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Abstract

How and when the Americas were populated remains contentious. Using ancient and modern 

genome-wide data, we find that the ancestors of all present-day Native Americans, including 

Athabascans and Amerindians, entered the Americas as a single migration wave from Siberia no 

earlier than 23 thousand years ago (KYA), and after no more than 8,000-year isolation period in 

Beringia. Following their arrival to the Americas, ancestral Native Americans diversified into two 

basal genetic branches around 13 KYA, one that is now dispersed across North and South 

America and the other is restricted to North America. Subsequent gene flow resulted in some 

Native Americans sharing ancestry with present-day East Asians (including Siberians) and, more 

distantly, Australo-Melanesians. Putative ‘Paleoamerican’ relict populations, including the 

historical Mexican Pericúes and South American Fuego-Patagonians, are not directly related to 

modern Australo-Melanesians as suggested by the Paleoamerican Model.

It is generally agreed that ancestral Native Americans are descendants of Siberian peoples 

who traversed the Bering Land Bridge (Beringia) from northeast Asia in Late Pleistocene 

times, and though consensus has yet to be reached, it is mostly conceded that the Clovis 

archaeological complex, dating to ca. 13 KYA, does not represent the first migration as long 

supposed (1–7). Archaeological evidence accumulated over the last two decades indicates 

that people were south of the North American continental ice sheets more than a millennium 

earlier and had reached as far south as southern South America by at least ca. 14.6 KYA (1–

3). Interpretations differ, however, regarding the precise spatio-temporal dynamics of the 

peopling process, owing to archaeological claims for a significantly earlier human presence 

pre-dating the Last Glacial Maximum (LGM; ca. 20 KYA) (8–10), and conflicting 

interpretations of the number and timing of migrations from Beringia based on anatomical 

and genetic evidence (11–16). Much of the genetic evidence is from studies of 

mitochondrial DNA (mtDNA) and Y-chromosome, which as single, uniparentally inherited 
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loci are particularly subject to genetic drift and sex-biased demographic and cultural 

practices.

Among the principal issues still to be resolved regarding the Pleistocene and recent 

population history of Native Americans are: (i) the timing of their divergence from their 

Eurasian ancestors; (ii) whether the peopling was in a single wave or multiple waves, and, 

consequently, if the genetic differences seen between major subgroups of Native Americans 

(e.g., Amerindian and Athabascan) result from different migrations or in situ diversification 

in the Americas (5, 6, 17, 18); (iii) if the migration involved ca. 15,000 years of isolation in 

the Bering Strait region, as proposed by the Beringian Incubation Model to explain the high 

frequency of unique and widespread American mitogenomes and private genetic variants 

(19–22); and, finally, (iv) if there was post-divergence gene flow from Eurasia and possibly 

even population replacement in the Americas, the latter suggested by the apparent 

differences in skull morphology between some early (‘Paleoamerican’) remains and those of 

more recent Native Americans (23–27). We address these issues using genomic data derived 

from modern populations, supplemented by ancient specimens that provide chronologically 

controlled snapshots of the genetics of the peopling process as it unfolded.

We sequenced 31 genomes from present-day individuals from the Americas, Siberia and 

Oceania to an average depth of ca. 20X: Siberians – Altai (n = 2), Buryat (n = 2), Ket (n=2), 

Koryak (n = 2), Sakha (n = 2), Siberian Yupik (n = 2); North American Native Americans – 

Tsimshian (n =); southern North American and Central and South American Natives – Pima 

(n = 1), Huichol (n = 1), Aymara (n = 1), Yukpa (n = 1); and, Oceanians – Papuan (n = 14) 

(28) (Table S1). All the genome-sequenced present-day individuals were previously 

genotyped using single nucleotide polymorphism (SNP) chips (4, 29–35) except for the 

Aymara individual that was SNP chip genotyped in this study (tables S3 and S4). They were 

selected on the basis of their ancestry profiles obtained with ADMIXTURE (36) to best 

represent their respective populations, and to minimize recent genetic admixture from 

populations of western Eurasian origin (28). For populations represented by more than one 

individual, we also verified from the genotype data that the sequenced individuals did not 

represent close relatives (28). We additionally sequenced 23 genomes from ancient 

individuals dating between ca. 0.2-6 KYA from North and South America, with an average 

depth ranging between 0.003X and 1.7X, including specimens affiliated to putative relict 

Paleoamerican groups such as the Pericúes from Mexico and Fuego-Patagonians from the 

southernmost tip of South America (23, 26–28) (table S5). Finally, we generated SNP chip 

genotype data from 79 present-day individuals belonging to 28 populations from the 

Americas and Siberia (28) (table S4). All the aforementioned datasets were analyzed 

together with previously published genomes and SNP chip genotype data (Tables S1, S3, 

and S4), masking the data for recent European admixture in some present-day Native 

American populations (28).

The structure of Native American populations and the timing of their initial 

divergence

We explored the genetic structure of Native American populations in the context of 

worldwide populations using ADMIXTURE (36), employing a reference panel consisting of 
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3,053 individuals from 169 populations (table S3) (28). The panel included SNP chip 

genotype data from present-day individuals generated in this study and previously published 

studies, as well as the 4,000 year-old Saqqaq individual from Greenland (29) and the 12,600 

year-old Anzick-1 (Clovis culture) individual from Montana (5) (table S3). When assuming 

four ancestral populations (K=4), we found a Native American-specific genetic component, 

indicating a shared genetic ancestry for all Native Americans including Amerindians and 

Athabascans (fig. S4). Assuming K=15, there is structure within the Native Americans. 

Athabascans and northern Amerindians (primarily from Canada) differ from the rest of the 

Native Americans in sharing their own genetic component (fig. S4). As reported previously, 

Anzick-1 falls within the genetic variation of southern Native Americans (5), while the 

Saqqaq individual shares genetic components with Siberian populations (fig. S4) (29).

To ascertain the population history of present-day American populations in relation to 

worldwide populations, we generated admixture graphs with TreeMix (28, 37). All the 

modern Siberian and Native American genomes sequenced in this study, except for the 

North American Tsimshian genome that showed evidence of recent western Eurasian 

admixture (28), were used for this analysis, together with previously published genomes 

from Africa (Yoruba) (38), Europe (Sardinian, French) (38), East Asia (Dai, Han) (38), 

Siberia (Nivkh) (39) and the Americas (Karitiana, Athabascan, Greenlandic Inuit) (5, 38, 39) 

(table S1). The ancient individuals included in the analysis were Saqqaq, Anzick-1 and the 

24,000 year-old Mal’ta child from south-central Siberia (4). TreeMix affirms that all Native 

Americans form a monophyletic group across all ten migration parameter values, with 

further diversification into two branches, one representing Amerindians (represented in this 

analysis by Amerindians from southern North America and Central and South America) and 

the other Athabascans (Fig. 1B and fig. S5). Paleo-Eskimos and Inuit were supported as a 

separate clade relative to the Native Americans, as reported previously (Fig. 1B and fig. S5) 

(29, 39). Our results show that the Siberian Yupik and Koryak are the closest Eurasian 

populations to the Americas, with the Yupik likely representing back-migration of the Inuit 

into Siberia (Fig. 1B and fig. S5).

To assess the pattern of the earliest human dispersal into the Americas, we estimated the 

timing of the divergence of ancestral Native Americans from East Asians (hereafter, 

including Siberians) using multiple methods. There is still some debate regarding mutation 

rates in the human genome (40), and this uncertainty could affect our estimates and results.

We applied diCal2.0 (28) (Method 1), a new version of diCal (41) extended to handle 

complex demographic models involving multiple populations with migration (42), and an 

identity-by-state (IBS) tract method (43) (Method 2) to the modern genome dataset (28). 

With these, we first estimated divergence times between Native Americans and the Koryak 

of Siberia, one of the genetically closest sampled East Asian populations to Native 

Americans (fig. S5), using demographic models that reflect a clean split between the 

populations (28). With both diCal2.0 and IBS tract method, the split of Native Americans 

(including Amerindians and Athabascans) from the Koryak dates to ca. 20 KYA (28) (tables 

S11A and S12 and fig. S15).
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We further applied diCal2.0 to models with gene flow post-dating the split between Native 

Americans and Koryak (Fig. 2A) and found that they provided a better fit to the data than 

the models without gene flow (28). Overall, simulated databased on the models inferred 

using diCal2.0 and real data show very similar IBS tract length distributions (Fig. 2B) and 

relative cross coalescence rates (CCR) between pairs of individuals estimated using the 

Multiple Sequentially Markovian Coalescent (MSMC) method (Method 3) (28, 44) (Figs. 2, 

C and D). This serves as a confirmation for the model estimates from diCal2.0. We 

evaluated all the three methods using simulations under complex demographic models, and 

additionally investigated the effects of switch-errors in haplotype phasing on the estimates 

(28).

We then applied the diCal2.0 model that allows for gene flow between populations after 

their split to estimate divergence times for Native Americans from more geographically and 

genetically distant East Asian groups, including the Siberian Nivkh and Han Chinese. As 

before, the divergence estimates for Amerindians and Athabascans were very similar to one 

another, ca. 23 KYA (table S11B and figs. S18 and S21).

Hence, our results suggest that Amerindians and Athabascans were, by three different 

methods, consistently equidistant in time to populations that were sampled from different 

regions of East Asia, including some proximate to Beringia, and with varied population 

histories. This suggests that these two major Native American sub-groups are descendants of 

the same source population that split off from ancestral East Asians during the LGM. It is 

conceivable that harsh climatic conditions during the LGM may have contributed to the 

isolation of ancestral Native Americans, ultimately leading to their genetic divergence from 

their East Asian ancestors.

We also modeled the peopling of the Americas using a climate-informed spatial genetic 

model (CISGeM), in which the genetic history and local demography is informed by 

paleoclimatic and paleovegetation reconstructions (28, 45), and found the results to be in 

accordance with the conclusion of a single migration source for all Native Americans. Using 

present-day and ancient high coverage genomes, we found that Athabascans and Anzick-1, 

but not Greenlandic Inuit and Saqqaq (29, 39), belong to the same initial migration wave 

that also gave rise to present-day Amerindians from southern North America and Central 

and South America (Fig. 3), and that this migration likely followed a coastal route, given our 

current understanding of the glacial geological and paleoenvironmental parameters of the 

Late Pleistocene (fig. S31).

In all cases, the best fit of the demographic models to the IBS tract distribution and relative 

CCR by MSMC required gene flow between Siberian and Native American populations 

after their initial split (Figs. 2, B to D). We also found strong evidence for gene flow 

between Athabascans and the Inuit (table S11B) supported by results from ADMIXTURE 

(fig. S4), TreeMix (fig. S5), D-statistics employing both whole genome and SNP chip 

genotype data (28, 46, 47) (figs. S6 and S8A), and outgroup f3 statistics using whole genome 

data (28, 47) (Fig. S12). We attempted to estimate the divergence times between Inuit and 

Siberians as well as Inuit and Native Americans (table S11 and figs. S19 and S25 to S27), 
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but our analyses were complicated by gene flow between Inuit and Athabascans as well as 

complex admixture patterns among Arctic groups (fig. S5).

We tested the duration and magnitude of post-split gene flow between Native Americans 

and Siberians using diCal2.0 by introducing stopping time of gene flow as a free parameter 

(28). We still obtained the highest likelihood for a divergence time of 22 KYA between 

Amerindians and Siberians as well as Athabascans and Siberians, although estimates for 

gene flow rate and end of the gene flow differ (table S11C and fig. S22). Significant gene 

flow between Athabascans and Siberians seems to have stopped ca. 12 KYA (Table S11C), 

suggesting a link to the breaching of the Beringian Land Bridge by rising sea levels (48).

Overall, our results support a common Siberian origin for all Native Americans, 

contradicting claims for an early migration to the Americas from Europe (49), with their 

initial isolation and entrance into the Americas occurring no earlier than 23 KYA, but with 

subsequent admixture with East Asian populations. This additionally suggests that the 

Mal’ta-related admixture into the early Americans (4), representing ancestors of both 

Amerindians and Athabascans (Fig. 1 and fig. S5), occurred sometime after 23 KYA, 

following the Native American split from East Asians.

Subsequent in situ diversification of Native American groups

That Amerindian and Athabascan groups were part of the same migration implies that 

present-day genetic differences observed between them must have arisen later, after ca. 23 

KYA. Using the clean-split model in diCal2.0 on the modern genomes dataset, we estimated 

that Athabascans and Karitiana diverged ca. 13 KYA (95% confidence interval of ca. 

11.5-14.5 KYA, estimated from parametric bootstrap results) (table S11A, fig. S16), which 

is consistent with results from MSMC (fig. S27) (28).

Where the divergence between Karitiana and Athabascans occurred is not known. However, 

several independent lines of evidence suggest that it is more likely to have occurred in lower 

latitude North America instead of eastern Beringia (Alaska). These include the equidistant 

split times of Amerindians and Athabascans to Asian populations, the relatively brief 

interval between their estimated divergence date range and the age of Anzick-1 (12.6 KYA) 

(5), and lastly, the geographic location of Anzick-1 to the south of the North American ice 

sheets and its clear affiliation with the ‘southern branch’ of Native Americans (taken broadly 

to include Amerindians from southern North America and Central and South America) (5), 

as determined with outgroup f3 statistics using SNP chip genotype data from present-day 

worldwide populations (47) (Fig. 4 and figs. S13 and S14). Divergence in North America 

would also be consistent with the known pre-Clovis age sites in the Americas, such as 

Monte Verde (14.6 KYA) (50). The most parsimonious model would be that both 

Amerindians and Athabascans are descendants of the same ancestral Native American 

population that entered the Americas then subsequently diversified. However, we cannot 

discount alternative and more complex scenarios, which could be tested with additional 

ancient samples.

By the Clovis period (ca. 12.6 KYA), the ancestral Native American population had already 

diversified into 'northern' and 'southern' branches, with the former including ancestors of 
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present-day Athabascans and northern Amerindian groups such as Chipewyan, Cree and 

Ojibwa and the latter including Amerindians from southern North America and Central and 

South America (Fig. 4 and fig. S14). We tested whether later gene flow from East Asian 

sources, such as the Inuit, might explain the genetic differences between these two branches. 

Using D-statistics on SNP chip genotype data (47) masked for non-Native ancestry, we 

observed a signal of gene flow between the Inuit and northwest Pacific Coast Amerindians 

such as Coastal Tsimshian and Nisga’a, residing in the same region as the northern 

Athabascans (28) (fig. S8B). However, this signal of admixture with the Inuit, also detected 

in Athabascans (figs. S6 and S8A), was not evident among northern Amerindian populations 

located further east such as Cree, Ojibwa and Chipewyan (28) (fig. S8C). This suggests that 

the observed difference between the ‘northern’ and ‘southern’ branches is not a consequence 

of post-split East Asian gene flow into the ‘northern branch’, and also provides a possible 

explanation as to why the ’southern branch’ Amerindians such as Karitiana are genetically 

closer to the northern Amerindians located further east than to northwest coast Amerindians 

and Athabascans (fig. S9).

In contrast to Anzick-1, several of the Holocene individuals from the Americas, including 

those sequenced in this study as well as the 8,500 year old Kennewick Man (51), are closely 

related to present-day Native American populations from the same geographical regions 

(Fig. 4 and figs. S13 and S14). This implies genetic continuity of ancient and modern 

populations in some parts of the Americas over at least the last 8.5 KYA, which is in 

agreement with recent results from Kennewick Man (51).

Evidence of more distant Old World gene flow into some Native Americans

When testing for gene flow between Athabascans and Inuit with masked SNP chip genotype 

data-based D-statistics (47) (fig. S8), we observed a weak tendency for the Inuit to be much 

closer to the Athabascans than to certain Amerindians like the North American Algonquin 

and Cree, and the Yaqui and Arhuaco of Central and South America (respectively), as 

compared to other Amerindians such as the Palikur and Surui of Brazil (fig. S8).

To further investigate this trend, we tested for additional gene flow from Eurasian 

populations into the Americas with D-statistics using the masked SNP chip genotype dataset 

(47). We found that some American populations, including the Aleutian Islanders, Surui, 

and Athabascans are closer to Australo-Melanesians compared to other Native Americans, 

such as North American Ojibwa, Cree and Algonquin, and the South American Purepecha, 

Arhuaco and Wayuu (fig. S10). The Surui are, in fact, one of closest Native American 

populations to East Asians and Australo-Melanesians, the latter including Papuans, non-

Papuan Melanesians, Solomon Islanders, and South East Asian hunter-gatherers such as 

Aeta (fig. S10). We acknowledge that this observation is based on the analysis of a small 

fraction of the whole genome and SNP chip genotype datasets, especially for the Aleutian 

Islander data that is heavily masked due to recent admixture with Europeans (28), and that 

the trends in the data are weak.

Nonetheless, if it proves correct, these results suggest there may be a distant Old World 

signal related to Australo-Melanesians and East Asians in some Native Americans. The 
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widely scattered and differential affinity of Native Americans to the Australo-Melanesians, 

ranging from a strong signal in the Surui to much weaker signal in northern Amerindians 

such as Ojibwa, points to this gene flow occurring after the initial peopling by Native 

American ancestors.

However, how this signal may have ultimately reached South America remains unclear. One 

possible means is along a northern route via the Aleutian Islanders, previously found to be 

closely related to the Inuit (39), who have a relatively greater affinity to East Asians, 

Oceanians and Denisovan than Native Americans in both whole genome and SNP chip 

genotype data-based D-tests (table S10 and figs. S10 and S11). On the basis of 

archaeological evidence and mtDNA data from ancient and modern samples, the Aleutian 

Islands are hypothesized to have been peopled as early as ca. 9 KYA by ‘Paleo-Aleuts’ who 

were succeeded by the ‘Neo-Aleuts’, with present-day Aleutian Islanders potentially 

resulting from admixture between these two populations (52, 53). Perhaps their complex 

genetic history included input from a population related to Australo-Melanesians through an 

East Asian continental route, and this genomic signal might have been subsequently 

transferred to parts of the Americas, including South America, through past gene flow 

events (Fig. 1). Evidence for this gene flow is supported by diCal2.0 and MSMC analyses 

showing a weak but recent gene flow into South Americans from populations related to 

present-day Northeast Asians (Koryak) (Fig. 2C and table S11C), who might be considered 

a proxy for the related Aleutian Islanders.

Testing the Paleoamerican model

The detection of an Australo-Melanesian genetic signal in the Americas, however subtle, 

returns the discussion to the Paleoamerican model, which hypothesizes, on the basis of 

cranial morphology, that two temporally and source-distinct populations colonized the 

Americas. The earlier population reportedly originated in Asia in the Late Pleistocene and 

gave rise to both Paleoamericans and present-day Australo-Melanesians, whose shared 

cranial morphological attributes are presumed to indicate their common ancestry (23). The 

Paleoamericans were, in turn, thought to have been largely replaced by ancestors of present-

day Amerindians, whose crania resemble modern East Asians and who are argued to be 

descendants of later arriving Mongoloid populations (14, 23, 26, 54). The presence of 

Paleoamericans is inferred primarily from ancient archaeological specimens in North and 

South America, and a few relict populations of more recent age, which include the extinct 

Pericúes and Fuego-Patagonians (24, 25, 55).

The Paleoamerican hypothesis predicts that these groups should be genetically closer to 

Australo-Melanesians than other Amerindians. Previous studies of mtDNA and Y 

chromosome data obtained from Fuego-Patagonian and Paleo-american skeletons have 

identified haplogroups similar to those of modern Native Americans (55–57). Although 

these results indicate some shared maternal and paternal ancestry with contemporary Native 

Americans, uniparental markers can be misleading when drawing conclusions about the 

demographic history of populations. To conclusively identify the broader population of 

ancestors who may have contributed to the Paleoamerican gene pool, autosomal genomic 

data are required.
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We, therefore, sequenced 17 ancient individuals affiliated to the now-extinct Pericúes from 

Mexico and Fuego-Patagonians from Chile and Argentina (28), who, on the basis of their 

distinctive skull morphologies, are claimed to be relicts of Paleoamericans (23, 27, 58, 59). 

Additionally, we sequenced two pre-Columbian mummies from northern Mexico (Sierra 

Tarahumara) to serve as morphological controls, since they are expected to fall within the 

range of Native American morphological cranial variation (28). We found that the ancient 

samples cluster with other Native American groups and are outside the range of Oceanian 

genetic variation (28) (Fig. 5 and figs. S32, S33, and S34). Similarly, outgroup f3 statistics 

(47) reveal low shared genetic ancestry between the ancient samples and Oceanians (28) 

(Figs. S36, S37), and genome-based and masked SNP chip genotype data-based D-statistics 

(46, 47) show no evidence for gene flow from Oceanians into the Pericúes or Fuego-

Patagonians (28) (fig. S39).

As the Paleoamerican model is based on cranial morphology (23, 27, 58, 59), we also 

measured craniometric data for the ancient samples and assessed their phenotypic affinities 

to supposed Paleoamericans, Amerindians and world-wide populations (28). The results 

revealed that the analyzed Fuego-Patagonians showed closest craniometric affinity to Arctic 

populations and the Paleoamericans, while the analyzed female Pericúes showed closest 

craniometric affinities to populations from North America, the Arctic region and Northern 

Japan (table S15). More importantly, our analyses demonstrated that the presumed ancestral 

ancient Paleoamerican reference sample from Lagoa Santa, Brazil (24) had closest affinities 

to Arctic and East Asian populations (table S15). Consequently, for the Fuego-Patagonians, 

the female Pericúes and the Lagoa Santa Paleoamerican sample, we were not able to 

replicate previous results (24) that report close similarity of Paleoamerican and Australo-

Melanesian cranial morphologies. We note that male Pericúes samples displayed more 

craniometric affinities with populations from Africa and Australia relative to the female 

individuals of their population (fig. S41). The results of analyses based on craniometric data 

are, thus, highly sensitive to sample structure and the statistical approach and data filtering 

used (51). Our morphometric analyses suggest that these ancient samples are not true relicts 

of a distinct migration, as claimed, and hence do not support the Paleo-american model. 

Similarly, our genomic data also provide no support for an early migration of populations 

directly related to Australo-Melanesians into the Americas.

Discussion

That Native Americans diverged from their East Asian ancestors during the LGM and no 

earlier than 23 KYA provides an upper bound, and perhaps the climatic and environmental 

context, for the initial isolation of their ancestral population, and a maximum estimate for 

the entrance and subsequent spread into the Americas. This result is consistent with the 

model that people entered the Americas prior to the development of the Clovis complex and 

had reached as far as southern South America by 14.6 KYA. As archaeological evidence 

provides only a minimum age for human presence in the Americas, we can anticipate the 

possible discovery of sites that approach the time of the divergence of East Asians and 

Native Americans. However, our estimate for the initial divergence and entry of Native 

American ancestors does not support archaeological claims for an initial peopling 

significantly earlier than the LGM (8–10).
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While our data cannot provide the precise geographical context for the initial peopling 

process, it has allowed us to more accurately estimate its temporal dynamics. This, in turn, 

has enabled us to re-assess the Beringian Incubation Model, which, based on mtDNA data 

and the timing and geographical distribution of archaeological sites, hypothesized a ca. 

15,000 year-long period of isolation of ancestral Native Americans in Beringia during the 

LGM (19–21). Our results, along with recent findings of mtDNA haplogroup C1 in Iceland 

and ancient northwest Russia (60), do not fit with the proposed 15,000-year span of the 

Beringian Incubation Model (19–21). It is possible that a shorter period of isolation occurred 

(ca. 8 KYA), but whether it occurred in Siberia or Beringia will have to be determined by 

future ancient DNA and archaeological findings. Given the genetic continuity between 

Native Americans and some East Asian populations (figs. S4 and S5), other demographic 

factors, such as surfing during population expansions into unoccupied regions (61), may 

ultimately need to be taken into account to better understand the presence of a large number 

of high frequency private variants in the indigenous populations of the Americas.

The data presented here are consistent with a single initial migration of all Native Americans 

and with later gene flow from sources related to East Asians and, more distantly, Australo-

Melanesians. From that single migration, there was a diversification of ancestral Native 

Americans leading to the formation of ‘northern’ and ‘southern’ branches, which appears to 

have taken place ca. 13 KYA within the Americas. This split is consistent with the patterns 

of uniparental genomic regions of mtDNA haplogroup X and some Y chromosome C 

haplotypes being present in northern, but not southern, populations in the Americas (18, 62). 

This diversification event coincides roughly with the opening of habitable routes along the 

coastal and the interior corridors into unglaciated North America some 16 KYA and 14 

KYA, respectively (63, 64), suggesting a possible role of one or both these routes in the 

isolation and subsequent dispersal of Native Americans across the continent.

Methods

DNA was extracted from 31 present-day individuals from the Americas, Siberia and 

Oceania and 23 ancient samples from the Americas, and converted to Illumina libraries and 

shotgun-sequenced (28). Three of the ancient samples were radiocarbon dated, of which two 

were corrected for marine reservoir offset (28). SNP chip genotype data was generated from 

79 present-day Siberians and Native Americans affiliated to 28 populations (28). Raw data 

from SNP chip and shotgun sequencing were processed using standard computational 

procedures (28). Error rate analysis, DNA damage analysis, contamination estimation, sex 

determination, mtDNA and Y chromosome haplogroup assignment, ADMIXTURE analysis, 

ancestry painting and admixture masking, Principal Component Analysis using SNP chip 

genotype data, TreeMix analysis on genomic sequence data, D-statistic and outgroup f3-

statistic tests on SNP chip genotype and genomic sequence data, divergence time estimation 

using diCal2.0, an IBS tract method and MSMC, Climate-Informed Spatial Genetic Model 

analysis, and, craniometric analysis were performed as described (28).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Origins and population history of Native Americans
(A) Our results show that the ancestors of all present-day Native Americans, including 

Amerindians and Athabascans, derived from a single migration wave into the Americas 

(purple), separate from the Inuit (green). This migration from East Asia occurred no later 

than 23 KYA and is in agreement with archaeological evidence from sites such as Monte 

Verde (50). A split between the northern and southern branches of Native Americans 

occurred ca. 13 KYA, with the former comprising Athabascans and northern Amerindians 

and the latter consisting of Amerindians in northern North America and Central and South 

America including the Anzick-1 individual (5). There is an admixture signal between Inuit 

and Athabascans and some northern Amerindians (yellow line); however, the gene flow 
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direction is unresolved due to the complexity of the admixture events (28). Additionally, we 

see a weak signal related to Australo-Melanesians in some Native Americans, which may 

have been mediated through East Asians and Aleutian Islanders (yellow arrows). Also 

shown is the Mal’ta gene flow into Native American ancestors some 23 KYA (yellow 

arrow) (4). It is currently not possible for us to ascertain the exact geographical locations of 

the depicted events; hence, the positioning of the arrows should not be considered a 

reflection of these. B. Admixture plot created on the basis of TreeMix results (fig. S5) shows 

that all Native Americans form a clade, separate from the Inuit, with gene flow between 

some Native Americans and the North American Arctic. The number of genome-sequenced 

individuals included in the analysis is shown in brackets.
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Fig. 2. Divergence estimates between Native Americans and Siberian Koryak
(A) The demographic model used allows for continuous gene flow between populations 1 

and 2, starting from the time TDIV of divergence and ending at TM. The backward probability 

of migration per individual per generation is denoted by m. The bottleneck at TB captures the 

out-of-Africa event. (B) The red and black solid curves depict empirical distributions of IBS 

tracts shared between Karitiana-Koryak and Athabascan-Koryak, respectively. The orange, 

pink, dashed blue and dashed green curves depict IBS tracts shared between the two 

population pairs, simulated under two demographic models based on results from diCal2.0. 

Overall, for Karitiana-Koryak and Athabascan-Koryak, the migration scenarios (orange and 

pink, respectively) match the empirical curves (red and black, respectively) better than the 

clean split scenarios (dashed blue and dashed green, respectively), with more long IBS tracts 

showing evidence of recent common ancestry between Koryaks and Native Americans. (C 
and D) Relative cross coalescence rates (CCR) for the Karitiana-Koryak and Athabascan-

Koryak divergence (red), respectively, including data simulated under the two demographic 

models in panel B. In both cases, the model with gene flow (orange) fits the data (red) better 

than the clean split model (blue). The migration model explains a broader CCR tail in the 
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case of Karitiana-Koryak and the relatively late onset of the CCR decay for Athabascan-

Koryak.
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Fig. 3. Testing migrations into the Americas using a climate-informed model
Estimates of difference in genetic divergence between Amerindians (from southern North 

America and Central and South America) or Koryak versus Athabascan and Greenlandic 

Inuit and the ancient Saqqaq and Anzick-1 genomes (black vertical lines), compared to 

posterior probability distribution predicted from a climate-informed spatial genetic model 

reconstructing a single wave into the Americas (curves, the colored part represents the 95% 

credibility interval). ΔT for population X is defined as T(X,Koryak)-T(X,Central and South 

Amerindians) (28). Both Anzick-1 and the Athabascans were part of the same wave into the 

Americas to which other Amerindian populations from southern North America and Central 

and South America belonged, while the Inuit and Saqqaq are the descendants of different 

waves (observed values outside the 95% credibility interval).
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Fig. 4. Diversification within the Americas
SNP chip genotype data-based outgroup f3 statistics (47) of the form f3(X, Ancient; Yoruba) 

were used to estimate the shared ancestry between ancient samples from the Americas and a 

large panel of worldwide present-day populations (X), including Athabascan and 

Amerindian groups from North America (table S3), some of which were masked for non-

Native ancestry prior to the analysis (28). The outgroup f3 statistics are depicted as heat 

maps with the sampling location of the ancient sample marked by the dotted lines, and 

corresponding ranked plots with error bars are shown in fig. S14. BP refers to time before 
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present. We find the Anzick-1 sample to share most ancestry with the ‘southern’ branch of 

Native Americans when using multiple northern Native Americans sequenced in this study, 

consistent with (5). The seven Holocene aged samples share most ancestry with Native 

Americans, with a general tendency to be genetically closer to present-day Native American 

populations from the same geographical region.
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Fig. 5. The Paleoamerican model
(A) Principal Component Analysis plot of 19 ancient samples combined with a worldwide 

reference panel, including 1,823 individuals from (6). Our samples plot exclusively with 

American samples. For plots with other reference panels consisting of Native American 

populations, see fig. S32. (B) Population structure in the ancient Pericú, Mexican mummy 

and Fuego-Patagonian individuals from this study. Ancestry proportions are shown when 

assuming six ancestral populations (K = 6). The top bar shows the ancestry proportions of 

the 19 ancient individuals, Anzick-1 (5), and two present-day Native American genomes 
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from this study (Huichol and Aymara). The plot at the bottom illustrates the ancestry 

proportions for 1,823 individuals from (6). Our samples show primarily Native American 

(ivory, >92%) and Siberian (red, ca. 5%) ancestry. For the plot with K =13, see fig. S33.
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