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Abstract

Inflammation is an adaptive response of the immune system to noxious insults to maintain 

homeostasis and restore functionality. The retina is considered an immune privileged tissue due to 

its unique anatomical and physiological properties. During aging, the retina suffers from a low-

grade chronic oxidative insult, which sustains for decades and increases in level with advancing 

age. As a result, the retinal innate immune system, particularly microglia and the complement 

system, undergo low levels of activation (para-inflammation). In many cases, this para-

inflammatory response can maintain homeostasis in the healthy aging eye. However, in patients 

with age-related macular degeneration (AMD), this para-inflammatory response becomes 

dysregulated and contributes to macular damage. Factors contributing to the dysregulation of age-

related retinal para-inflammation include genetic predisposition, environmental risk factors and 

old age. Dysregulated para-inflammation (chronic inflammation) in AMD damages the blood 

retina barrier (BRB), resulting in the breach of retinal immune privilege leading to the 

development of retinal lesions. This review discusses the basic principles of retinal innate immune 

responses to endogenous chronic insults in normal aging and in AMD, and explores the difference 

between beneficial para-inflammation and the detrimental chronic inflammation in the context of 

AMD.
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Introduction

The central role of the immune system is to protect the host from exogenous and 

endogenous insults, and to maintain tissue homeostasis. Dysfunction or dysregulation of the 

immune system may lead to various immune-related diseases, such as infection and 

autoimmune disorders. In addition to the classic inflammatory diseases, compelling 
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evidence suggests that a low-grade chronic inflammation contributes critically to many 

human diseases that were previously not considered as inflammatory disorders, including 

obesity [1, 2], atherosclerosis [2-4], and various neurodegenerative disorders [3, 5-8]. It is 

now clear that chronic inflammation is involved in almost all age-related degenerative 

diseases, including those that occur in “immune privileged” tissues such as the brain (e.g., 

Alzheimer disease; Parkinson disease) [3, 5, 8], and the retina (e.g. age-related macular 

degeneration, AMD) [9, 10]. Aging involves the accumulation of oxidative insults, and the 

initial triggers for age-related degenerative diseases are believed to be the oxidative damage. 

Inflammation is secondary to the tissue damage and is thought to be part of a protective 

response of the immune system. Why this protective response becomes detrimental has been 

a puzzle for many years.

In 2008, Medzhitov discussed the origin of inflammation in his essay published in Nature 

[11], where he further extended the concept of the “danger theory” of inflammation. He 

suggests that between basal homeostatic conditions and true inflammation a “para-

inflammation” state exists [11]. Para-inflammation is an adaptive response of the immune 

system to low levels of tissue stress (i.e., a low-degree of “danger” stimuli), such as in aging 

whereby oxidative stress accumulates bit by bit for many decades. The physiological role of 

para-inflammation is to maintain homeostasis (or re-set the homeostatic threshold of the 

tissue) and restore tissue functionality [11]. This para-inflammation theory helps to explain 

many phenomena observed in various chronic disease conditions, an example of which is 

“inflammaging” [12, 13]. This concept centres on a well-controlled para-inflammation, 

which is beneficial and dysregulated para-inflammation that is detrimental. A lot of studies 

since have focused on how the para-inflammatory response becomes dysregulated in disease 

conditions. In this review, we will discuss para-inflammation in the aging eye and will 

present our understanding, based on published data from us and others, on how para-

inflammation is dysregualted in AMD, a sight-threatening disease that affects over 170 

million people worldwide [14].

Age-related macular degeneration

AMD is disease involving progressive degeneration of the macula, the central part of the 

neuroretina in the elderly (Fig. 1A). In Western nations, around 22% of people aged over 70 

and 34% over 80 years may suffer from AMD in at least one eye [14]. With demographic 

shifts and trends towards increasing longevity in the developing world, the number of people 

suffering from AMD is projected to reach 190 million in 2020 and 288 million in 2040 [14].

The pathologies of AMD are restricted to the retina-choroid interface of the macula [15, 16] 

(Fig. 1). The macula, in particular the fovea, has a unique structure whereby cone cells 

constitute the majority of photoreceptors and no blood vessels are present (Fig. 1B). 

Nutrients and oxygen are supplied to the macula by the choroidal circulation through 

Bruch’s membrane (BM) and a monolayer of retinal pigment epithelial (RPE) cells, which 

forms the outer blood retina barrier (oBRB) (Fig. 1B). The metabolic waste materials of the 

retina are disposed of through the RPE/BM to the choroid and then removed by choroidal 

macrophages or the choroidal circulation (Fig. 1B). During aging, two processes contribute 

to macular damage: i) the thickness of the BM increases and permeability decreases [17], 
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and ii) the RPE function declines [18, 19] and the density of chorocapilaris is reduced [17]. 

During the early stages of AMD, there is an accumulation of extracellular deposits called 

“Drusen” between the RPE and BM consisting of various lipid-, carbohydrate-, and protein-

rich debris (Fig. 1C) [20]. AMD can progress into two late sight-threatening stages: 

geographic atrophy (GA, or dry AMD) (Fig. 1D) and neovascular AMD (nAMD or wet 

AMD) (Fig. 1E). GA is characterized by the death of RPE and photoreceptors, whereas 

nAMD is typified by the growth of abnormal blood vessels into the sub-RPE or subretinal 

space (Fig. 1D, 1E). GA and nAMD are not mutually exclusive, approximately 12% of 

AMD patients may develop both GA and nAMD [21, 22], and GA often develops in nAMD 

eyes following anti-VEGF therapy [23-25].

AMD is a multi-factorial disease, and old age, environmental and genetic risk factors all 

contribute to disease pathogenesis [15, 26]. Exactly how these multiple factors cause 

macular damage is poorly understood. Whilst we appreciate that multiple pathways may 

contribute to macular damage, it is now clear that inflammation plays a major role in AMD 

pathogenesis [10, 26, 27]. Evidence supporting the role of inflammation in AMD include: i) 

inflammatory molecules, including vitronectin, amyloid A/P, Factor X, prothrombin, and in 

some instances, immunoglobulin, HLA-DR, and complement proteins (C3, C5, C5b-9, CFH, 

and CRP) have been detected in Drusen – the hallmarker of early AMD [9]; ii) immune 

cells, including macrophages, lymphocytes and mast cells have been detected in AMD 

lesions or the choroid adjacent to macular lesions [28, 29]; iii) polymorphisms of various 

immune related genes, such as CFH, C2/CFB, C3, CX3CR1, and TLR3/4 are associated 

with AMD risk (reviewed by Tuo et al [30]); iv) AMD-like lesions can be modelled in 

experimental animals by manipulating immune related genes [31-35]. The question is why 

this “protective” response becomes detrimental in AMD? To address this question, it is 

essential to review the basic principle of the immune response to age-related chronic insults 

and how the immune system uses the principle to protect the eye, particularly under aging 

conditions.

Inflammation – an adaptive response to tissue stress

Inflammation is an adaptive response to tissue stress [11, 36]. The response can occur at 

three levels: tissue cells, the immune system of local tissue and the systemic immune 

system. At the tissue level, when cells suffer from chronic noxious insults (e.g. a change of 

microenvironmental parameters such as temperature, nutrients, oxygen and growth factors, 

etc.) and the insults are not strong enough to cause cell death, a cell autonomous response, 

including the upregulation of heat shock proteins [37-39] and the activation of the autophagy 

pathways [40-43] may ensue. The purpose of the cell autonomous response is to repair the 

damage so the cells can return to basal homeostasis. The cell autonomous response can also 

result in the production of inflammatory cytokines and chemokines; this therefore, 

represents a tissue cell autonomous inflammatory response. The subtle change in 

microenvironment related to the cell autonomous response is monitored by the immune 

system of the tissue, such as resident macrophages and the complement system, which in 

turn may release cytokines and growth factors to further promote the repair / recovery of 

stressed cells. The difference between the cell autonomous response and the response of 

local immune cells is that the former promotes the survival of self, whereas the latter assists 

Chen and Xu Page 3

J Leukoc Biol. Author manuscript; available in PMC 2016 February 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



in the survival of other cells and ensures the integrity of tissue structure and functionalities. 

If the damage is restricted to a limited number of cells and the insult is transient, tissue 

repair can be achieved with minimal disturbance of the local or the systemic immune system 

(“minimal inflammation”).

When more cells or the whole tissue are stressed, and/or the insult persists for a sustained 

period of time, such as in aging, the autonomous response may not be able to retuen stressed 

cells to healthy where they may undergo senescence or even death. Senescent cells can 

secrete a number of pro-inflammatory cytokines and chemokines, a phenomenon known as 

“senescent-associated secretory phenotype (SASP)” [44]. Examples of SASP-associated 

factors include cytokine such as IL-6, IL-8, TNF-α, and IL-1α/β, chemokine MCP-1/2 and 

CX3CL1 [45], insulin-like growth factor (IGF)/IGFR [46], and colony stimulating factors 

(G-CSF, GM-CSF) [47, 48]. These proinflammatory mediators further stimulate resident 

macrophages and tissue complement system (local tissue inflammation), promoting tissue 

repair and remodelling to maintain homeostasis or re-set the threshold of homeostasis and 

restore functionality. If the level of tissue stress exceeds the reparatory capacity of resident 

macrophages, they may release additional cytokines and chemokines to recruit circulating 

monocytes [36]. When tissue factors are released into the circulation, they may activate the 

systemic immune system (systemic inflammation). The stress may also initiate other innate 

immune pathways such as the complement pathway to promote tissue repair/remodelling. 

This adaptive response of the innate immune system to tissue malfunction was called para-

inflammation by Medzhitov [11]. The physiological purpose of the para-inflammatory 

response is to help the tissue to adapt to the stressful conditions and to restore functionality 

[11].

When tissues suffer from acute insults that cause substantial necrotic cell death, overt 

inflammation may ensue. Dead cells may release large amounts of inflammatory stimuli 

such as uric acid [49], high-mobility group box 1 protein (HMGB1)[50-52], and S100B [53] 

resulting in the aggressive activation of resident immune macrophages as well as 

recruitment of circulating leukocytes, typically neutrophils and macrophages.

An inflammatory response requires four elements: the inducers, the sensors, the mediators 

and the effectors [36]. According to the “danger model” of inflammation [54], the inducers 

are the danger molecules (exogenous and endogenous danger-associated molecular patterns, 

DAMPs), whereas the sensors are the pattern recognition receptors (PRRs) expressed by 

tissue or immune cells. Upon engaging with DAMP ligands, PRR-expressing cells secrete 

cytokines and chemokines (mediators) that further recruit and activate immune cells 

(effectors) to sites of inflammation [36].

Retina – an immune privileged tissue

Immune privilege property of the retina

The retina has a highly complex, sophisticated structure, and even a minor perturbation may 

cause devastating visual impairment. However, the eye has developed a special mechanism 

to protect the retina from exogenous and endogenous insults. This protective mechanism not 

only reduces the risk of pathogenic insult, but also prevents circumvent inappropriate 
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immune reactions to insults, thereby reducing the risk of inflammation – mediated retinal 

damage. The retina, therefore represents an immune privileged tissue for several reasons 

[55-57]. Firstly, the retina is protected by physical barriers. The blood retina barrier (BRB) 

that is formed by tight junctions between vascular endothelial cells (inner BRB, iBRB) and 

RPE cells (outer BRB, oBRB) ensures that circulating cells and molecules do not freely pass 

into the retinal parenchyma. The BRB also sequesters retinal antigens within the intraocular 

compartment avoiding T cell activation, a phenomenon called immunological ignorance [56, 

58-60]. In addition, the retina has no lymphatic system. Therefore, when the retina suffers 

from any sort of insult, the endogenous alarmins are unlikely to be detected by circulating or 

choroidal/extraocular antigen presenting cells (APCs) if the BRB is intact. The second 

mechanism of retinal immune privilege involves a sophisticated immune regulatory system 

orchestrated by retinal cells, including various neurons and RPE cells [55, 61, 62]. These 

retinal cells express various immune modulators that can suppress myeloid cell (microglia/

macrophage) activation via CD200-CD200R [63], or CX3CL1-CX3CR1 [32]), or reduce T 

cell activation or induce T regulatory cells (Tregs) formation (through thrombospondin-1, 

TGF-β, CTLA4, CTLA2, [64-69]), or even induce the death of infiltrating immune cells 

through Fas ligand (FasL) and Tumor Necrosis Factor-related apoptosis-inducing ligand 

(TRAIL) [70-72]), or suppress complement activation via CD55, CD46, and the decay-

acceleration factor (DAF) [73, 74]). In addition, ocular fluids also contain a number of 

immunoinhibitory molecules such as TGF-β2, neuropeptides such as α-melanocyte-

stimulating hormone, and vasoactive intestinal peptide [75, 76].

Importantly, despite being an immune privileged tissue, when the retina suffers from 

noxious insults, an immune response can still be mounted by a local defence system, 

involving retinal innate immune cells and the complement system.

Retinal immune system

Microglial cells form an important part of the immune defence of the retina. These cells are 

located in the inner layers of the retina, and are distributed into three layers: the ganglion 

layer (GL), the inner plexiform layer (IPL) and outer plexiform layer (OPL) (Fig. 2A). Our 

data has shown that in mouse eye the density of microglial cells in the IPL is higher than 

that in the OPL (~ 260 cells/mm2 vs ~98 cells/mm2, Figs. 2B, 2C). The patho-physiological 

role of microglia in retinal health and disease has been reviewed extensively elsewhere 

[77-80]. Microglia express various toll-like receptors (TLRs) [81, 82] that allow them to 

monitor the surrounding microenvironment. Upon engaging with danger signals, the 

microglia may convert from a resting surveillance state to an active form specialized to 

operate within the diseased environment. Microglial activation is classically characterized 

by two major changes. First, the cell shape transforms from a highly branched (Fig. 2D) and 

ramified morphology to an ameboid form (Fig. 2F) [80]. Secondly, these ameboid cells 

become active phagocytes (Fig. 2F) [80]. Microglia may also undergo a low-level of 

intermediate activation, characterized by shorter dendrites and larger somas compared to 

resting cells (Fig. 2E).

Perivascular macrophages are another important subset of retinal resident immune cells that 

have a distinct morphology and phenotype. Although both perivascular macrophages and 
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microglia express CD11b and F4/80, the former express high levels of CD14 (LPS receptor) 

and CD45, whereas microglial cells are negative for CD14 and express low levels of CD45 

[83-85]. In addition, bone marrow chimeric studies have shown that brain perivascular 

macrophages are regularly replaced by circulating monocytes [86], suggesting that they may 

originate from bone marrow hematopoietic stem cells.

Whether or not the retina contains professional antigen presenting cells (dendritic cells) has 

been a subject of debate for many years. Early work by Zhang and colleagues reported a 

small population of MHC-II+ cells in rat retina [87]. Using flow cytometry analysis, 

Gregerson and Yang detected a small population of CD11c+ DEC205+ dendritic cells in 

normal mouse retina [88]. This group further confirmed the existence of retinal CD11c cells 

using CD11c-DTR transgenic mice [89]. However, another study by Chen et al suggested 

that the rd8 mutation in the Crb1 gene may contribute to the abnormal number of CD11c+ 

cells in the retina in CD11c-eYFP transgenic mice [90]. These CD11c+ cells had the 

characteristics of activated microglia but not DC, and they were virtually absent in the 

CD11c-DTR/GFP mice that did not have Crb1 mutation [90]. Previously, our group 

identified a small population of MHC-II+33D1+ dendritic cells in mouse retina which are 

located strategically around the optic disc and peripheral retinal margin area [91]. The 

function of these cells is unclear, but their location suggests they may be “gatekeepers” of 

the retina. When activated T cells were injected intravenously to mice with early uveitis, an 

inflammatory condition of the retina and choroid, early infiltration of T cells was observed 

around the optic disc and retinal periphery [91], allowing possible initial contacts with 

dendritic cells. It is possible that in the normal physiological state, these retinal dendritic 

cells promote tolerance (‘privilege’) rather than immunity. Other immune cells, such as T/B 

cells, NK cells, and Mast cells have not been detected in the normal healthy retina.

In addition to these immune cells, a complement regulatory system also exists in the retina. 

The complement system is an important part of the innate immune system, consisting of 

over 30 small proteins and protein fragments. Complement proteins are normally 

synthesized by hepatocytes in the liver and released into the circulation in a latent form. 

Upon stimulation, complement proteins are cleaved by appropriate proteases resulting in 

amplifying cascades involving further cleavage, and ultimately the formation of the 

membrane attack complex (MAC), a potent molecule that can kill cells [92]. The 

complement system can be activated through the classical pathway (CP, mediated by 

antibody-antigen complex), the alternative pathway (AP, spontaneous tick-over) and the 

lectin pathway (LP, mediated by mannose-binding lectin or ficolin binding to certain sugars) 

[92]. In addition to MAC, complement activation also generates various complement 

fragments, including C3a, C5a, and C4a, that are actively involved in various immune 

responses [92].

Complement activation is involved in various retinal diseases, including uveoretinitis 

[93-95], diabetic retinopathy [96], and age-related macular degeneration [27], suggesting 

that the complement system is also an important part of retina innate immune defence. 

Retinal cells can produce various complement proteins and regulators. For example, the 

mRNAs of C1qa/b, C1s, Cr1, C2, C4, Cfb, Cfd, C5, and C7 as well as complement 

regulatory genes, including Serping-1, MCP (CD46), DAF (CD55), CFH, CFI, and CD59 
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were detected in neuroretina of human [27] and mouse [97-99]. Furthermore, in vitro studies 

have shown that microglia and RPE cells are the major cellular sources of complement in 

the retina [97]. These results confirm that a local complement regulatory system exists in the 

retina, and plays a role in retinal health and disease.

Para-inflammation in the aging retina

Aging involves the accumulation of oxidative stress, and significant expression of oxidized 

lipids/proteins can be detected in the aging retina [100]. Other altered metabolic products 

such as advanced glycation end products (AGEs) [101-103], β-amyloid [104, 105], 

pyridinium bisretinoid (A2E) [106] and hyaluronan fragments [107] may also accumulate in 

the aging retina. Oxidative or metabolic stress can damage retinal cells, including various 

neurons and RPE cells. As a result, a para-inflammatory response may be initiated to repair 

damage and maintain homeostasis. Increased inflammatory gene and protein expression has 

been observed in various models of retinal aging [108, 109], and both the retinal cell 

autonomous response and activation of the retinal immune system may contribute to age-

related retinal para-inflammation.

Para-inflammatory autonomous responses by RPE cells

Over the years, many studies have investigated the age-related inflammatory response of 

RPE cells, but little has been published on the response of retinal neurons. We will therefore 

focus on the autonomous response of RPE cells under aging conditions. The RPE cells 

express various PRRs, including TLRs and NLRs which can detect various stresses 

intracellularly or at the cell surface. Gene array technology has helped to define the overall 

gene expression profile of RPE cells during aging, and inflammation is one of the major 

functional pathways that has been identified in these studies [109-111]. Many of the age-

induced immune gene expression changes identified in the array studies have also been 

observed in vitro. Treatment of RPE cells with the age-related DAMPs, such as AGEs [103], 

amyloid-β [112-114] or oxidized photoreceptor outer segments (oxPOS) [98, 99] induces the 

up-regulation of pro-inflammatory genes such as CCL2, IL-6, TNF-α, and complement 

factor B (CFB), but also reduce immune regulatory genes (such as complement factor H, 

CFH [98]]). The SASP is a well-known phenomenon in all senescent cells [48]. The age-

related autonomous response of RPE cells may be another example of SASP.

Para-inflammatory response by retinal immune system

Microglia, perivascular macrophages and a small number of dendritic cells constitute the 

cellular component of the retinal immune system. Like any other innate immune cells, these 

cells express various PRRs that can detect various DAMPs in the aging retina. A number of 

studies have shown that retinal innate immune cells, in particular, microglia undergo low-

levels of activation during aging. Chan-Ling et al have detected ED2+MHC-II+ cells in the 

normal aging rat retina [115]. Using flow cytometry analysis, our group has found that 

expression of TLR-3/4, CD11c, 33D1 and MHC-II in retinal CD11b+CD45low cells 

(resident retinal myeloid-lineage cells) was significantly increased in the aging mouse retina 

[100]. Furthermore, an age-dependent increment in the number of microglial cells was 

present in the mouse retina [33] as well as subretinal migration and accumulation [116]. 
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Evidence suggests that microglia in the aging retina appear to be activated at low levels. 

Firstly, they do not acquire an ameboid shape, characteristic of fully activated microglia, 

suggestive of an mild activation state (Fig. 2F). Instead, the dendrites become shorter and 

less symmetric (Fig. 2E) compared to resting microglial cells (Fig 2D). Secondly, unlike 

microglia from the young retina that are often confined within the IPL or OPL, microglial 

cells in the aging retina can migrate to the subretinal space [100, 116] (Figs. 3A, 3B). The 

role of microglia in the aging neuroretina has been reviewed extensively previously [79, 

100, 117].

The subretinal space is devoid of any immune cells under normal healthy conditions. The 

presence of microglia suggests tissue insult/damage at the retina-choroidal interface. What 

role do the subretinal microglia play in the aging eye? Although the morphology of 

subretinal microglia varies markedly even in the same eye, these cells generally have larger 

cell bodies and shorter dendrites (Fig. 3C) compared to those in the inner retina (Fig. 2). 

Previously, we have shown that they express Iba-1, P2Y12, Arginase-1 as well as low levels 

of MHC-II [34], suggesting a tissue repair/remodelling function. Supporting this concept, 

melanin-loaded subretinal microglia were frequently observed in the normal aging eye (Fig. 

3D). Exocytosis of melanin granules is a characteristic feature of stressed RPE cells, and 

indeed of melanin-containing cells generally [118].

In addition to a scavenger role, subretinal microglia may also interact with RPE cells, 

facilitating cell-cell regulation. We have shown recently that the expression of complement 

components by RPE cells is regulated by activated macrophages [119]. The classically 

activated M1 macrophages upregulate CFB/C3 expression by RPE cells, whereas the 

alternative M2 macrophages upregulate the expression of complement inhibitors by RPE 

cells [119]. Whether or not subretinal macrophages can also modulate other RPE functions 

such as phagocytosis, the expression of tight junctions and ion/water channels remains to be 

defined.

The complement system is an important part of the innate immune system, and retinal cells, 

in particular RPE cells, express various complement proteins. During aging, the expression 

of complement components such as CFB, C3d is increased in the retina-chordal interface 

[99], whereas the expression of complement regulators such as CFH is decreased [98]. In 

addition, an age-dependent expression of MAC in RPE/choroid has been observed in both 

human [120] and rat eyes [121]. A low level of complemen activation may participate in 

retinal homeostasis in a number ways. The complement fragments C3a and C5a are known 

anaphylatoxins and may promote inflammation through the receptors C3aR and C5aR on 

immune cells, whereas C3b/C3c may opsonize dead cells/debris and promote phagocytosis. 

Although C5b-9 (MAC) can promote cell lysis, sublytic assembly of MAC induces cell 

cycle activation and survival [122], and may be neuroprotective [123].

Dysregulated para-inflammation and age-related macular degeneration

Why does the protective retinal para-inflammatory response become detrimental in AMD? 

Perhaps there is a balance between the level of age-mediated retinal stress and the capacity 

of the para-inflammatory response to repair the damage. On the one hand, if the level of 
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retinal stress exceeds the repair capacity of the immune system, tissue damage is 

unavoidable. On the other hand, if the para-inflammatory response becomes dysregulated, it 

may transform into chronic inflammation and contribute to tissue damage. Para-

inflammatory response in the aging retina includes the cell autonomous response, the 

response by the retinal innate immune system (i.e. microglial/macrophage and the 

complement system), and the response of systemic immune system. Theoretically, AMD 

may occur when any or all of these inflammatory responses becomes dysregulated.

Dysregulated cell autonomous response in AMD

The autonomous response in the context of AMD predominantly concerns RPE cells. A 

typical example of an age-related RPE inflammatory response is the activation of NLRP3 

inflammasome. NLRP3, PYCARD, and Caspase-1 have been detected in RPE cells at lesion 

sites in both GA (dry AMD) and nAMD (wet AMD) [124, 125]. In vitro studies have shown 

that the NLRP3 inflammasome in RPE cells can be activated by various intracellular / 

extracellular stimuli that may exist in the aging eye, such as AluRNA [124], amyloid-β 

[126], A2E [127], lipofuscin [128] or oxidized lipoproteins [129]. Depending on the stimuli, 

activation of the NLRP3 inflammasome in RPE cells may result in IL-18 [124] or IL-1β 

production [127] or both [126, 128]. Inflammasome activation, in particular AluRNA-

induced NLRP3 inflammasome activation, often leads to RPE cell death and the 

development of GA-like lesions [124, 130]. Despite the presence of TLRs on RPE cells, 

Alu-RNA-induced NLRP3 inflammasome activation does not involve TLRs, but may 

involve P2Y7 and MyD88 [124, 130].

What causes the uncontrolled inflammasome activation in AMD? One obvious cause is the 

the levels of macular stress in AMD patients differ from that experienced by healthy aged 

people. For example, AluRNA was detected in AMD eyes, but not in healthy controls [124], 

and retinal A2E levels was higher in AMD compared to controls [131]. Dysfunction of the 

autophagy pathway may also be involved in RPE inflammasome activation in AMD. 

Autophagy is the self-clearance machinery of a cell [43], and is important for cells to 

dispose of damaged organelles or waste molecules [43]. An imbalance in the autophagy 

system may result in the intracellular accumulation of toxic molecules and the generation of 

reactive oxygen species [42], which may lead to progressive inflammasome activation [42]. 

Increased autophagsome numbers and expression of autophagy proteins have been observed 

in RPE cells of normal aging eye [132, 133]. Whereas in AMD eyes, autophagy proteins, 

autophagosomes and autophagy flux ith were reduced [133, 134]. With the onset of AMD, 

the excesive accumulation of lipofuscine in RPE cells may impair lysosomal enzyme 

activity resulting in autophagy dysfunction [133, 135]. Accumulation of both reactive 

oxygen species and lipofuscine in RPE cells may lead to inflammasome activation [41].

Dysregulated retinal innate immune activation in AMD

Activation of retinal microglia and the complement system features the para-inflammatory 

response of the retinal innate immune system in the aging eye [100]. Malfunction in the 

immune regulatory system or the innate immune component of the retina may lead to the 

dysregulation of the para-inflammatory response. RPE cells produce various immune 

suppressive factors (both membrane and soluble forms) to maintain the immune privileged 
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state of the retina. The production and/or function of these regulators may be altered in 

AMD. For example, FasL expressed by RPE cells is important in maintaining retinal 

immune privilege by inducing the death of infiltrating immune cells [70, 72]. During aging, 

the matrix metalloprotease activity is increased, resulting in the cleavage of FasL and the 

loss of immune regulatory function in RPE cells [136]. It would be interesting to know if 

this age-related cleavage of FasL is accelerated in AMD. RPE cells also express/produce 

various complement regulators, such as CFH, CD46 and CD59 [27, 97]. Local production of 

these regulators may protect retinal cells, including RPE and photoreceptors from 

complement attack. Immunohistochemistry studies have detected MAC in drusen and 

macular lesions in AMD [9, 27], suggesting that RPE cell death in AMD may be related to 

uncontrolled complement activation. The expression of CFH [137], CD46 and CD59 [138] 

in RPE cells was reduced in AMD. In addition, the functional change of innate immune cells 

(due to genetic or epigenetic regulation) may also confer a detrimental effect on aging 

insults. Studies in the function of CFH protein have shown that the variant CFH 402His has 

reduced binding affinity to CRP [139], Bruch’s membrane, heparin [139, 140], and oxidized 

phospholipids [141]. These functional alterations may result in a reduced ability of CFH to 

protect the retina, in particular RPE cells, and ultimately contribute to AMD development.

In addition to the retinal immune regulatory system, malfunction of microglia and 

macrophages in the retina and choroid may also lead to dysregulated para-inflammation in 

AMD. The CCL2/CCR2 and CX3CL1/CX3CR1 pathways are two major chemokine axes 

involved in monocyte/macrophage migration. CCL2 critical controls the trafficking of 

CCR2-expressing monocytes to sites of inflammation [142], whereas CX3CL1 regulates the 

trafficking of CX3CR1-expressing resident monocytes under homeostatic conditions [142]. 

A study by Ambati et al has shown that mice deficient in either CCL2 or CCR2 age-

dependently develop retinal pathologies akin to human AMD [31] although it is unclear 

whether the retinal phenotype was affected by the Crb1 rd8 mutation [143]. The result 

suggests that CCL2/CCR2 pathway mediated subretinal inflammation may have a protective 

role in retinal aging. Interestingly, the CX3CL1/CX3CR1 pathway-mediated subretinal 

inflammation also appears to be beneficial. Mice deficient in CX3CR1 developed retinal 

degeneration during aging [32]. More recent studies have shown that CCR2+ mononuclear 

phagocytes from CCR2+ cell in CX3CR1-deficient mice can induce neuronal apoptosis 

through IL-1β secretion [144], and the production of IL-1β in CX3CR1 deficient phagocytes 

is mediated at least in part by the upregulation of P2RX7 [145]. It appears that both 

CX3CR1+ monocytes and CCR2+ monocytes are necessary for retinal homeostasis during 

aging and disruption in either pathway may result in age-dependent retinal degeneration.

How can these data be interpreted? The CCL2/CCR2 pathway and the CX3CL1/CX3CR1 

pathway may be involved in different stages of subretinal inflammation during aging. 

Microglial cells are CCR2−CX3CR1+ [146] although circulating monocytes or choroidal 

macrophages may express both CCR2 and CX3CR1 [142]. At the early stages of aging, 

when RPE and photoreceptors are mildly stressed from age-related oxidative insults and the 

BRB is intact, the CX3CR1+ microglial cells may migrate from the inner retina to the 

subretinal space to remove debris and maintain homeostasis. As the aging progresses and 

age-related macular stress accumulates, microglial cells may not be able to maintain macular 

homeostasis. Activated subretinal microglial cells and stressed RPE cell may release 
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chemokines such as CCL2 to recruit CCR2+ macrophages from the choroidal tissue in order 

to maintain homeostasis. BRB breakdown has been observed in normal rat aging eye [115]. 

In mouse eyes, migrating microglial cells were frequently observed at the photoreceptor 

layer (OPL) at the early stages (12-18 months) but not late stages (24-29 months) of aging, 

despite more subretinal macrophages exist at the late stages (Fig. 3). The increased number 

of subretinal macrophages during the late stages of aging may be related to the recruitement 

of CCR2+ macrophages from the choroid or circulation. In addition, the lack of function of 

either CCR2+ or CX3CR1+ monocytes (due to genetic or epigenetic modification) may lead 

to malfunction of the other subset, resulting in a dysregulated para-inflammatory response. 

We have shown recently that macrophages from CCL2−/− mice or CCR2−/− mice produce 

excessive amounts of inflammatory cytokines TNF-α and IL-1β when stimulated with LPS, 

compared to cells from WT mice [34]. Interestingly, macrophages from the CCL2/CX3CR1 

double knockout mice had a more aggressive response to LPS or IL-4 stimulation under 

hypoxic conditions but reduced phagocytosis [33]. These mice develop localized retinal 

atrophies in an age- and light-dependently manner [33]. Our results may suggest that 

mononuclear phagocytes from either CCL2−/− or CX3CR1−/− mice or CCL2-CX3CR1 dual 

knockout mice are genetically predisposed to a pro-inflammatory phenotype. When these 

macropahges are recruited to the subretinal space in the aging eye, they may do more harm 

than good. This may be particularly relevant to AMD patients with CX3CR1 polymorphisms 

[147]. The results from animal models highlight the importance of the CCL2/CCR2 and 

CX3CL1/CX3CR1 pathways in the development of age-related retinal degeneration. Further 

studies are necessary to investigate these pathways in human AMD.

Dysregulated systemic inflammation and AMD

Aging is associated with a low-grade activation of the systemic immune system, and the 

term “inflammaging” is frequently used to describe this phenomenon [12, 13]. Previous 

studies have shown that plasma levels of complement fragments C3a, Bb, C4a and C5a were 

increased in AMD patients [148, 149]. Increased serum levels of CRPs [150-152] and 

pentraxin 3 [152] have been reported in AMD. In addition, retinal autoantibodies [153, 154] 

and higher levels of circulating white blood cells were reported in AMD patients [155-157]. 

More recently, it has been shown that AMD patients have higher levels of blood neutrophils, 

with an increased neutrophil/lymphocyte ratio [158, 159]. In addition, increased serum 

levels of inflammatory cytokines such as IL-1β, TNFα, and IL-17 have been detected in 

AMD patients [160], with IL-17 production potentially related to higher C5a levels in these 

patients [161, 162]. These data suggest that the level of systemic low-grade immune 

activation (inflammaging) is more severe in AMD patients compared to age-matched 

controls.

Interestingly, apart from retinal autoantibodies, most of the inflammatory mediators are 

generic markers of systemic immune activation. Is this non-specific systemic chronic 

inflammation biologically linked to AMD pathology? AMD pathology is localized at the 

macula, an area with a diameter of around 5.5 mm of the neuroretina. It is unlikely that 

chronic damage in this tiny tissue would affect the levels of cytokines/growth factors in the 

whole circulation (approximately 5 liters of blood [163]. The increased systemic immune 

activation in AMD patients may reflect an intrinsic over-reactivity of the immune system to 
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age-related insults, i.e., dysregulated age-related systemic para-inflammation. When immune 

cells are recruited to the macula in the aging eye, they may contribute to macular damage by 

producing various proinflammatory cytokines and chemokines. If this is the case, the use of 

nonsteroidal anti-inflammatory drugs or other anti-inflammatory drugs would benefit AMD 

patients. Indeed, epidemiological evidence demonstrates that the use of anti-inflammatory 

medication reduces the risk of AMD [164]. Rheumatoid arthritis patients with regular 

immunosuppressive medications also had a lower prevalence of AMD [165]. Furthermore, 

systemic immunosuppression (e.g., daclizumab or rapamycin) [166] or topical use of 

bromfenac can significantly reduce the number of intravitreal anti-VEGF injection in 

neovascular AMD patients [167, 168]. However, a number of meta-analysis of various 

clinical trials suggests that the use of aspirin may increase the incidence of neovascular 

AMD [169, 170]. However, most patients with AMD take only low-dose aspirin (75-100 

mg/day) in order to reduce the risk of cardiovascular disease, and such low-doses are likely 

to have minimal effects on the immune system.

What causes the dysregulation of systemic para-inflammation (inflammaging) in AMD? The 

evidence so far indicates that the activation of the systemic immune system in AMD is 

unlikely to be related to autoimmunity. The nature of the systemic immune activation should 

be considered as an adaptive response to age-related insults, with increased magnitude in 

AMD patients. The amplified response in AMD patients may be related to the nature/

amount of insults accumulated during aging as a result of genetic predisposition or 

epigenetic/environmental influence. For example, if the anti-oxidant system does not 

function as well as it should due to genetic predisposition, or the patient has an unhealthy 

lifestyle, age-related oxidative insults may accumulate more rapidly and to a greater extent. 

Smoking and high-fat diet are known environmental risk factors of AMD, and both can 

directly impact on the immune system [171-173]. Aging can also affect the immune system 

[174, 175] and it is possible that immune senescence is accelerated in AMD.

Another possible cause of dysregulated systemic para-inflammation is that the immune 

regulatory system may not function properly in AMD patients due to genetic predisposition 

or epigenetic modifications. The polymorphisms in the Cfh gene (encoding the CFH protein 

that negatively regulates AP complement activation) is a typical example of dysfunction of 

immune regulators in AMD. In addition, insufficient expression of other complement 

regulatory proteins such as CD46 and CD59 has been observed in AMD patients [176]. 

Complement activation not only results in the cell killing MAC, it also generates various 

complement fragments such as C3a, C3b/c, C4a, and C5a that can participate in various 

other immune responses [92].

Malfunction of the effector arm of the immune response, e.g., monocytes/macrophages and 

T cells may also lead to dysregualted systemic para-inflammation. Increased expression of 

CCR2 in monocytes [177], and lower levels of CX3CR1 expression in CD8 T cells [178] 

have both been observed in AMD patients. In addition, increased CD200 expression in 

CD11b+ monocytes has also been observed in AMD [179]. Although the functional 

significance of these changes remains to be elucidated, the observations suggest that 

malfunction in monocytes or T cells may lead to increased systemic inflammation in AMD 

patients.
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Conclusions and future directions

Studies in the past decade have revealed some causal links between low-grade chronic 

inflammation and AMD. As we age, oxidative insults accumulate, and such insults persist 

and increase in magnitude with age. The systemic para-inflammation is the adaptive 

response of the immune system to age-related insults to the whole body, whereas local para-

inflammation is the response of the eye to macular insults. A healthy immune system should 

initiate an effective para-inflammatory response and keep it under control, as part of a 

healthy aging eye (Fig. 4). The para-inflammatory response may become dysregulated due 

to genetic predisposition, epigenetic modification or environmental intervention, and 

dysregulated para-inflammation (chronic inflammation) is detrimental and contributes to 

macular pathology (i.e. AMD) (Fig. 4).

Further studies are necessary to understand how and why the para-inflammatory response 

becomes dysregulated in AMD. More knowledge on how the systemic and local retinal 

immune responses are connected in AMD will help to understand whether or not AMD is a 

disease with systemic immune dysregulation. In addition, inducers of subretinal para-

inflammation in the aging eye and in AMD remain to be fully characterized. The immune 

response in the choroid in AMD is under-investigated. Para-inflammatory response also 

presents in the aging choroid [100], and the degeneration of choroidal vascular has been 

proposed as an early event in both GA and nAMD [180]. It is possible that CNV in nAMD 

might be initiated by dysregulated choroidal para-inflammation. More knowledge about the 

inflammatory mediators released by RPE cells, photoreceptors and subretinal/choroidal 

macrophages in the aging eye and in AMD may help to identify novel targets for anti-

inflammatory therapy. The communication between subretinal macrophages, RPE cells, 

photoreceptors and choroidal macrophages in the aging eye and in AMD will be a 

challenging but important topic of future research and may uncover new insights into AMD 

pathogenesis.
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Abbreviations

AGE Advanced glycation end-product

AMD age-related macular degeneration

AP Alternative pathway (of the complement system)

APC Antigen presenting cell

BM Bruch’s membrane

BRB blood retina barrier
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CCR2 C chemokine receptor 2

CCL2 Chemokine C-C motif ligand 2

CFB complement factor B

CFH complement factor H

CP Classical pathway

CRP C-reactive protein

CTLA Cytotoxic T-lymphocyte associated protein

CX3CL1 Chemokine C-X3-C motif ligand 1

CX3CR1 CX3C chemokine receptor 1

DAF Decay-acceleration factor

DAMP Danger associated molecular pattern

FasL Fas ligand

GA grographic atrophy

GL ganglion layer

HLA Human leukocyte antigen

iBRB inner blood retinal barrier

IPL inner plexiform layer

IL-1β Interleukin 1 beta

IL-4 Interleukin 4

IL-17 Interleukin 17

LPS Lipopolysaccharide

MAC Membrane attack complex

MHC-II Major histocompatibility complex II

NLR NOD-like receptor

NLRP3 NACHT, LRR and PYD domains-containing protein 3

oBRB outer blood retinal barrier

OPL outer plexiform layer

RPE Retinal pigment epithelium

PRR Pattern recognition receptor

SASP Senescent-associated secretory phenotype

TGFβ Transforming growth factor beta

TNFα Tumor necrosis factor alpha
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TLR Toll-like receptor

TRAIL Tumor necrosis factor-related apoptosis-inducing ligand

VEGF vascular endothelial growth factor
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Figure 1. Retina and RPE-choroid in normal, early and late AMD
A, diagram of a human eye. Light pass through the pupil and then focused by lens to the 

macula of the retinal layer at the back of the eye. B, the retina consists of three layers of 

neurons, photoreceptor, bipolar and ganglion cells. The RPE monolayer together with 

Bruch’s membrane (BM) form the outer blood retinal barrier (oBRB) that separates the 

neuroretina from the choroid. Oxygen and nutrients are transported from the choroid into the 

outer retina whereas retinal metabolic wastes are transported to choroid through the oBRB. 

C, the early stages of AMD is characterized by the presence of large Drusen deposits 

between the RPE and BM, RPE senescence, and the accumulation of microglia and 

macrophages in the subretinal space. D, geographic atrophy (GA) is typified by the loss of 

RPE and photoreceptors, accompanied by macrophage infiltration at the lesion site. E, 

neovascular AMD (nAMD) is caused by the growth of choroidal vessels into the sub-RPE or 

sub-retina of the macula.
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Figure 2. Retinal microglial in health and disease
A, confocal image of a normal mouse retina stained with Iba-1 (green) and Propidium iodide 

(PI). Iba-1+ microglial cells are located in the ganglion layer (GL), inner plexiform layer 

(IPL) and outer plexiform layer (OPL). B-C, confocal images taken from the IPL (B) and 

OPL (C) of a normal mouse eye showing the ramified morphology of resting microglia. D, 
high-magnification of resting retinal microglia. E, microglia from a 18 month old mouse 

retina showing heterogeneous activation. Two cells (arrows) demonstrate shorter dendrites 

(signs of mild activation). F, microglia from paraquat treated mouse eyes demonstrate 

ameboid shape with a larger cell body, multiple vacuoles and shorter dendrites (signs of full 

activation). Mildly activated microglia may undergo full activation under acute stress 

conditions. INL – inner nuclear layer; ONL – outer nuclear layer, RPE – retinal pigment 

epithelium.
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Figure 3. Retinal microglial in the aging eye
A-B, Reconstructed z-stack confocal images from a 16-month (A) and 27-month (B) old 

mouse retina stained for Iba-1 (green for microglia) and lectin B4 (red for blood vessels). A, 

at 16 months, few Iba-1+ microglial cells were detected at the subretinal space (short arrows) 

and some were still connected to cells in the OPL layer (small arrows). B, at 27 months 

many more Iba-1+ cells were detected at the subretinal space (short arrows), and no Iba-1+ 

cells were detected between the OPL and subretinal space. C, heterogeneous morphology of 

Iba-1+ cells at the subretinal space in a 18-month old mouse. Most of the cells have larger 

cell bodies and shorter dendrites, and a few cells display a relatively small cell body and 

long dendrites (arrow). D, subretinal Iba-1+ cells from a 27-month old mice showing 

pigmented cell body (arrowheads). IPL – inner plexiform layer; OPL – outer plexiform 

layer.
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Figure 4. Dysregulated para-inflammation and the pathogenesis of AMD
As we age, oxidative insults accumulate in the macula. A para-inflammatory response 

characterized by microglial activation, subretinal accumulation and complement activation 

is initiated to promote macular repair. A healthy immune system should be able to maintain 

macular homeostasis through para-inflammation. In AMD, the para-inflammatory response 

is dysregulated due to a) genetic predisposition, b) epigenetic modification, or c) 

environmental factors. The dysregulated para-inflammation (i.e., chronic inflammation) 

results in various pro-inflammatory cytokine production or inflammasome activation, which 

damages RPE and the photoreceptors and leads to the development of AMD. Sustained 

chronic inflammation at the macula may also lead to scar formation, which can also lead to 

loss of vision.
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