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Previous studies have shown that sera from HIV-1-infected individuals contain antibodies able to mediate antibody-dependent
cellular cytotoxicity (ADCC). These antibodies preferentially recognize envelope glycoprotein (Env) epitopes induced upon CD4
binding. Here, we show that a highly conserved tryptophan at position 69 of the gp120 inner domain is important for ADCC me-
diated by anti-cluster A antibodies and sera from HIV-1-infected individuals.

Human immunodeficiency virus type 1 (HIV-1) infection elic-
its a potent B cell response resulting in the production of

antibodies (Abs) against the envelope glycoproteins (Env), which
are exposed at the surface of viral particles and infected cells (1).
We recently reported that these antibodies have the potential to
eliminate HIV-1-infected cells by mediating antibody-dependent
cellular cytotoxicity (ADCC) (2, 3). We found that these nonneu-
tralizing CD4-induced (CD4i) ADCC-mediating antibodies are
present in sera (2, 4), breast milk (4), and cervicovaginal lavage
fluid (3, 4) of HIV-1-infected individuals and preferentially target
Env in its CD4-bound “open” conformation. However, in order
to evade ADCC responses, HIV-1 has developed a highly sophis-
ticated strategy to keep Env at the surface of infected cells in
the unbound “closed” conformation. HIV-1 accomplishes this
through its accessory proteins Nef and Vpu, which decrease the
overall amount of Env (via Vpu-mediated BST-2 downregula-
tion) and CD4 at the cell surface (2, 5–7). In addition, decreased
amounts of Env at the cell surface due to efficient internalization
also help the virus to avoid ADCC responses (8). In agreement
with the necessity for HIV-1 to avoid exposing Env in the CD4-
bound conformation, we recently showed that forcing Env to
adopt this conformation with small CD4 mimetics (CD4mc) sen-
sitizes HIV-1-infected cells to ADCC mediated by sera, breast
milk, and cervicovaginal fluids from HIV-1-infected subjects (4).

Previous studies showed that the human monoclonal antibody
(MAb) A32 targets an ADCC epitope commonly detected by an-
tibodies present in sera from HIV-1-infected individuals (2, 5, 9,
10). Accordingly, an A32 Fab fragment blocked the majority of
ADCC-mediating antibody (Ab) activity in plasma from chroni-
cally HIV-1-infected individuals (9). A subsequent study showed
that the majority of ADCC responses were targeted against the
gp120 core but not its variable regions V1, V2, V3, and V5 (2).
Here, we evaluated the ADCC-mediating capacity of a panel of
human antibodies targeting several well-defined epitopes in
gp120 and gp41 and sera from randomly selected chronically
HIV-1 clade B-infected individuals (HIV� sera).

We infected CEM.NKr cells with a panel of HIV-1 NL4.3–
green fluorescent protein (GFP) constructs containing the
ADA-Env and either wild-type or defective nef and vpu genes, as
described previously (2, 5). Furthermore, we examined a well-
characterized infectious molecular HIV-1 clone constructed from
a transmitted/founder (T/F) virus (CH77) (11–14) containing in-
tact or defective nef and vpu genes. Two days postinfection, the
cells were evaluated for cell surface levels of CD4 and stained with
HIV� sera or anti-Env antibodies targeting well-known epitopes
in gp120, gp41, or both (Fig. 1A and Table 1). Nef and Vpu are
known to synergistically decrease cell surface levels of CD4 (2, 3).
Accordingly, defects in both genes impaired the ability of HIV-1 to
downregulate CD4 to extents that were not achieved by either nef
or vpu alone. The highest surface CD4 levels were observed for
cells infected with virus lacking intact nef and vpu genes and con-
taining a mutation of D368R in Env that abrogates its interaction
with CD4 (15, 16) (Fig. 1A; Table 1). The latter observation is in
agreement with the notion that Env-CD4 interaction plays a role
in CD4 downregulation (17, 18). HIV� sera and the anti-cluster A
antibodies (these antibodies target conformational CD4i epitopes
mapped to the C1-C2 regions of gp120 [10, 19, 20]) recognized
wild-type-infected cells with low efficiency (Fig. 1C and D). Our
results are in agreement with previous reports indicating that the
highly conserved region recognized by anti-cluster A antibodies is
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buried inside the Env trimer, where it is not readily accessible for
binding in the ligand-free closed state (10, 21–27). Accordingly,
anti-cluster A and HIV� sera recognized more efficiently cells
infected with a virus lacking Nef and Vpu and hence exposing Env
at higher levels and in its CD4-bound conformation (2, 5, 28).
Nevertheless, our results are also consistent with previous reports
indicating that anti-cluster A antibodies, such as A32, can recog-
nize a large proportion of cells infected with a wild-type virus (9,
29, 30). Indeed, A32 recognized �32% of pNL4.3-ADA- and
�54% of CH77 wild-type-infected cells (Fig. 2). However, the
intensity of recognition (i.e., the amount of antibody binding per
cell) was dramatically increased for cells presenting Env in its
CD4-bound conformation (i.e., Nef� Vpu� virus-infected cells),
as previously reported (2–5, 28, 31). Similarly to anti-cluster A

antibodies, coreceptor binding site (CoRBS) (17b and LF17) (Fig.
1E) as well as anti-V3 antibodies (19b and GE2-JG8) (Fig. 1F)
recognized cells infected with Nef� Vpu� HIV-1 most efficiently.
This suggests that their epitope was formed upon Env-CD4 inter-
action and that they all belong to the CD4i family of antibodies.
We noted, however, that the overall recognition of CoRBS and
anti-V3 Abs was lower than that observed for HIV� sera and anti-
cluster A Abs.

In the absence of Vpu, there is more Env at the cell surface,
as measured by the CD4-independent outer domain recogniz-
ing 2G12 antibody (Fig. 1B), likely due to tetherin/BST-2 trap-
ping of viral particles. Cells infected with viruses lacking Nef
and Vpu but containing the D368R mutation in Env that im-
pairs CD4 binding (2, 4, 5, 15, 16) were poorly recognized by
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FIG 1 Effect of Nef, Vpu, and Env-CD4 interaction on recognition of infected cells by HIV� sera and a panel of monoclonal antibodies. CEM.NKr cells infected
with a panel of vesicular stomatitis virus glycoprotein-pseudotyped NL4.3–GFP ADA viruses expressing wild type (WT) or a CD4-binding site (D368R) Env
variant, lacking Nef (N�), Vpu (U�), or both Nef and Vpu (N� U�), were stained at 48 h postinfection with an anti-CD4 antibody (OKT4) (A); 1 �g/ml of the
CD4-independent outer domain recognizing 2G12 antibody (B); a 1/1,000 dilution of sera from 12 HIV-1-infected individuals (HIV� sera) (C); or 1 �g/ml of
anti-cluster A (A32 and N12-i3) (D), anti-CoRBS (17b and LF17) (E), anti-V3 (19b and GE2-JG8) (F), anti-gp120-gp41 interface (PGT151 and 8ANC195) (G),
anti-CD4-binding site (VRC01 and b12) (H), and anti-gp41 (F240, N5-U1, N5-U3, 7B2, M785-U1, and N10-U1) (I) antibodies and then fluorescently labeled
with an Alexa Fluor 647-conjugated anti-human IgG secondary Ab. Shown is the fold increase of staining relative to mock for all tested sera and antibodies. Data
shown are the results of 3 different experiments, and error bars depict the standard errors of the means. Statistical significance was tested using paired one-way
analyses of variance (**, P � 0.01; ***, P � 0.001). MFI, mean fluorescence intensity.
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HIV� sera and anti-cluster A, anti-coreceptor binding site, and
anti-V3 antibodies (Fig. 1C to F). When we tested PGT151 and
8ANC195, two antibodies that recognize the interface between
gp120 and gp41 (32, 33), we observed a different phenotype.

Both antibodies efficiently recognized cells infected with a vi-
rus lacking Vpu or expressing Env D368R but not a virus lack-
ing Vpu and Nef (Fig. 1G). 8ANC195 and PGT151 have been
shown to bind to CD4-bound Env (34), but in our system, CD4

TABLE 1 Recognition of infected cells by a panel of anti-gp120 and anti-gp41 antibodies

pNL4.3-ADA
CD4
(%)a

Staining with antibodyb:

Anti-
cluster A

gp120-gp41
interface

CD4-
binding site

Coreceptor
binding
site Anti-V3 Anti-gp41

Outer domain
(2G12)A32 N12-i3 PGT151 8ANC195 VRC01 b12 17b LF17 19b

GE2-
JG8 F240

N5-
U1

N5-
U3 7B2

M785-
U1

N10-
U1

WTc 6.5 1.6 1.7 1.7 1.4 1.6 1.2 1.3 1.4 1.5 1.4 1.4 1.2 1.1 2.0 1.7 1.7 2.8
N� 35.7 3.2 6.1 2 1.6 1.8 1.9 1.9 1.7 1.8 1.7 1.7 1.5 1.3 2.0 1.9 1.9 2.4
U� 7.9 2.2 3.2 5.9 3.2 3.5 2.7 2.6 1.5 2.1 2.0 6.3 2.5 2.5 8.5 6.1 6.2 12.9
N� U� 53.8 12.7 25.8 2.7 2.9 1.9 2 7.5 3.5 8.8 7.1 5.0 2.8 3.0 6.5 4.7 5.4 9.5
N� U�/D368R 83.1 2.3 2.7 7.8 5 1.7 1.6 2.9 1.3 2.6 2.8 7.4 2.8 2.7 8.1 6.1 6.8 21.5
a Relative percentage of surface CD4 on infected cells compared to that on uninfected cells.
b Staining (fold mean fluorescence intensity) of infected cells over that of uninfected mock cells.
c WT, wild type.
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FIG 2 Recognition of HIV-1-infected cells by the anti-cluster A32 antibody. CEM.NKr cells infected with a panel of vesicular stomatitis virus glycoprotein-
pseudotyped NL4.3–GFP ADA viruses expressing wild type (WT) or a CD4-binding site (D368R) Env variant, lacking Nef (N�), Vpu (U�), or both Nef and Vpu
(N� U�) (A), or with vesicular stomatitis virus glycoprotein-pseudotyped primary T/F CH77 infectious molecular clone (B) were stained at 48 h postinfection
with the anti-cluster A A32 antibody (1 �g/ml) and then fluorescently labeled with an Alexa Fluor 647-conjugated anti-human IgG secondary Ab. Histograms
depicting representative staining of infected (GFP� [A] or p24� [B]) cells are shown. Right panels show the percentages of infected cells, the percentages of
infected (GFP� [A] or p24� [B]) cells that were recognized by A32, and the mean fluorescence intensity (MFI) of these cells. Mean fluorescence intensity of
infected cells over that of mock-infected cells is shown in the last column.
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and Env are interacting on the same membrane and CD4 do-
mains D3 and D4 may block access of these Abs to their
epitopes on Env, which are located underneath the CD4-bind-
ing site (CD4BS).

CD4-binding site (CD4BS) antibodies (VRC01 and b12) better
recognized cells infected with a Vpu� virus (Fig. 1H). This recog-
nition was diminished by deleting Nef. In the absence of Nef, there
is more CD4 at the cell surface interacting with Env (5) and there-
fore occluding the CD4BS. The D368R variant abrogated recog-
nition by VRC01 and b12, as expected due to the importance of
D368 for their interaction (35). Anti-gp41 antibodies (F240, N5-
U1, N5-U3, 7B2, M785-U1, and N10-U1) behaved in a completely
different manner; their recognition was enhanced by deletion of
vpu independently of the presence of Nef and the ability of Env
to interact with CD4 (Fig. 1I). Thus, this panel of anti-gp41
antibodies recognizes epitopes that are not greatly affected by
CD4 binding.

We extended these findings to primary viruses by infecting
CEM.NKr cells with the T/F CH77 isolate encoding either wild-
type or no Nef and Vpu proteins. As expected, efficient CD4
downregulation was observed only for wild-type CH77 (Fig. 3A).
Recognition of CH77-infected cells by HIV� sera and anti-cluster
A, anti-gp120-gp41 interface, anti-CD4BS, anti-CoRBS, anti-V3,
and anti-gp41 antibodies was similar to that of pNL4.3-ADA-in-
fected cells. All ligands, particularly HIV� sera and anti-cluster A

antibodies, recognized cells infected with nef- and vpu-deletion
viruses more efficiently than wild-type-infected cells (Fig. 3B
and C).

Interestingly, when we analyzed the ability of HIV� sera and
different antibodies described above to mediate ADCC with our
previously described fluorescence-activated cell sorting (FACS)-
based ADCC assay (4, 31), we observed that, in addition to HIV�

sera, only the anti-cluster A antibodies mediated potent ADCC
against pNL4.3-ADA- or CH77-infected cells (Fig. 4). However,
this was only the case when nef or nef and vpu genes were deleted.
HIV� sera and anti-cluster A antibodies did not mediate potent
ADCC against cells infected with wild-type viruses. Moreover,
while the ability of HIV� sera and anti-cluster A antibodies to
mediate ADCC correlated with their recognition of infected cells
(Fig. 4 and data not shown), this was not the case for the rest of the
antibodies (data not shown). In fact, none of the anti-gp41 anti-
bodies tested in this study mediated efficient ADCC compared to
A32 (Fig. 4D and E), indicating that recognition of infected cells
by a given antibody does not necessarily translate into potent
ADCC.

To investigate which region of the gp120 was targeted by
ADCC-mediating Abs present in HIV� sera, we used our previ-
ously described antibody competition assay using purified soluble
gp120Yu2 lacking variable regions V1, V2, V3, and V5 with the
D368R mutation (�V1V2V3V5/D368R) (2). As a control, we also
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FIG 3 Effect of Nef and Vpu on recognition of cells infected with a primary isolate by HIV� sera and a panel of monoclonal antibodies. (A and B) CEM.NKr cells
infected with vesicular stomatitis virus glycoprotein-pseudotyped T/F CH77 expressing wild type (WT) or lacking Nef and Vpu (N� U�) were stained at 48 h
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tested the ability of these recombinant proteins to block recogni-
tion of infected cells by five anti-cluster A antibodies (A32, N5-i5,
N12-i3, N26-i1, and 2.2c). Our recent structural studies mapped
the cluster A epitope region to mobile layers 1 and 2 of the gp120
inner domain of the CD4-triggered gp120 (19, 20, 26). Residues of
variable loops and the outer domain of gp120 are not involved in
anti-cluster A antibody binding. In addition, although cluster A
monoclonal antibodies (MAbs) are capable of binding unliganded
gp120, CD4 binding enhances their exposure in the context of
full-length gp120 antigen (10, 36, 37). As expected, preincubation
of anti-cluster A antibodies (Fig. 5A) or HIV� sera (Fig. 5B) with
either full-length or �V1V2V3V5 D368R gp120 recombinant pro-
teins captured anti-Env antibodies and prevented their recogni-
tion of infected cells. Decreased recognition correlated with de-
creased ADCC activity (Fig. 5C and D). These data indicate that
antibodies targeting the core of gp120 are responsible for the ma-
jority of ADCC responses in HIV� sera.

Confirming the role of the gp120 inner domain layers in anti-
cluster A antibody recognition, a �V1V2V3V5/D368R gp120
variant presenting a mutation at a highly conserved residue in the
inner domain layer 1, previously shown to be important for anti-
cluster A recognition (W69) (5, 19, 26), was unable to efficiently
compete for staining or ADCC by anti-cluster A Abs (Fig. 5A and
C). W69 is involved in forming the cluster A epitope by stabilizing
the layer 1 and 2 interface of the CD4-bound conformation of
gp120 (19, 20, 26). Interestingly, preincubation of some but not all
HIV� sera with this recombinant variant was able to decrease
recognition and ADCC of HIV-1-infected cells (Fig. 5B and D).
Thus, this highly conserved residue in the inner domain of gp120
is important for some but not all of the antibodies mediating
ADCC within the polyclonal sera from these HIV-1-infected in-
dividuals.

Why does similar binding of infected cells by different classes
of antibodies not translate into equivalent ADCC responses? For
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example, anti-cluster A and anti-coreceptor binding site antibod-
ies recognize CD4-induced Env epitopes, which become un-
masked by the interaction of Env trimers with CD4. Both cluster A
and coreceptor binding site region epitopes should persist on in-
fected cell surfaces for similar periods of time, and therefore, both
should constitute good targets for ADCC. Why, then, are anti-
cluster A antibodies able to mediate potent ADCC responses
whereas anti-coreceptor binding site antibodies are not? ADCC is
mediated not only by antibody variable region binding to antigen
on infected cells but also by the antibody constant region binding
to Fc receptors on effector cells, and therefore, even subtle differ-
ences in the glycosylation patterns of the Fc portion of these anti-
bodies could affect their ability to mediate ADCC. Nevertheless,
our studies suggest that fine specificities among epitope targets at
the surface of infected cells might also play a role in determining
the potency of the ADCC response. We believe that targeting CD4i
conformational, C1-C2 epitopes within the cluster A region,
which depend on W69, could allow for an efficient antigen en-
gagement and optimal angle of approach to engage with the Fc	
receptor of the effector cell for effective ADCC immune complex
formation, as previously suggested (19, 20). Our results confirm
that Nef and Vpu protect HIV-1-infected cells from ADCC but
also show that recognition of infected cells by an antibody does
not necessarily translate into ADCC. This raises the intriguing
possibility that the angle of approach of a given class of antibodies
could impact its capacity to mediate ADCC.
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