 

acid-inducing, and has been posited to contribute to the increasing prevalence of CKD in the 

U.S. [3, 4]. Of the available studies on dietary acid load, most of them included patients with 

prevalent CKD [5–8]. These studies suggest that higher dietary acid load can result in faster 

kidney disease progression in patients with CKD.

Given the growing prevalence of CKD, prevention strategies are needed to reduce the 

number of individuals affected by this disease and its associated morbidities and cost [4, 9, 

10]. Prior studies of dietary acid load have not evaluated incident CKD. If dietary acid load 

is associated with incident CKD, it would represent an opportunity for prevention among 

individuals with preserved kidney function.

The objective of the present study was to test the hypothesis that higher dietary acid load is 

associated with greater risk of incident CKD in a general population sample.

METHODS

Study Population and Design

The Atherosclerosis Risk in Communities (ARIC) study is a community-based observational 

study of 15,792 middle-aged (45–64 years) adults enrolled in 1987–1989 from 4 U.S. 

communities: 1) Forsyth County, North Carolina; 2) Jackson, Mississippi; 3) suburbs of 

Minneapolis, Minnesota; and 4) Washington County, Maryland [11]. In the present 

prospective analysis, participants were excluded for the following reasons: 1) missing diet 

data or implausible caloric intake defined as <500 or >3,500 kcal/day for women and <700 

or >4,500 kcal/day for men (n=364); 2) prevalent CKD at baseline as defined below 

(n=328); or 3) neither Caucasian nor African-American race (n=45) (Figure 1). After these 

exclusions, the analytic sample size was 15,055 (95% of original cohort). At each of the four 

participating study centers, an Institutional Review Board reviewed and approved the study 

protocol. Study participants provided informed consent at each study visit.

Assessment of Dietary Intake

Usual dietary intake was assessed using a semi-quantitative, 66-item food frequency 

questionnaire, modified from the Willett questionnaire [12]. This questionnaire 
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demonstrated high reproducibility in a random sample of ARIC study participants (n=419) 

and was administered by trained interviewers at the baseline examination (study visit 1, 

1986–1989) and at a follow-up examination (study visit 3, 1993–1995) [13]. To reduce 

within individual variation and to better represent usual dietary intake, we analyzed the 

cumulative average diet [14]. That is, between baseline and study visit 3, we used dietary 

intake data collected at baseline, and, after study visit 3, we used the mean of values from 

baseline and study visit 3.

Participants reported how often they consumed each food item of a specified portion size on 

average during the last year in the following categories: almost never, 1–3/month, 1/week, 

2–4/week, 5–6/week, 1/day, 2–3/day, 4–6/day, >6/day. Daily intake of micro- and 

macronutrients was calculated by multiplying frequency of consumption and portion size of 

each food item by its nutritional content [15].

Quantification of Dietary Acid Load

Dietary acid load was estimated using the equation for potential renal acid load by Remer 

and Manz: potential renal acid load = 0.49*protein + 0.037*phosphorus − 0.021*potassium 

− 0.026*magnesium − 0.013*calcium [16]. As a sensitivity analysis, we estimated net 

endogenous acid production which is the ratio of protein to potassium intake and another 

means of evaluating dietary acid load: net endogenous acid production = 54.5*(protein/

potassium) − 10.2 [17].

Definition of Incident Chronic Kidney Disease

Incident CKD was a composite outcome defined as at least one of the four following 

criteria: 1) development of reduced kidney function [estimated glomerular filtration rate 

(eGFR) <60 mL/min/1.73 m2] accompanied by 25% eGFR decline at any subsequent study 

visit relative to baseline; 2) International Classification of Diseases (ICD)-9/10 code for a 

hospitalization related to CKD stage 3+ identified through active surveillance of the ARIC 

cohort; 3) ICD-9/10 code for a death related to CKD stage 3+ identified through linkage to 

the National Death Index; or 4) end-stage renal disease identified by linkage to the U.S. 

Renal Data System (USRDS) registry. Development of CKD was assessed between baseline 

(visit 1, 1987–89) and the end of follow-up for this analysis of the ARIC study (December 

31, 2010). Combining data from study visits and intervening events captured by surveillance 

of hospitalizations, the National Death Index, and the USRDS registry mitigates the 

potential selection bias due to differential study visit attendance by kidney disease status. 

Although this definition differs slightly from clinical guidelines, it improves CKD 

ascertainment during periods of time between study visits and is appropriate for research 

studies [18]. We have previously validated this composite outcome by comparing to medical 

chart review and was shown to have high specificity (96%) [19].

Assessment of Covariates

At baseline, a questionnaire was administered to study participants by trained interviewers to 

collect information on demographic characteristics (date of birth, sex, race/ethnicity), health 

behaviors (frequency, duration, and intensity of physical activity; cigarette smoking), 

socioeconomic status (level of education), and health history (medication use, diagnosed 
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diseases). Three measurements of blood pressure were taken by a trained technician after 5 

minutes of rest using a random-zero sphygmomanometer; and the mean of the latter two 

measurements was used for analysis. Fasting blood samples were collected during the 

baseline examination. Serum glucose was measured by the modified hexokinase/glucose-6-

phosphate dehydrogenase method, and serum creatinine was measured by the modified 

kinetic Jaffe method.

Hypertension was defined as systolic blood pressure ≥140 mmHg, diastolic blood pressure 

≥90 mmHg, or use of anti-hypertension medication in the preceding two weeks. Diabetes 

was defined as fasting glucose ≥126 mg/dL, non-fasting glucose ≥200 mg/dL, history of 

diagnosed diabetes, or use of diabetes medication in the preceding two weeks. Body mass 

index was calculated as weight in kilograms divided by height in meters squared using 

measurements taken during the baseline examination. Overweight or obese status was 

defined as body mass index ≥25 kg/m2. Kidney function was assessed using the 2009 

Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation for eGFR based 

on serum creatinine [20].

Statistical Analysis

Baseline demographic, clinical, and dietary factors were described according to quartile of 

dietary acid load using means, standard deviations, and proportions. Spearman’s rank 

correlation was used to assess the association between dietary acid load estimates at baseline 

and visit 3. Cox proportional hazards regression was used to estimate hazard ratios (HR) and 

95% confidence intervals (CI) for the association between estimates of dietary acid load at 

baseline (visit 1, 1987–89) and incident CKD during follow-up adjusted for age, sex, race-

center, total caloric intake, diabetes status, hypertension status, overweight/obese status, 

smoking status, education level, physical activity, and baseline kidney function. Kidney 

function (eGFR) was modeled as linear spline terms with a knot at 90 mL/min/1.73 m2. 

Given the different racial distribution at each of the four centers, we created an interaction 

variable for race×center. For CKD risk estimates as well as baseline characteristics, trend 

across quartiles was tested with linear regression using the median value within each quartile 

for continuous variables and with χ2 test for trend for categorical variables. Restricted cubic 

splines were used to present adjusted hazard ratios for CKD by continuous dietary acid load 

estimates with knots at the 5th, 35th, 65th, and 95th percentiles. For the graphical depiction of 

the splines, dietary acid load estimates were truncated at the 1st and 99th percentiles.

Relevant to our sensitivity analysis of dietary acid load estimates, Spearman’s rank 

correlation was used to quantify the association between potential renal acid load and net 

endogenous acid production. As another sensitivity analysis, analyses were repeated after 

dropping extreme values for dietary acid load (potential renal acid load: <−60 and >60 mEq, 

net endogenous acid production: >110 mEq), and results were similar to those from the main 

analysis. All analyses were performed using Stata statistical software version 14 (StataCorp 

LC, College Station, TX).
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RESULTS

In the overall ARIC study population, 55% were female, 26% were African-American, and 

mean age was 54 years. The median level (25th, 75th percentiles) of potential renal acid load 

and net endogenous acid production, respectively, were 4.5 (−3.2, 12.1) mEq/day and 48.0 

(40.1, 56.9) mEq/day. Baseline dietary acid load estimates were moderately correlated with 

dietary acid load estimates at visit 3 (potential renal acid load: r = 0.38, p<0.001; net 

endogenous acid production: r = 0.39, p<0.001).

At baseline, participants consuming higher levels of dietary acid load tended to be younger, 

African-American, male, non-smokers, overweight or obese, less educated, less physically 

active, and more likely to have diabetes and hypertension (p for all <0.001; Table 1). There 

were small but statistically significant differences in mean baseline eGFR according to 

quartile of dietary acid load. Dietary intake of total protein, animal sources of protein, and 

phosphorus were higher among those with higher levels of dietary acid load (p for all 

<0.001). The two estimates of dietary acid load – potential renal acid load and net 

endogenous acid production – were highly correlated (r = 0.95, p<0.001).

During a median follow-up of 21 years, there were 2,351 (15.6%) incident CKD cases. 

Higher dietary acid load was significantly associated with elevated CKD risk, even after 

adjusting for age, sex, race-center, total caloric intake, diabetes, hypertension, overweight/

obese status, smoking, level of education, physical activity, and baseline eGFR (Table 2; 

Figure 2A). There was a statistically significant trend with higher levels of dietary acid load 

associated with higher risk of incident CKD (HR for quartile 4 vs. 1: 1.13, 95% CI: 1.01, 

1.28, p for trend=0.02). Each interquartile range (IQR) increase in dietary acid load was 

associated with 6% higher risk of incident CKD (HR: 1.06, 95% CI: 1.00, 1.11, p=0.04). In 

a sensitivity analysis using net endogenous acid production, findings were slightly stronger 

than those from the main analysis using potential renal acid load (HR for quartile 4 vs. 1: 

1.14, 95% CI: 1.01, 1.28, p for trend=0.01; HR per IQR increase: 1.08, 95% CI: 1.03, 1.14, 

p=0.004; Figure 2B).

Among the individual components of the dietary acid load estimates, higher dietary intake of 

magnesium (HR for quartile 4 vs. 1: 0.72, 95% CI: 0.60, 0.85, p for trend<0.001; HR per 

IQR: 0.87, 95% CI: 0.79, 0.95, p=0.002) and vegetable sources of protein (HR for quartile 4 

vs. 1: 0.72, 95% CI: 0.61, 0.85, p for trend<0.001; HR per IQR: 0.89, 95% CI: 0.82, 0.96, 

p=0.004) were strongly associated with a lower risk of CKD. In contrast with the protective 

association observed for vegetable sources of protein, total dietary protein and animal 

sources of protein were not significantly associated with CKD risk. Higher intake of 

phosphorus and calcium appeared to be associated with a reduced risk of CKD across 

quartiles (p for trend ≤0.01), but not in the continuous analysis (p≥0.17).

DISCUSSION

In this large, population-based study of individuals without kidney disease, higher levels of 

dietary acid load were associated with higher risk of developing CKD over 21 years of 

follow-up independent of sociodemographic, clinical, and lifestyle factors. This finding was 
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consistent for two different estimates of dietary acid load based on self-reported dietary 

intake: potential renal acid load and net endogenous acid production. Of the individual 

components of the dietary acid load estimates, higher intake of magnesium and vegetable 

sources of protein had the strongest protective association with CKD.

To the best of our knowledge, this is the first study to prospectively assess the relationship 

between dietary acid load and incident CKD. There are three recently published studies 

which lend further support to the concept of dietary acid load influencing kidney function. 

First, in a cross-sectional analysis using data from National Health and Nutrition 

Examination Survey (NHANES) 1999–2004, the highest vs. lowest quintile of dietary acid 

load estimated by net acid excretion had 1.57-times (95% confidence interval: 1.20, 2.05; p 

for trend=0.04) higher odds of albuminuria, but was not significantly associated with 

reduced eGFR or CKD stage defined according to both eGFR and albuminuria [21]. 

Additionally, among 1,486 individuals with eGFR 15–60 mL/min/1.73 m2 in NHANES III, 

the highest tertile of net acid excretion was associated with a 3-fold higher risk of end-stage 

renal disease [6]. Lastly, in 632 participants from the African American Study of Kidney 

Disease and Hypertension (AASK) trial and cohort study with median GFR of 49 mL/min/

1.73 m2, higher levels of net endogenous acid production were significantly associated with 

faster decline in eGFR (p for trend=0.01 in adjusted analyses), but was not associated with 

incident end-stage renal disease over a median follow-up period of 8 years [5]. Our study 

extends these previous reports by documenting a novel finding of the association between 

dietary acid load and incident CKD and elucidating dietary factors (i.e. magnesium, 

vegetable sources of protein) that may be the primary drivers of this association.

Previous studies have demonstrated that diet can modify acid-base homeostasis which may 

in turn reduce the risk of disease progression in patients with kidney disease [22, 23]. In an 

experimental study, individuals with stage 1 (eGFR >90 mL/min/1.73 m2) or stage 2 (eGFR 

60–89 mL/min/1.73 m2) CKD were assigned to either fruits and vegetables or sodium 

bicarbonate to modify dietary acid load or to a control group for one month [7]. Dietary acid 

load reduction by consumption of fruits and vegetables decreased kidney injury markers 

(urine concentrations of N-acetyl β-D-glucosaminidase, albumin, and transforming growth 

factor-β) among individuals with stage 2 CKD, but not for those with stage 1 CKD. Their 

findings for dietary acid reduction through fruit and vegetable consumption were 

comparable to oral sodium bicarbonate. These investigators conducted a similar clinical trial 

of individuals with stage 4 CKD (eGFR 15–29 mL/min/1.73 m2) randomized to either fruits 

and vegetables or sodium bicarbonate for one year [8]. They found that the fruits and 

vegetables intervention reduced dietary acid load (assessed by net acid excretion and 

potential renal acid load), resulting in improved metabolic acidosis status and lower 

concentrations of kidney injury markers. Taken together, there is growing evidence for the 

use of diet modification through acid load reduction in order to reduce the risk of kidney 

disease progression among patients with reduced eGFR.

There are several potential mechanisms to explain our finding that higher dietary acid load is 

associated with an increased risk of CKD. In particular, acid retention can induce the 

production of endothelin-1 thereby leading to kidney injury [24–27]. Acid retention can also 

activate the intrarenal renin-angiotensin system by stimulating production of aldosterone 
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which can contribute to the onset and progression of kidney disease [25, 26, 28–30]. It has 

been demonstrated that higher dietary acid load can result in tubular injury through elevated 

renal ammonium concentrations and activation of the complement pathway [31, 32].

We additionally investigated the individual components of the dietary acid load estimates. 

There appeared to be a significant trend across quartiles of dietary intake of phosphorus and 

calcium and CKD risk, but these associations were no longer statistically significant in 

continuous analyses. A recent systematic review found limited, low-quality evidence for the 

kidney effects of dietary intake of calcium and phosphorus [33]. These studies primarily 

assessed biochemical markers (e.g. serum concentration of calcium, phosphorus, and 

fibroblast growth factor-23) rather than hard clinical outcomes. An observational analysis of 

the Modification of Diet in Renal Disease (MDRD) study found that serum phosphorus was 

associated with mortality, but dietary intake of phosphorus, assessed by 24-hour urine 

excretion, was not associated with mortality or any other clinical outcome [34]. It may be 

possible that our study was under-powered to detect these smaller effect sizes. Studies with 

larger sample sizes should investigate associations of dietary intake of these micro-nutrients 

with CKD risk.

We found that higher dietary intake of magnesium and vegetable sources of protein were 

protective against kidney disease. These two findings are complementary since vegetable 

sources of protein such as legumes are rich sources of dietary magnesium [35]. It may be 

that these diet factors themselves are related to kidney disease pathogenesis or that they are 

important contributors to the reduction of dietary acid load which is primarily responsible 

for the association with lower kidney disease risk. Intake of dietary protein from vegetable 

sources may protect against CKD by lowering serum concentrations of fibroblast growth 

factor-23 and raising serum concentrations of bicarbonate as shown in the Chronic Renal 

Insufficiency Cohort (CRIC) study [36]. While clinical guidelines suggest dietary restriction 

of total protein for the management of kidney disease, sources of protein are not specified 

[18].

There are no known studies that have reported on the association between dietary intake of 

magnesium and incident CKD. In the ARIC Study, it has previously been shown that higher 

serum concentrations of magnesium, which may in part reflect dietary magnesium intake, 

are associated with lower risk of CKD and end-stage renal disease [37]. Further supporting 

the plausibility of this mechanism, low serum magnesium concentrations promote 

endothelial dysfunction by stimulating inflammatory and pro-atherogenic cytokines [38]. 

Additional studies are necessary to comprehensively investigate the health effects of dietary 

magnesium and replicate our finding in other cohorts.

There are a few important study limitations and strengths to be considered when interpreting 

these findings. Self-reported dietary intake is subject to measurement error [39, 40]. 

However, a previously published validation study conducted in a random subset of 419 

ARIC study participants reported high reproducibility of the food frequency questionnaire, 

which was administered to participants by a trained interviewer [13]. In addition, we 

analyzed the cumulative average diet using data from two study visits which has been shown 

to increase precision and better represent usual dietary intake [14]. Furthermore, regression 
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models were adjusted for energy intake via the standard method in order to mitigate the 

impact of measurement error in dietary assessment and increase the precision of the relative 

risk estimate [41, 42]. Another potential limitation is recall bias with respect to self-reported 

dietary intake. However, recall is not likely to be differential by CKD status given the 

prospective study design and use of a general population sample without CKD at baseline. 

Inclusion of overweight/obese status in the multivariable regression models is likely over-

adjustment due to body mass index being a mediator in the relationship between dietary 

intake and risk of CKD. Therefore, the reported results are conservative estimates since 

body mass index explains part of the true association. Aside from the dietary acid load 

estimates, biochemical measures of acid-base status, e.g. serum bicarbonate, were not 

available in this study. However, previous studies have established that diet can influence 

acid-base status [22, 23]. Another limitation is the lack of a measure of urine albumin as an 

indicator of kidney damage. As a result, some individuals with kidney damage at baseline 

but preserved eGFR could have been included in the analysis. We adjusted for baseline 

eGFR to account for variability in kidney function even among those with baseline eGFR 

within the normal range. In addition, some incident cases of CKD may have been missed 

due to the exclusion of albuminuria from the outcome definition. This limitation is balanced 

by the use of a validated outcome composed of clinical measures of kidney function and 

change in kidney function, surveillance of hospitalizations and deaths due to CKD using 

billing codes, and linkage to the U.S. Renal Data System for the identification of end-stage 

renal disease cases [19]. This definition of CKD differs slightly from clinical guidelines, but 

appropriate for research studies to identify CKD that develops between study visits [18]. 

Given that the ARIC study is a large, well-characterized, prospective cohort of individuals 

aged 45–64 years at the time of cohort inception, these findings should be broadly 

generalizable to a large segment of the U.S. population – middle-aged, African-American 

and Caucasian men and women without CKD. A clinical trial to assess the effect of 

modifying dietary acid load on the development of incident CKD would strengthen the 

evidence for a causal relationship and is justified given our results in addition to previous 

studies.

In conclusion, higher dietary acid load is significantly related to higher risk of developing 

CKD in a general population sample. Within the context of few existing effective therapies 

for the prevention of kidney disease, this study provides evidence that dietary acid load may 

represent a modifiable risk factor. These findings suggest that diet modification for the 

reduction of acid load may prevent CKD in otherwise healthy individuals, which could be 

implemented as a cost-effective, low-risk, preventive strategy.
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Figure 1. 
Flow Chart of Study Participant Selection
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Figure 2. 
Adjusted1 Hazard Ratios (95% Confidence Intervals) for Incident Chronic Kidney Disease 

According to Dietary Acid Load Estimated by (A) Potential Renal Acid Load and (B) Net 

Endogenous Acid Production
1 Adjusted for age, sex, race-center, total caloric intake, diabetes status, hypertension status, 

overweight/obese status, smoking status, education level, physical activity, and baseline 

eGFR (modeled as linear spline terms with a knot at 90 mL/min/1.73 m2)

The shaded area represents the 95% confidence intervals. Restricted cubic spline with knots 

at the 5th, 35th, 65th, and 95th percentiles and truncation at the 1st and 99th percentiles.

Rebholz et al. Page 14

Am J Nephrol. Author manuscript; available in PMC 2017 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rebholz et al. Page 15

T
A

B
L

E
 1

B
as

el
in

e 
C

ha
ra

ct
er

is
tic

s1  
A

cc
or

di
ng

 to
 Q

ua
rt

ile
 o

f 
Po

te
nt

ia
l R

en
al

 A
ci

d 
L

oa
d

Q
ua

rt
ile

 o
f 

P
ot

en
ti

al
 R

en
al

 A
ci

d 
L

oa
d 

(m
E

q)
P

-v
al

ue
 f

or
tr

en
d2

Q
ua

rt
ile

 1
:

−1
19

.1
 t

o 
−3

.2
Q

ua
rt

ile
 2

:
−3

.1
 t

o 
4.

4
Q

ua
rt

ile
 3

:
4.

5 
to

 1
2.

1
Q

ua
rt

ile
 4

:
12

.2
 t

o 
10

0.
7

A
ge

, y
ea

rs
54

.5
 (

5.
7)

54
.3

 (
5.

8)
54

.0
 (

5.
8)

53
.7

 (
5.

7)
<

0.
00

1

M
al

e 
se

x,
 %

 (
n)

39
.6

%
 (

1,
48

9)
43

.2
%

 (
1,

62
6)

45
.8

%
 (

1,
72

3)
51

.1
%

 (
1,

92
1)

<
0.

00
1

A
fr

ic
an

-A
m

er
ic

an
, %

 (
n)

17
.6

%
 (

66
1)

23
.6

%
 (

88
8)

27
.4

%
 (

1,
03

3)
35

.4
%

 (
1,

33
2)

<
0.

00
1

eG
FR

, m
L

/m
in

/1
.7

3 
m

2
10

2.
3 

(1
3.

5)
10

2.
8 

(1
4.

0)
10

3.
3 

(1
4.

7)
10

4.
3 

(1
5.

0)
<

0.
00

1

D
ia

be
te

s 
st

at
us

, %
 (

n)
10

.0
%

 (
37

4)
10

.3
%

 (
38

8)
11

.5
%

 (
43

2)
13

.8
%

 (
51

9)
<

0.
00

1

H
yp

er
te

ns
io

n 
st

at
us

, %
 (

n)
31

.9
%

 (
1,

19
8)

33
.9

%
 (

1,
26

7)
33

.4
%

 (
1,

25
2)

37
.7

%
 (

1,
41

5)
<

0.
00

1

O
ve

rw
ei

gh
t/o

be
se

 s
ta

tu
s,

 %
 (

n)
59

.5
%

 (
2,

23
8)

64
.3

%
 (

2,
41

7)
69

.2
%

 (
2,

60
3)

73
.9

%
 (

2,
77

7)
<

0.
00

1

Sm
ok

in
g 

st
at

us
, %

 (
n)

29
.9

%
 (

1,
12

3)
25

.4
%

 (
95

3)
24

.2
%

 (
91

0)
25

.0
%

 (
94

0)
<

0.
00

1

E
du

ca
tio

n 
le

ve
l, 

%
 (

n)

  Some HS or less











21
.9

%
 (

82
2)

23
.2

%
 (

87
2)

22
.8

%
 (

85
5)

25
.6

%
 (

96
0)

  HS graduate








44
.3

%
 (

1,
66

5)
40

.4
%

 (
1,

51
6)

40
.8

%
 (

1,
53

2)
38

.4
%

 (
1,

44
2)

<
0.

00
1

  Some college or more















33

.9
%

 (
1,

27
4)

36
.4

%
 (

1,
36

8)
36

.5
%

 (
1,

37
0)

36
.1

%
 (

1,
35

6)

  Physical activity index















2.

51
 (

0.
82

)
2.

46
 (

0.
79

)
2.

41
 (

0.
78

)
2.

36
 (

0.
77

)
<

0.
00

1

  NEAP, mEq









34

.0
 (

5.
8)

44
.5

 (
3.

8)
55

.3
 (

5.
9)

65
.6

 (
11

.5
)

<
0.

00
1

  Protein, g






61

.0
 (

21
.2

)
64

.8
 (

20
.5

)
72

.3
 (

21
.5

)
91

.5
 (

26
.8

)
<

0.
00

1

  Animal protein, g












42

.6
 (

17
.0

)
48

.0
 (

16
.6

)
55

.1
 (

17
.2

)
72

.7
 (

22
.9

)
<

0.
00

1

  Vegetable protein, g














18
.3

 (
7.

1)
16

.8
 (

6.
4)

17
.2

 (
6.

7)
18

.8
 (

7.
4)

0.
00

1

  Potassium, mg









29

32
 (

92
3)

25
35

 (
81

4)
24

76
 (

85
4)

26
46

 (
90

6)
<

0.
00

1

  Phosphorus, mg











97
9 

(3
62

)
99

1 
(3

47
)

10
61

 (
36

4)
12

66
 (

42
0)

<
0.

00
1

  Magnesium, mg









26

9.
3 

(8
8.

4)
24

1.
6 

(8
0.

7)
24

0.
2 

(8
3.

8)
26

3.
0 

(8
9.

8)
0.

00
1

  Calcium, mg








65
2.

7 
(3

28
.6

)
62

6.
8 

(3
15

.3
)

64
0.

1 
(3

25
.0

)
71

3.
6 

(3
77

.2
)

<
0.

00
1

  Calories, kcal











15
42

 (
52

7)
15

00
 (

49
8)

15
90

 (
52

8)
18

51
 (

58
8)

<
0.

00
1

1 M
ea

n 
(s

ta
nd

ar
d 

de
vi

at
io

n)
 f

or
 c

on
tin

uo
us

 v
ar

ia
bl

es
 a

nd
 %

 (
n)

 f
or

 c
at

eg
or

ic
al

 v
ar

ia
bl

es

2 T
re

nd
 a

cr
os

s 
qu

ar
til

es
 w

as
 te

st
ed

 w
ith

 li
ne

ar
 r

eg
re

ss
io

n 
us

in
g 

th
e 

m
ed

ia
n 

va
lu

e 
w

ith
in

 e
ac

h 
qu

ar
til

e 
fo

r 
co

nt
in

uo
us

 v
ar

ia
bl

es
 a

nd
 w

ith
 χ

2  
te

st
 f

or
 tr

en
d 

fo
r 

ca
te

go
ri

ca
l v

ar
ia

bl
es

.

eG
FR

, e
st

im
at

ed
 g

lo
m

er
ul

ar
 f

ilt
ra

tio
n 

ra
te

; H
S,

 h
ig

h 
sc

ho
ol

; N
E

A
P,

 n
et

 e
nd

og
en

ou
s 

ac
id

 p
ro

du
ct

io
n

Am J Nephrol. Author manuscript; available in PMC 2017 January 21.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rebholz et al. Page 16

T
A

B
L

E
 2

A
dj

us
te

d1  
H

az
ar

d 
R

at
io

s 
(9

5%
 C

on
fi

de
nc

e 
In

te
rv

al
s)

 f
or

 I
nc

id
en

t C
hr

on
ic

 K
id

ne
y 

D
is

ea
se

 b
y 

D
ie

ta
ry

 F
ac

to
r

Q
ua

rt
ile

 o
f 

D
ie

ta
ry

 F
ac

to
r

P
-v

al
ue

 f
or

tr
en

d2
P

er
 I

Q
R

P
-v

al
ue

Q
ua

rt
ile

 1
Q

ua
rt

ile
 2

Q
ua

rt
ile

 3
Q

ua
rt

ile
 4

PR
A

L
1 

[R
ef

]
0.

98
 (

0.
87

, 1
.1

1)
1.

06
 (

0.
94

, 1
.1

9)
1.

13
 (

1.
01

, 1
.2

8)
0.

02
1.

06
 (

1.
00

, 1
.1

1)
0.

04

N
E

A
P

1 
[R

ef
]

0.
96

 (
0.

86
, 1

.0
9)

1.
06

 (
0.

95
, 1

.2
0)

1.
14

 (
1.

01
, 1

.2
8)

0.
01

1.
08

 (
1.

03
, 1

.1
4)

0.
00

4

Pr
ot

ei
n

1 
[R

ef
]

0.
99

 (
0.

88
, 1

.1
2)

0.
90

 (
0.

78
, 1

.0
3)

1.
03

 (
0.

87
, 1

.2
2)

0.
95

1.
04

 (
0.

95
, 1

.1
4)

0.
40

A
ni

m
al

 p
ro

te
in

1 
[R

ef
]

0.
96

 (
0.

86
, 1

.0
9)

0.
95

 (
0.

84
, 1

.0
8)

1.
06

 (
0.

91
, 1

.2
3)

0.
45

1.
06

 (
0.

99
, 1

.1
4)

0.
10

V
eg

et
ab

le
 p

ro
te

in
1 

[R
ef

]
0.

84
 (

0.
74

, 0
.9

4)
0.

84
 (

0.
74

, 0
.9

6)
0.

72
 (

0.
61

, 0
.8

5)
<

0.
00

1
0.

89
 (

0.
82

, 0
.9

6)
0.

00
4

Po
ta

ss
iu

m
1 

[R
ef

]
0.

99
 (

0.
88

, 1
.1

1)
0.

85
 (

0.
74

, 0
.9

7)
0.

90
 (

0.
76

, 1
.0

6)
0.

11
0.

95
 (

0.
87

, 1
.0

3)
0.

21

Ph
os

ph
or

us
1 

[R
ef

]
0.

95
 (

0.
84

, 1
.0

7)
0.

88
 (

0.
77

, 1
.0

1)
0.

81
 (

0.
68

, 0
.9

6)
0.

01
0.

97
 (

0.
89

, 1
.0

7)
0.

57

M
ag

ne
si

um
1 

[R
ef

]
0.

90
 (

0.
80

, 1
.0

2)
0.

80
 (

0.
70

, 0
.9

2)
0.

72
 (

0.
60

, 0
.8

5)
<

0.
00

1
0.

87
 (

0.
79

, 0
.9

5)
0.

00
2

C
al

ci
um

1 
[R

ef
]

1.
01

 (
0.

90
, 1

.1
4)

0.
91

 (
0.

81
, 1

.0
3)

0.
80

 (
0.

69
, 0

.9
2)

0.
00

1
0.

96
 (

0.
90

, 1
.0

2)
0.

17

1 A
dj

us
te

d 
fo

r 
ag

e,
 s

ex
, r

ac
e-

ce
nt

er
, t

ot
al

 c
al

or
ic

 in
ta

ke
, d

ia
be

te
s 

st
at

us
, h

yp
er

te
ns

io
n 

st
at

us
, o

ve
rw

ei
gh

t/o
be

se
 s

ta
tu

s,
 s

m
ok

in
g 

st
at

us
, e

du
ca

tio
n 

le
ve

l, 
ph

ys
ic

al
 a

ct
iv

ity
, a

nd
 b

as
el

in
e 

eG
FR

 (
m

od
el

ed
 a

s 
lin

ea
r 

sp
lin

e 
te

rm
s 

w
ith

 a
 k

no
t a

t 9
0 

m
L

/m
in

/1
.7

3 
m

2 )

2 T
re

nd
 a

cr
os

s 
qu

ar
til

es
 w

as
 te

st
ed

 w
ith

 li
ne

ar
 r

eg
re

ss
io

n 
us

in
g 

th
e 

m
ed

ia
n 

va
lu

e 
w

ith
in

 e
ac

h 
qu

ar
til

e 
fo

r 
co

nt
in

uo
us

 v
ar

ia
bl

es
 a

nd
 w

ith
 χ

2  
te

st
 f

or
 tr

en
d 

fo
r 

ca
te

go
ri

ca
l v

ar
ia

bl
es

.

IQ
R

, i
nt

er
qu

ar
til

e 
ra

ng
e;

 N
E

A
P,

 n
et

 e
nd

og
en

ou
s 

ac
id

 p
ro

du
ct

io
n;

 P
R

A
L

, p
ot

en
tia

l r
en

al
 a

ci
d 

lo
ad

Am J Nephrol. Author manuscript; available in PMC 2017 January 21.


