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RNA-seq analysis of impact of PNN on gene expression and
alternative splicing in corneal epithelial cells
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Purpose: The specialized corneal epithelium requires differentiated properties, specific for its role at the anterior surface
of the eye. Thus, tight maintenance of the differentiated qualities of the corneal epithelial is essential. Pinin (PNN) is
an exon junction component (EJC) that has dramatic implications for corneal epithelial cell differentiation and may
act as a stabilizer of the corneal epithelial cell phenotype. Our studies revealed that PNN is involved in transcriptional
repression complexes and spliceosomal complexes, placing PNN at the fulcrum between chromatin and mRNA splicing.
Transcriptome analysis of PNN-knockdown cells revealed clear and reproducible alterations in transcript profiles and
splicing patterns of a subset of genes that would significantly impact the epithelial cell phenotype. We further investigated
PNN’s role in the regulation of gene expression and alternative splicing (AS) in a corneal epithelial context.

Methods: Human corneal epithelial (HCET) cells that carry the doxycycline-inducible PNN-knockdown shRNA vector
were used to perform RNA-seq to determine differential gene expression and differential AS events.

Results: Multiple genes and AS events were identified as differentially expressed between PNN-knockdown and control
cells. Genes upregulated by PNN knockdown included a large proportion of genes that are associated with enhanced
cell migration and ECM remodeling processes, such as MMPs, ADAMs, HAS2, LAMA3, CXCRs, and UNC5C. Genes
downregulated in response to PNN depletion included /IGFBPS, FGD3, FGFR2, PAX6, RARG, and SOX10. AS events
in PNN-knockdown cells compared to control cells were also more likely to be detected, and upregulated. In particular,
60% of exon-skipping events, detected in only one condition, were detected in PNN-knockdown cells and of the shared
exon-skipping events, 92% of those differentially expressed were more frequent in the PNN knockdown.
Conclusions: These data suggest that lowering of PNN levels in epithelial cells results in dramatic transformation in
the number and composition of splicing variants and that PNN plays a crucial role in the selection of which RNA iso-
forms differentiating cells produce. Many of the genes affected by PNN knockdown are known to affect the epithelial
phenotype. This window into the complexity of RNA splicing in the corneal epithelium implies that PNN exerts broad
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influence over the regulation and maintenance of the epithelial cell phenotype.

The responsibilities of the corneal epithelium require it to
maintain differentiated properties, specific for its role at the
anterior surface of the eye. Thus, tight regulation and main-
tenance of the differentiated qualities are essential. Many
pathologies of the anterior surface can result in a transforma-
tion of the epithelium to a keratinized epithelium, which is a
vastly inadequate epithelium for the corneal surface and the
avascular cornea. Our studies have recently focused on pinin
(PNN), a component of the exon junction complex (EJC),
which has dramatic implications for corneal epithelial cell
differentiation. We examine in detail the changes in gene
expression and splicing events in human corneal epithe-
lial (HCET) cells [1] that carry the doxycycline-inducible
PNN-knockdown shRNA vector, to address how PNN may
coordinate gene expression and RNA processing in corneal
epithelial cells.
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Our earlier studies focused on how PNN impacted
epithelial biology. Overexpressing PNN in cultured epithelial
cells affects epithelial homeostasis and, in turn, drives the
epithelial cells to a hyperstable adhesive state and inhibits
the transition from quiescence to migratory [2]. However,
shRNAi-mediated knockdown of PNN expression leads to
a loss of epithelial cell—cell adhesion, changes in cell shape,
and movement of cells out of the epithelium [3]. Mice with
specific Cre-mediated deletions of PNN (Gene ID:5411;
OMIM 603154) revealed perturbations in epithelial differ-
entiation and epithelial phenotype. For example, knocking
PNN out in the developing lung interfered with branching
morphogenesis and alveolar differentiation, while knocking
PNN out in the intestine blocked villi formation [4]. Finally,
conditional inactivation of PNN in the anterior eye (lens-cre)
resulted in severe disruption in corneal epithelial differentia-
tion [5,6]. Taken together, these data contributed significant
support to the hypothesis that PNN may act as a stabilizer of
the corneal epithelial cell phenotype.
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Based on PNN’s association with several splicing factors,
we have determined that PNN is peripherally associated with
the EJC [7-10]. Purification of the PNN complex identified
several proteins, including components of splicing and tran-
scription (SRSFI, 3 and 4, Dead-box helicases, FUS bp-1,
MAGOH, and SAP18). We now know that transcription and
splicing are not distinct molecular processes but are tied
together and affected by the chromatin structure [11-16].
Interestingly, recent studies identified PNN in complex
with two Pro-Trp-Trp-Pro (PWWP) - domain-containing
chromatin readers, BS69 [17] and PSIP1 [18], which bind
to H3K36me3 [19]. These data are crucial in that they place
PNN at the fulcrum between chromatin and mRNA splicing.
Perturbations in RNA splicing, through manipulations of
splicing-related proteins, such as PNN, may exert broad
influence on the regulation of gene expression by impacting
RNA diversity through RNA processing and RNA turnover.

Alternative splicing (AS) affects almost all multi-
exon genes; thus, AS, is one of the main drivers of protein
diversity [20]. The estimated 20,000 genes encoded by the
human genome are expanded tenfold by AS. It has also been
proposed that 50% of disease-causing mutations result in
disruption of normal splicing patterns [21]. We are also just
now gaining an appreciation of the diversity and relevance of
splicing to corneal epithelial biology. We hypothesized that
the corneal epithelial identity is linked to AS and vice versa.
Coordinated mRNA isoform switching has been observed as
cells progress to the differentiated cell populations, resulting
in isoform specialization. Interestingly, many genes that
encode critical regulators of eye development, for example,
OCT4/0CT4a (Gene ID: 5460, OMIM 164177), FOXPI (Gene
ID: 27086; OMIM 605515), FGF4/FGF4si (Gene 1D: 2249;
OMIM 164980), and PAX6/PAX6(5a) (Gene ID: 5080; OMIM
607108), exhibit isoform-switching phenomena [22-24].

It has been well documented that the coordination and
execution of proper RNA processing are sensitive to the levels
of expression of core and peripheral splicing factors, such
as the EJC components [12,25,26]. Hypomorphic PNN 373
animals displayed broad epithelial defects due to the knock-
down instead of the knockout of PNN within the developing
mouse embryo, including anterior segment dysgenesis with
frequent persistence of the lens stalk (similar to the Peters
anomaly [6]. Here we report the evaluation of PNN-knock-
down cells revealed clear alterations in transcript profiles,
RNA variant switching and splicing patterns of specific
subsets of genes, including matrix metalloproteinases, ECM
components, cell adhesion-related molecules, and regulators
of differentiation. Gene Ontology (GO) analyses of PNN-
regulated genes and splicing events indicate that the induced
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downregulation of PNN leads to loss of differentiation and
enhanced cell migration.

METHODS

Cell lines: These studies employed an SV40-immortalized
human corneal epithelial cell line (HCET), with properties
similar to normal corneal epithelial cells, such as cornea-
specific keratins and abundant aldehyde dehydrogenase
activity [1]. Cell lines were authenticated using short tandem
repeat (STR) analysis as described in 2012 in ANSI Stan-
dard (ASN-0002) Authentication of Human Cell Lines:
Standardization of STR Profiling by the ATCC Standards
Development Organization (SDO) and by Capes-Davis et al.
[27]. Seventeen STR loci plus the gender-determining locus,
amelogenin, were amplified using the commercially avail-
able PowerPlex® 18D Kit from Promega, Madison, WI. The
cell line sample was processed using the ABI Prism® 3500x1
Genetic Analyzer. Data were analyzed using GeneMapper®
ID-X v1.2 software (Applied Biosystems, Inc., Grand Island,
NY). Appropriate positive and negative controls were run
and confirmed for each sample submitted. The HCET cell
line used in this study (ATCC FTA bar code STRA0571)
was found to be human and a match to two other HCET cell
lines, RCB1384 and RCB2280, in the DSMZ STR database
(Appendix 1).

For doxycycline-inducible PNN-knockdown HCET cells,
human TRIPZ shRNAmir clones (V2THS 170187) were
purchased from Open Biosystems (Lafayette, CO). HCET
cells transfected with either siIRNAmir clone were then
selected with 10 pg/ml of puromycin (#61-385-RA, Cellgro,
Manassas, VA). To induce shRNA expression, the cells were
treated with doxycycline (Doxy) at a concentration of 1 pg/
ml with a daily change of fresh doxycycline medium. Using
western blots, we detected the typical knockdown at 48 h
post-Doxy, D3447, Sigma Aldrich, St. Louis, MO in the range
of 46—75% reduction.

RNA-seq library preparation: RNA-seq libraries were
prepared beginning with total RNA (RIN 8.60-10) extracted
from control and PNN knockdown HCET cells, using
RNeasy Plus Mini Kit (Qiagen, Valencia, CA). Before the
RNA-seq library was constructed, rRNA was removed from
the total RNA samples using an Illumina Ribo-Zero kit.
Following rRNA depletion, RNA-seq library construction
used ScriptSeq Complete v2 (Illumina, San Diego, CA). The
ScriptSeq protocol used sequence-tagged random hexamer
priming to produce RNA-seq libraries that retained the iden-
tity of the original transcribed strand.

DNA sequence determination: Each library was barcoded and
then quantified. The libraries were then pooled into a single
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pool, and the pool was run on four independent lanes [28] of
the [llumina NextSeq 500. Quality control was performed
using a combination of FASTQC and Lab Scripts that count
the number of duplicate reads, the number of reads with
an adaptor, and the number of reads with homopolymer
sequences. The results indicated the data were of good quality
and all of the libraries were comparable. The native Illumina
bcl DNA sequence output format was converted to the fastq
format and demultiplexed by index reads using bcl2fastq
version 2.15 (Illumina). The average number of reads per
sample was about 40 million (average 39,336,132.75 reads/
sample), and the distribution of read numbers is given in
Appendix 2. All of the reads have been deposited in the SRA
(accession # SRP063860).

Read alignments for viewing in UCSC Genome Browser:
Paired-end reads acquired as described were processed using
Trimmomatic version 0.32 [29] to remove oligonucleotide
adaptors used during RNA-seq library construction and to
trim low-quality sequences. DNA sequence reads that had
a minimum length of 50 nt were retained for downstream
processing. After filtering, an average of 35 million paired
reads were retained per sample. Paired reads were mapped to
the GRCh37 human reference genome (Genome) using STAR
aligner version 2.0.4c¢ [30] with default mapping parameters.
Mapped paired reads were filtered to remove duplicates using
the Genome Analysis Toolkit [31]. SAMtools [32] was used
to sort mapped reads by chromosomal coordinate, create, and
index human chromosome-specific map files, and convert
the file format from SAM to BAM. The bam2wig.py Python
script from RSeQC [33] was used to create chromosome-
specific wig-format files, which were uploaded for viewing
in the University of California, Santa Cruz (UCSC) Genome
Browser.

The stranded RNA-seq data were aligned to the GRCh37/
hgl9 version (release 73) of the complete human genome
using the BWA-MEM algorithm [34]. Genomic coverage
was summarized using AceView annotations [35]. There
were 678,664 exons in this annotation, and the genome posi-
tions of approximately 68% of these exons overlapped with
at least one other exon (e.g., alternative donor/acceptor sites).
Overlapping exons in the same direction were combined, and
the minimum start and maximum end positions were used to
estimate expression in 322,096 unique exonic regions. For
ease, these exonic regions are referred to as exons throughout
the text. Exons were determined to be “expressed” if they had
coverage in at least three samples per group.

Annotating alternative splicing events: We created a
complete, annotated catalog of splicing events from genomic
feature databases (GFF files) using gene, transcript, and

42

© 2016 Molecular Vision

exon-level references for RNA-seq alignments and coverage
calculations. We used the latest (2010) release of AceView
gene models for the hgl9 human genome build [35,36]. A
list of possible exon—exon junctions was generated from all
logical combinations of exon pairs within a gene in a 5'-to-3'
manner.

For AS event expression analysis, RNA-seq data were
aligned to the sequences of all exon junctions and retained
intron events using Bowtie [37]. AS event coverage was
summarized using the annotations defined above. AS events
were deemed “expressed” if they had more than ten aligned
reads in at least three samples per group.

We fit the model Y, =u + ¢, + ¢, where Y is the log -
transformed average depth per nucleotide (APN) for exon or
AS event i, sample j, L is the treatment status of sample j, and
€ is the random error. A false discovery rate (FDR) was used
to correct results for multiple testing [38], and a level of 0.05
was considered to be significant.

Gene ontology analysis: Gene Ontology was analyzed and
demonstrated using GOrilla a tool for identifying and visual-
izing enriched GO terms in ranked lists of genes. GOrilla
searches for enriched GO terms that appear densely at the
top of a ranked list of genes. The system utilizes 13,033 genes
that are associated with a GO term GO database and other
sources. Graphical representation of the GO results was
accomplished with the Graphviz layout programs, which take
descriptions of graphs in a simple text language and create
diagrams in useful formats.

Droplet digital PCR: Total RNA was isolated from cultured
HCET cells, and semiquantitative reverse transcription
(RT)-PCR was performed as described previously [39,40],
with RNeasy Plus Mini Kit (#74134, Qiagen, Valencia, CA)
and treated with RNase-free DNase I (#79254, Qiagen). One
microgram of total RNA was reverse transcribed with the
SuperScript III First-Strand Synthesis kit (#18080051, Invi-
trogen, Carlsbad, CA) using oligo-dT primers. The droplet
digital PCR (ddPCR) assays were performed according to
the Bio-Rad User Guide. Briefly, each of the 20 pl reac-
tions contained 10 ul ddPCR Supermix (Bio-Rad, Hercules,
CA), 250 nM gene-specific primers, and 0.5 pl of the cDNA
sample (about 5 ng). Primer sequences for PNN, MMPI (Gene
ID:4312; OMIM 120353), MMP9 (Gene 1D:4318; OMIM
120361), MMPI3 (Gene 1D:4322; OMIM 600108), VEGF
(Gene ID:7422; OMIM 192240), and GAPDH are listed in
Appendix 3. Each reaction was mixed with 20 ul of Droplet
Generation Oil (Bio-Rad), partitioned into about 20,000 drop-
lets in a QX200 Droplet Generator (Bio-Rad), transferred to
96-well plates (Eppendorf, Hauppauge, NY), and sealed. PCR
was performed in a PTC-100 Thermal Cycler (Bio-Rad) with


http://www.molvis.org/molvis/v22/40
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://genome.ucsc.edu/
http://cbl-gorilla.cs.technion.ac.il
http://www.geneontology.org
http://www.graphviz.org
http://omim.org/entry/120353
http://omim.org/entry/120361
http://omim.org/entry/600108
http://omim.org/entry/192240

Molecular Vision 2016; 22:40-60 <http:/www.molvis.org/molvis/v22/40>

the following cycling conditions: 1 x (95 °C for 5 min); 40
cycles: (95 °C for 30 s, 60 °C for 60 s); 1 x (4 °C for 5 min;
90 °C for 5 min); 4 °C (hold). The fluorescence intensity of
individual droplets was measured with the QX200 Droplet
Reader (Bio-Rad). The data analysis was performed with
QuantaSoft droplet reader software (Bio-Rad). Positive and
negative droplet populations were detected automatically.
The target mRNA concentrations were calculated using
the Poisson statistics and background-corrected based on
the no template control data. The absolute transcript levels
were initially computed in [copies/ul PCR] and in [copies/ng
cDNA]. In the latter case, the correction for the input cDNA
amount was applied to each sample. The data are presented as
expression levels normalized to GAPDH expression, p value,
and log, fold change, for MMPI, MMP9, MMPI3, VEGF-A,
and PNN.

Immunofluorescence: Doxycycline-inducible PNN-knock-
down HCET cells were plated on coverslips in six-well dishes
at 2x10° cells per well in a Dulbecco's Modification Eagle's
Medium/Ham's F-12 50/50 mix, (#10-090-CV, Cellgro,
Manassas, VA); 5% fetal bovine serum [FBS, #35-011-CV,
Cellgro], 5 pg/ml insulin, 0.1 pg/ml cholera toxin (C8052,
Sigma Aldrich), 10 ng/ml human epidermal growth factor
[hEGF, PHGO311, Gibco, Frederick, MD], 0.5% dimethyl
sulfoxide [DMSO, D2650, Sigma Aldrich]). After 48 h treat-
ment in media with and without doxycycline (1 pg/ml), cells
were fixed in freshly prepared 2% paraformaldehyde (D2650,
Sigma Aldrich) in PBS (1X; 137 mM NacCl, 2.7 mM KCI, 8
mM Na,HPO,, 1.5 mM KH,PO,, pH 7.4) for 1 h, quenched
in 50 mM ammonium chloride (A-661, Fisher Scientific),
0.1%Tween-20 (BP-337, Fisher Scientific) in PBS for 10
min, rinsed and incubated for 2 h at room temperature in
1:200 rabbit anti-MMP9 antibody (#13667, Cell Signaling,
Danvers, MA). After rinsing with PBS, the cells were incu-
bated in 1:200 fluorescein isothiocyanate (FITC)-labeled goat
anti-rabbit antibody (#F6005, Sigma-Aldrich, St. Louis, MO)
for 1 h. The coverslips were mounted in VectaShield with
4" 6-diamidino-2-phenylindole (DAPI; #H1200, Vector Labs,
Burlingame, CA) and examined using a Leica inverted fluo-
rescent microscope (Model DM-IRBE, Leica Microsystems,
Buffalo Grove, IL) and OpenLab (Improvision, Coventry,
England) software.

RESULTS

RNA-seq and GO analysis: To evaluate the effect of PNN on
mRNA expression and RNA processing on a global scale, we
performed mRNA-seq experiments in HCET cells in which
the levels of PNN were reduced with specific siRNA. RNA-
seq-based transcriptional profiling was employed to compare
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Wt-HCET cells with doxycycline-inducible PNN-knockdown
HCET cells (50% knockdown). Data were deposited in GEO
under accession number GSE73060. The RNA-seq profiles of
36,275 transcripts were obtained, out of which 90 are signifi-
cant at P-adj (p<0.01). Of these, 61 genes exhibited >1.0 log,
fold change, and 28 genes showed <-1.0 log, fold change. The
P-adj is an adjusted p value, taking into account the FDR,
which is the proportion of the total rejections that are false
positives [41]. The FDR has been widely used for multiple test
corrections in various applications, such as when measuring
thousands of variables (e.g., gene expression levels) from
a small sample set [42]. Table 1 and Table 2 depict the top
20 significant genes with the largest fold changes (supple-
mentary data provided in Appendix 4 and Appendix 5). GO
analyses were performed with Gorilla, a tool for identifying
and visualizing enriched GO terms in ranked lists of genes
[43,44]. Table 3 and Table 4 show the GO analyses for upregu-
lated and downregulated genes, respectively. The upregulated
genes included a large proportion of genes that are associ-
ated with enhanced cell migration and ECM remodeling
processes, including MMPs, ADAMs, HAS2, LAMA3, and
UNC5C (Table 3, Figure 1 and supplementary data Appendix
6). In addition, the upregulated genes included members of
the CXCR chemokine receptor binding family, metalloendo-
peptidase activities, and extracellular matrix organization and
structure. GO analysis revealed that a significant subset of
genes, which impact cellular differentiation, were included in
those that exhibited downregulation, such as IGFBPS, FGD3,
FGFR2, PAX6, RARG, and SOX10 (Table 4). Taken together,
these downregulated genes may contribute to the loss in
corneal epithelial differentiation seen in downregulation and
knockouts of PNN [3-6,39].

The upregulation of MMPs and VEGF mRNA, observed
via RNA-seq subsequent to PNN knockdown, was confirmed
with quantitative PCR, using droplet digital technology [45].
The downregulation of PNN (log, fold change, —1.93) was
noted at 48 h post-doxycycline induction of PNN-shRNA,
as was significant upregulation of MMPI (log, fold change,
1.69), MMP9 (log, fold change, 0.78), MMP13 (log, fold
change, 2.0) and VEGF-A (log, fold change, 0.49) at 48 h
post-Doxy (Table 5). Immunofluorescence microscopy
confirmed the upregulation of MMP9 protein in HCETs
48 h after Doxy treatment (Figure 2). Interestingly, when
downregulation of PNN was less (log, fold change, —0.82),
there was no observed significant upregulation of MMP1
(log, fold change, —0.02) or MMP9 (log, fold change, 0.23),
but significant changes were still observed for MMP13 (log,
fold change, 1.73) and VEGF-A (log, fold change, 0.43) at 48
h post-Doxy (supplementary data in Appendix 7). Although
outside the scope of this manuscript, we suggest that these
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Figure 1. Gene Ontology of genes
upregulated in response to PNN
knockdown and graphical output of
GOrilla for the ranked list of genes
upregulated after PNN knockdown.
This Gene Ontology (GO) graph
generated by GOrilla for identi-
fying and visualizing enriched GO
terms in ranked lists of upregulated
GOrilla searches for enriched GO
terms that appear densely at the
top of a ranked list of genes. The
system used 13,033 genes that are
associated with a GO term GO
database and other sources. This
figure represents a small portion of
the output depicting the pathways
associated with enhanced cell
migration. The genes identified in
this cell behavior are presented in
Table 3.

TABLE 5. VERIFICATION OF EXPRESSION CHANGES BY DROPLET DIGITAL PCR QUANTITATION.

Variables PNN MMP1 MMP9 MMP13 VEGFa

Control* 0.061 0.0098 0.0025 0.0068 0.0111
PNN knock down* 0.016 0.0316 0.0043 0.0272 0.0156
P value 0.0001 0.0014 0.0093 0.0008 0.0012
log2 Fold change -1.93 1.69 0.78 2 0.49

*Data presented as relative to GAPDH
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Figure 2. MMP9 protein upregu-
lated after PNN knockdown in
HCET cells. Immunofluorescence
micrographs depicted the upregula-
tion of the MMP9 protein in human
corneal epithelial (HCET) cells
after pinin (PNN) knockdown.

data may reflect a dosage effect of PNN knockdown. Future
experiments will explore the dosage response to PNN knock-
down, as well as the differential sensitivity seen across the
MMPs.

Annotating alternative splicing events: The evaluation of the
RNA-seq analyses of the PNN-knockdown cells revealed the
remarkable dynamics of RNA processing of the expressed
genes coding and non-coding RNAs. The results are broadly
consistent with previous observations from hGlue3 0 tran-
scriptome array analyses ¢cGH arrays [39,40]. One of the main
advantages of RNA-seq is the ability to identify and quantify
AS events like exon—exon junctions and retained introns. We
created a complete, annotated catalog of all possible splicing
events using genomic feature databases (GFF files) used when
building gene, transcript, and exon-level references used for
RNA-seq alignments and coverage calculations. Annotations
for each event were classified based on four main alternative
splicing event types: alternative donor, alternative acceptor,
skipped exon, and retained intron.

For this study, we used the latest (2010) release of
AceView gene models for the hg19 human genome build, due
to the noted higher accuracy of AceView gene models as well
as the higher abundance of gene models per gene compared
with Ensembl and RefSeq [35,36]. Our annotation method
described here is not specific to the AceView annotations.
The scripts to build the AS catalog are available at GitHub
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and can be used for any existing database of genomic feature
annotations.

A list of possible exon—exon junctions were generated
from all logical combinations of exon pairs within gene in
a 5'-to-3' manner. Junctions were not generated if they were
not biologically plausible (e.g., an exon donor site to an earlier
exon acceptor site or a junction between two overlapping
exons), nor were junctions created between genes. To facili-
tate the classification of AS events, overlapping exons were
grouped together, and the longest exon in each group was
arbitrarily assigned as a reference exon and used to define
alternative donor and acceptor sites within each exon group.
There were several occurrences where two non-overlapping
exons overlapped with another exon. In this case, the longest
exon per group was used as the reference, and the junction
between the two internal exons was created. We classified
junctions as exon skipping if there was at least one exonic
region between the exons two exons forming a junction.
For each exon-skipping junction, we also generated a list of
possible skipped exons. Skipped exons were included on this
list if they were unambiguously skipped (i.e., exons overlap-
ping the donor or acceptor exon were not included). We also
annotated junctions that were part of at least one known tran-
script. Intron retention (IR) events were generated by using
the donor site of an exon and extending the sequence into
the neighboring intron. For groups of overlapping exons, we
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generated IR events only from the 3-most exon to ensure that
only a uniquely intronic sequence was used for the intronic
segment of the event. In total, there were 6,390,703 possible
AS junctions and 232,249 IR events annotated in this data-
base: 5,837,064 junctions were annotated as an exon-skipping
junction, 1,240,520 junctions were classified as having an
alternative donor, 1,257,096 junctions were classified as
having an alternative acceptor, and 903,513 junctions were
classified as having an alternative donor and an alternative
acceptor. In addition, 292,753 junctions were annotated to
at least one known transcript. The database is available on
Github.

Figure 3 summarizes the impact of PNN knockdown
on alternative splicing in HCET cells. We plotted the mean
expression (as log, APN) of AS events detected in PNN
knockdown and control cells (58,817 of 80,813 total detected
splicing events) and noted that the expression of AS events
was generally higher in the PNN-knockdown cells compared
to controls (Figure 3). In total, we observed that 5,063 AS
events were differentially expressed, with 4,683 AS events
(92.5%) significantly higher after PNN knockdown and the
remaining 380 significant AS events higher (7.5%) in the
control cells, indicating that reduction of PNN expression
results in upregulation of AS events (p<0.05; Figure 3). For
alternative splicing events detected in both conditions and
differentially expressed, all types of AS events were more
likely to be upregulated in PNN knockdown HCET cells:
92.5% of all AS events, 91.8% of exon-skipping events (635
AS events were unregulated of the 692 that were signifi-
cantly different), 94.1% of alternative donor sites (531 AS
events were unregulated of the 564 that were significantly
different), 93.0% of alternative receptor sites (490 AS events
were unregulated of the 527 that were significantly different),
93.7% of AS events involving alternative donors and accep-
tors (554 AS events were unregulated of the 591 that were
significantly different), and 62.9% of intron retention events
(95 IR events were unregulated of the 151 that were signifi-
cantly different). The detailed list of differentially expressed
events is presented in the supplementary data (Table 6
and supplementary data in Appendix 8). The knockdown
of PNN resulted in a dramatic increase in the number of
splicing events, suggesting that altering levels of PNN has
a broad influence on splicing. This widespread impact has
been observed after the knockdown of other members of the
exon junction complex [25]. Interestingly, genes that were
upregulated by PNN knockdown displayed a much greater
increase in altered splicing events than genes not changed or
downregulated. These data speak to the coupling of splicing
to transcription.
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Transcript assembly and quantification with RNA-seq
revealed bone fide isoform switching and the generation of
unannotated transcripts subsequent to PNN knockdown.
Table 7 (more complete list, supplementary data (Appendix
9) reveals the observed splicing events (p<0.05) associated
with splicing variants after PNN knockdown. The upregu-
lated variant and log fold change are listed on the left, while
the downregulated variant and fold change are listed on the
right in the table. Interestingly, in addition to variants in the
ADAM family (membrane disintegrin and metalloproteinase),
many splicing variations occur in the abundant solute carrier
(SLC) group of membrane transport proteins after PNN
knockdown. The observed high correlation with SLC group
members may reflect the abundance of SLC mRNA and
proteins in mammals.

RNA splicing occurs cotranscriptionally, and we hypoth-
esize that PNN may serve as a functional bridge between
transcription and RNA splicing. Therefore, we examined the
correlation of change in gene expression and the occurrence
of altered RNA splicing. Table 8 and Table 9 and supplemen-
tary data (Appendix 10) show the splicing events (p<0.05)
that are correlated with upregulated and downregulated
genes, respectively. Most interestingly, a large proportion
of the upregulated genes, which GO analyses indicate are
involved in enhanced cell migration such as MMPs, ADAMs,
SERPINs, ECM, and matrix receptors, also demonstrated
altered RNA splicing. Although the list of downregulated
genes with correlated alteration RNA events is smaller, of
significant note is the change in splicing events of two unex-
pected cadherins in PNN knockdown, endothelial cadherin 5
and minor cadherin 11. Although the roles of these cadherins
in the corneal epithelial context is uncertain, these data are
similar to that we reported previously for the coregulation
of transcription and splicing of E-cadherin by PNN [46] and
may indicate a more global role of PNN in RNA processing
on cadherin genes.

DISCUSSION

The way in which we view the transcriptome has undergone
a revolution with the advent of massively parallel DNA
sequencing associated with robust computational approaches.
Recent RNA-seq efforts have demonstrated that AS generates
broad variation in functional mRNAs, in a cell-specific and
stage-specific manner [47]. AS includes cassette exon-skip-
ping, alt 5’ and 3’ ends, mutually exclusive exon inclusions,
and, more rarely, IRs. We have focused on the AS changes
that are central to establishing and maintaining the corneal
epithelial phenotype and maintenance of the normal physi-
ology of the cornea and anterior segment [2-4].
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Figure 3. Widespread changes
in splicing events after PNN
knockdown. A scatterplot of
splicing events detected in pinin
(PNN) knockdown and control
cells (the overlapping area in
the Venn diagrams), plotting the
mean expression (as log, APN) of
the control cells versus the PNN-
knockdown cells. Differentially
expressed events are red (upregu-
lated) and blue (downregulated),
and non-differentially expressed
events are in black. More than 70%
of significantly different events are
upregulated in PNN (p<0.0001). All
types of events are biased toward
upregulation in PNN (92.5% of
all events, 91.8% of exon-skipping
events (635 of 692 differentially
expressed [DE] events), 94.1%
of alternative donor sites (531 of
564 DE events), 93.0% of alterna-
tive receptor sites (490 of 527 DE
events), 93.7% of events involving
alternative donors and acceptors
(554 of 591 DE events), and 62.9%
of intron retention events (95 of 151
DE events).
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We explored the involvement of PNN in gene expres-
sion and alternative pre-mRNA splicing in the corneal
epithelial context, by using HCET cells that harbored
doxycycline-inducible shRNA against PNN. Whole tran-
scriptome RNA-seq analysis of PNN knockdown HCET cells
revealed clear and reproducible alterations in the transcript
profiles and splicing patterns of specific subsets of genes
and RNA splicing complexities, including MMPs, ADAM:s,
HAS2, LAMA3, and UNC5C. Most interestingly, transcript
assembly and quantification by RNA-seq revealed bone fide
isoform switching and generation of unannotated transcripts
subsequent to PNN knockdown. A large proportion of the
upregulated genes, such as ADAMs, SERPINs, ECM, and
matrix receptors, also demonstrated altered RNA splicing.
Importantly, our work has implicated RNA processing, itself,
as a potential regulator of epithelial identity.

Strikingly, PNN knockdown resulted in the upregulation
of genes that have been shown to be associated with molecular
processes that contribute to tissue plasticity, enhanced cell
migration, and ECM remodeling, including MMPs, ADAM:s,
HAS2, LAMA3, UNC5C, and members of the CXCR chemo-
kine receptor binding family. These data are consistent with
our previous work pertaining to PNN’s impact on epithelial
phenotype stabilization [3-6,39] and epithelial cell migration
[2,48]. We also previously demonstrated that varied epithe-
lial-derived cancers demonstrate absent or greatly reduced
expression of PNN, and methylation analyses revealed that
aberrant methylation of PNN CpG islands was correlated
with decreased/absent PNN expression in a subset of tumor
tissues [49]. Interestingly, transfection of such cancer cells
with full-length PNN ¢cDNA demonstrated inhibition of
anchorage-independent growth and alteration of the expres-
sion of a specific subset of genes, p21, CDK4, and CPR2, and
cell migration-related genes, such as RhoA, CDKS5, TIMPs,
and MMPs [48]. Taken together, these observations support
our contention that driving PNN expression leads to epithelial
stability, while interfering with PNN expression leads to loss
of differentiation, loss of cell adhesion, and enhanced cell
migration. One intriguing upregulated gene was the serine-
threonine kinase receptor-associated protein, STRAP (Gene
ID:11171; OMIM: 605986). STRAP has been reported to be
associated with the SMN-complex (RNA splicing) and has
been reported to influence metaplasia and cancer develop-
ment [50]. The upregulation of STRAP has been reported to
be involved in maintaining the mesenchymal morphology
and enhanced cell migration. In contrast, the knockdown of
STRAP resulted in the induction of E-cadherin and the adop-
tion of a more-stabile less migratory behavior [50].
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Here, we also report that developmental regulatory
genes are downregulated in response to PNN depletion,
including FGD3 (Gene 1D:89846; OMIM:609197), FGFR2
(Gene ID:2263; OMIM:176943), PAX6 (Gene ID:5080; OMIM
607108), RARG (Gene 1D:5916; OMIM:180190), IGFBP5
(Gene 1D:3488; OMIM:146734), and SOX10 (Gene 1D:6663;
OMIM:602229). Although the significance of the downregu-
lation of these genes in the corneal epithelial context requires
additional study, of specific note, along with the downregu-
lation of PAX6, we previously identified an increase in the
splicing isoform of PAX6, PAX6(5a) [39]. PAXG6, the paired
domain-homeobox transcription factor, is referred to as
the master regulator of eye development and is expressed
throughout the ocular surface, where this transcription factor
plays a major role in early embryonic development and post-
natal maturation of the corneal and conjunctival epithelia
[51-59]. In the adult, PAX6 continues to be expressed in the
corneal epithelium [60] and plays a major role in the mainte-
nance of the ocular surface [61]. The lower expression level of
PAX6 may have profound implications on corneal epithelial
homeostasis. PAX6 dosage levels have profound impact on
eye development in general (including Peters anomaly as
seen in PNN hypomorphs); [62]. However, IGFBPS5 expres-
sion has been linked with enhanced keratinocyte migration
[63], the observed downregulation of IGFBPS with concurrent
upregulation of cell migration-associated genes seems to run
contrary to these studies on keratinocytes.

Interestingly, cadherins 5 and 11 also demonstrated
downregulation accompanied by the change in splicing
patterns in PNN knockdown. These data are similar to our
previous observations that transcriptional repressor CtBP
and PNN can differentially modulate E-cadherin mRNA
splicing [46]. Our studies indicated that PNN is associ-
ated with RNAPII on the E-cadherin promoter and causes
differential modulation of E-cadherin expression and mRNA
splicing, thus serving as an interface between transcription,
and splicing during RNA elongation [64].

AS enables individual genes to generate multiple protein
products (isoforms) that differ in structure and function.
These differences occur through the regulated insertion or
deletion of functional domains encoded by alternative exons.
In addition, AS may regulate the level of protein expres-
sion through IR. Post-transcriptional RNA processing can
thus modulate essential protein functions and expressions,
according to the specific physiologic requirements of the
corneal epithelial cell. Our studies provide a window into the
molecular processes by which corneal epithelial identity is
established and maintained at least in part through AS, and
thus identifies potential targets for future therapies that will
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allow the prevention and reversal of corneal epithelial meta-
plasia. In addition, our studies, insomuch that they address
fundamental processes and mechanisms that control cell- and
tissue-specific splicing decisions, have profound relevance
for all differentiating systems within all tissues of the eye.
Thus, the molecular details pertaining to how the corneal
epithelial identity is established and maintained are central
to vision research. Normal development of the epithelium
relies on a cascade of epithelial cell-type-specific splicing
events [65-67], and in the adult, coordinated mRNA splicing
variation has been observed as cells progress from the stem
cell population to the differentiated cell [22-24].

We suggest that during corneal epithelial development
and the progression from the adult stem cell populations to
the differentiated cells of the mature corneal epithelium,
coordination of specific mRNA splicing decisions is crucial.
Our studies of epithelial identity and RNA processing
exploited the nuclear protein PNN. Although PNN is a
peripheral component of the EJC, we postulate that PNN in
addition functions through these molecular connections, such
as PWWP-containing H3K36me3-chromatin readers, PSIP1
and BS69 [17,18], to coordinate elongating RNAPII-CTD
with associated SR proteins (serine-arginine rich proteins) to
specific chromatin readers at specific spliced junctions, and
thus modulates splice site selection and splicing execution. We
suggest that the mechanism by which PNN impacts epithelial
cell phenotype is through its activity in RNA processing. Our
studies have provided a window into the AS events and splice
variant richness within the corneal epithelial cell.

The investigation of PNN-knockdown cells revealed
significant mechanistic insight into the regulation of AS
and identified numerous aberrant splicing events, along
with strong candidate splicing variants and pathways that
may have a fundamental impact on the epithelial phenotype
[40,68]. However, we still lack an understanding of the
global impact of AS on the in vivo corneal epithelial biology.
We have hypothesized that there will be a broad and rich
variety of AS-derived RNA variants in the corneal epithe-
lial progenitor cells, and that, during the process of differ-
entiation, the diversity of RNA variants will become more
restricted. We also hypothesize that perturbations of PNN
will drive greater diversity in AS and, in turn, drive the cells
to altered differentiation. These data presented are derived
from a tightly regulated in vitro setting, using an inducible
expression system within the SV40-immortalized HCET. It
will be essential to extend these studies to the in vivo setting,
such as our PNN knockout mouse models. Most importantly,
it will be essential to explore the potential impact of PNN and
other RNA processing components in the establishment and
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maintenance of the human corneal epithelium. Specifically,
it will be crucial to better understand RNA processing and
its perturbations associated with pathologies of the anterior
ocular surface.
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