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Purpose: To develop and independently validate prognostic imaging 
biomarkers for predicting survival in patients with glio-
blastoma on the basis of multiregion quantitative image 
analysis.

Materials and 
Methods:

This retrospective study was approved by the local insti-
tutional review board, and informed consent was waived. 
A total of 79 patients from two independent cohorts were 
included. The discovery and validation cohorts consisted of 
46 and 33 patients with glioblastoma from the Cancer Im-
aging Archive (TCIA) and the local institution, respectively. 
Preoperative T1-weighted contrast material–enhanced and 
T2-weighted fluid-attenuation inversion recovery magnetic 
resonance (MR) images were analyzed. For each patient, 
we semiautomatically delineated the tumor and performed 
automated intratumor segmentation, dividing the tumor 
into spatially distinct subregions that demonstrate coher-
ent intensity patterns across multiparametric MR imaging. 
Within each subregion and for the entire tumor, we extract-
ed quantitative imaging features, including those that fully 
capture the differential contrast of multimodality MR imag-
ing. A multivariate sparse Cox regression model was trained 
by using TCIA data and tested on the validation cohort.

Results: The optimal prognostic model identified five imaging bio-
markers that quantified tumor surface area and intensity 
distributions of the tumor and its subregions. In the val-
idation cohort, our prognostic model achieved a concor-
dance index of 0.67 and significant stratification of overall 
survival by using the log-rank test (P = .018), which out-
performed conventional prognostic factors, such as age 
(concordance index, 0.57; P = .389) and tumor volume 
(concordance index, 0.59; P = .409).

Conclusion: The multiregion analysis presented here establishes a gen-
eral strategy to effectively characterize intratumor hetero-
geneity manifested at multimodality imaging and has the 
potential to reveal useful prognostic imaging biomarkers 
in glioblastoma.
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predicting overall survival (OS) in an 
independent cohort.

Materials and Methods

Study Population
A total of 79 patients with pathologically 
proved GBM from two independent co-
horts were analyzed. The inclusion cri-
teria were that patients have treatment-
naïve GBM and that survival information 
and preoperative MR images (including 
both T1-weighted postcontrast and 
T2-weighted FLAIR) be available, and 
exclusion criteria were missing survival 
information and a history of surgery and/
or chemoradiation therapy. For the dis-
covery cohort, we obtained 70 patients’ 
images from the Cancer Imaging Archive 
(TCIA) (18). Fifteen (21%) patients 
were excluded due to unknown survival, 
and nine (13%) patients were excluded 
due to prior surgery, resulting in 46 
(66%) patients eligible for the study. 
Because all patient data in TCIA were 
deidentified, institutional review board 
approval was waived. The validation 

assessed. Methods that rely on fully 
quantitative objective evaluation of the 
imaging features improve reproducibil-
ity and can potentially complement vi-
sual assessment by radiologists.

To date, most studies have focused 
on characterizing the classic tumor 
compartments, such as contrast en-
hancement, necrosis, and edema, in a 
GBM (12–14). While undoubtedly use-
ful, these regions largely derive from 
visual appearances and may not fully 
capture the complexity of the various 
sub clones within a heterogeneous tu-
mor. Additionally, although multiple 
methods, such as T1-weighted contrast 
material–enhanced and T2-weighted 
fluid-attenuation inversion recovery 
(FLAIR) MR imaging, are being used 
to characterize tumors, the imaging 
features are separately derived for 
each modality. The differential con-
trast afforded by multiparametric MR 
imaging has not been exploited to its 
full potential. Several preliminary stud-
ies have begun to address these issues, 
and initial results appear promising 
(15–17).

In this work, we perform quanti-
tative, multiregion tumor analysis with 
multiparametric MR imaging. Instead 
of relying on a priori–defined tumor 
compartments, we adopted a data-driv-
en approach for automated intratumor 
segmentation, which divides the tumor 
volume into several spatially distinct re-
gions that demonstrate coherent signal 
intensity patterns across multiparamet-
ric MR imaging. Within each subregion, 
comprehensive, quantitative imaging 
features are extracted, including those 
that capture the inherent covariance 
structures of signal intensity at multi-
parametric MR imaging. The purpose 
of this study was to develop quantita-
tive imaging biomarkers for GBM on 
the basis of multiregion, quantitative 
analysis of multiparametric MR imaging 
and assess their prognostic value for 
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Advances in Knowledge

nn Multiregion quantitative analysis 
of multiparametric magnetic res-
onance (MR) imaging identified 
new prognostic imaging bio-
markers in glioblastoma, which 
quantified tumor surface area 
and intensity distributions of the 
tumor and its subregions.

nn A prognostic model built on these 
five imaging biomarkers achieved 
a concordance index of 0.67 and 
significant stratification of overall 
survival with the log-rank test 
hh(P = .018) in an independent 
validation cohort, which outper-
formed conventional prognostic 
factors, such as age (concor-
dance index, 0.57; P = .389) and 
tumor volume (concordance 
index, 0.59; P = .409).

Implication for Patient Care

nn Multiparametric MR imaging may 
be used to identify patients with 
aggressive glioblastoma and poor 
survival.

Glioblastoma multiforme (GBM) is 
the most common malignant pri-
mary brain tumor in adults (1). 

Despite aggressive treatment, the prog-
nosis of patients with GBM remains 
poor, with a median survival of 12–14 
months (2,3). This poor prognosis is 
partly due to the fact that GBM is a ge-
netically heterogeneous disease across 
patients, tumors, and even within a 
single tumor (4–6). While this charac-
teristic poses large challenges for tar-
geted therapies on the basis of a single 
biopsy, it provides unique opportu-
nities for the use of imaging to obtain 
a holistic view of the tumor in a non-
invasive and repeatable manner, which 
may complement molecular character-
ization (7,8).

Magnetic resonance (MR) imaging 
is routinely used for initial diagnosis 
and monitoring of treatment response 
in patients with GBM. Several imaging 
characteristics, such as preoperative 
tumor volume, extent of edema, de-
gree of necrosis, and degree of contrast 
enhancement, have also shown certain 
prognostic value (7,9,10). Recently, 
there was a multi-institutional effort 
to standardize the assessment of im-
aging features by using controlled ter-
minology (11). Many of these features 
are qualitatively or semiquantitatively 
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The peripheral nonenhancing region 
with hyperintensity on FLAIR images 
was also similarly obtained. To as-
sess the interobserver variability of 
the semiautomatic tumor delineation 
process, we calculated the degree of 
overlap, or Dice index, between the 
tumor regions of interest obtained 
from the initialization of the two neu-
roradiologists for five randomly se-
lected patients (23).

To fully capture the intrinsic intra-
tumor heterogeneity reflected on MR 
images, we further segmented the de-
lineated tumor into multiple spatially 
distinct subregions (Fig 1). Here, 
we adapted a segmentation method 
on the basis of the hidden Markov 
random field (MRF) model and the 
expectation-maximization algorithm 
(24). By adding spatial regularization, 
this method enables voxels with sim-
ilar signal intensity patterns and spa-
tial proximity to be grouped together. 
Therefore, it can effectively avoid the 
formation of numerous disconnected 

from 10 to 15 mm. Finally, we resam-
pled the two coregistered images into 
a uniform intrasection pixel spacing of 
0.5 3 0.5 mm2 across all patients. To 
avoid aliasing artifacts, we did not resa-
mple the image along the z-axis because 
of the considerable section thickness 
and/or intersection spacing. Our algo-
rithm took into account the variations 
in these parameters such that the bias 
in image feature calculation would be 
eliminated. In addition, although the 
image preprocessing steps did not com-
pensate for the differing signal-to-noise 
ratio introduced by different magnetic 
field strengths, this effect is largely miti-
gated by the fact that all the signal in-
tensity–based features derived from en-
semble or cumulative statistics of many 
pixels (Table 2).

Tumor Delineation and Intratumor 
Segmentation
The ring-like hyperintense mass 
with central necrosis or cysts on T1-
weighted postcontrast images (hereaf-
ter referred to as tumor) was semi-
automatically delineated section by 
section. First, this procedure involved 
manually drawing (K.K. and K.K.T.) 
polygons with five to ten vertices 
both inside and outside the tumor. 
Then, the tumor was automatically 
segmented with a cell automaton and 
level-set evolution algorithm (21,22). 

cohort consisted of patients with GBM 
who underwent surgery at the local in-
stitution between August 2004 and Feb-
ruary 2014. We included 33 (92%) of 36 
patients with GBM for this study with 
local institutional review board approval. 
Three (8%) patients were excluded due 
to missing survival information. Table 1  
shows the summary of the study 
population.

Imaging Parameters
All MR images were acquired in axial 
sections with a 1.5-T (n = 64, or 81%) or 
3.0-T (n = 14, or 18%) imager with the 
exception of one patient (1%), in whom 
images were acquired with a 0.4-T im-
ager. T1-weighted postcontrast images 
were acquired with a spin- or gradient-
echo sequence with the following range 
of parameters: repetition time msec/
echo time msec, 250–210/4.2–20; intra-
section pixel spacing, 0.39–1.02 mm; 
section thickness, 2.5–6.0 mm; inter-
section gap, 0–2.0 mm. FLAIR images 
were acquired with the following range 
of parameters: 5000–11000/94.424–
155; inversion time, 1900–2850 msec; 
intrasection pixel spacing, 0.39–1.02 
mm; section thickness, 2.5–7.0 mm; in-
tersection spacing, 0–2.0 mm. x2 tests 
showed no dependency of the imaging 
parameters on the patient groups di-
vided by the median survival (P . .1 
for all comparisons).

Image Preprocessing
In light of the different imaging param-
eters, we preprocessed the MR images 
to standardize data analysis across pa-
tients. For each patient, we first coreg-
istered the T1-weighted postcontrast 
and FLAIR images on the basis of rigid 
transformation and mutual information. 
The open-source software elastix was 
used for this task (19). Then we nor-
malized both images by the mean inten-
sity of the contralateral healthy-appear-
ing cerebral white matter, which was 
manually selected by two neuroradiolo-
gists (K.K. and K.K.T., with 18 and 15 
years of experience in neuroradiology, 
respectively), thereby compensating 
the effect of magnetic field strength on 
image contrast (20). The diameter of 
the selected region of interest ranged 

Table 1

Summary of Study Population

Characteristic

Cohort

Discovery Validation

No. of patients* 46 (0) 33 (9)
Sex 
  Male 32 16
  Female 14 17
Age (y)† 64 (5–82) 63 (5–82)
OS (d)† 323 (5–1561) 371 (37–1109)

Note.—Unless otherwise noted, data are numbers of 
patients. The discovery cohort is from TCIA, and the 
validation cohort is from the local institution.

* Data in parentheses are the number of censored 
patients.
† Data are the median, and data in parentheses are the 
range.

Table 2

Summary of Quantitative Imaging 
Features

Imaging Feature Interpretation

Regional: First-order Statistics
Mean Average intensity level
Variance Heterogeneity
Skewness Heterogeneity
Kurtosis Heterogeneity
Entropy Heterogeneity

Regional: Textures
Contrast  

enhancement
Heterogeneity

Correlation Heterogeneity
Energy Heterogeneity
Homogeneity Heterogeneity

Holistic: Morphologic Characteristics
Volume Tumor extent
Surface area Tumor extent and  

  shape complexity
Sphericity Shape complexity

Holistic: Joint Histogram
Quantiles High-risk tumor volume
Copula High-risk tumor volume

Note.—Regional features denote subregions 1–4, and 
holistic features denote the entire tumor.
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T1-weighted signal intensity levels, 
these subregions heuristically repre-
sented hypointense to mildly hyperin-
tense (R1), moderately hyperintense 
(R2), and strongly hyperintense (R3) 
tumor compartments (Fig 2). In total, 
this led to four distinct regions (R1, 
R2, R3, and peripheral nonenhanc-
ing) from which regional features were 
extracted.

Imaging Feature Extraction
We extracted two types of imaging fea-
tures: regional and holistic (Table 2). 
For regional features, we computed five 
first-order statistics and four texture 
features for each of the four regions 
(three tumor subregions and one sur-
rounding nonenhancing region) and the 
two imaging modalities (T1-weighted 
postcontrast and FLAIR), giving us 72 
features (9 3 4 3 2) (25). For holistic 
features, we calculated three morpho-
logic features and 45 joint histogram 
features for the whole tumor (Appendix 
E2 [online]). In total, we extracted 110 
quantitative imaging features.

Feature Robustness and Redundancy 
Analysis
Since calculation of the imaging fea-
tures depends on the tumor contour, to 
build reliable models, we selected the 
subset of imaging features that are ro-
bust against tumor delineation uncer-
tainties. To do this, we randomly chose 
20 patients from the TCIA data set and 
drew different polygons inside and 
outside the tumor. Then, an automatic 
segmentation algorithm was separately 
run with these different initial bound-
aries to obtain multiple tumor delin-
eations. The features extracted from 
these multiple delineations were as-
sessed with intraclass correlation (26). 
Features with an intraclass correlation 
score of less than 0.8 were discarded 
from subsequent analysis.

After feature robustness analysis, 
we further removed highly correlated 
features to reduce the computational 
burden of model training. Specifically, 
we calculated the correlation coef-
ficient between each pair of features 
and removed one if its correlation co-
efficient was greater than 0.95.

The optimal number of subregions 
into which the tumor should be seg-
mented was determined with a data-
driven approach (Appendices E1, E2 
[online]). On the basis of TCIA data, 
we determined this number to be 
three. Therefore, in this study, we 
consistently segmented each patient’s 
tumor into three subregions. When 
ranked by the mean postcontrast 

small islands in the segmentation and 
retain useful spatial information for 
multiregion image analysis. Moreover, 
instead of separately segmenting post-
contrast T1-weighted and FLAIR im-
ages, we generalized this method to 
multiple dimensions, which ensures 
the joint homogeneity for both post-
contrast T1-weighted and FLAIR sig-
nal intensities in each subregion.

Figure 1

Figure 1:  Segmentation of the delineated tumor. Delineation results in creation of (a) postcontrast T1-
weighted and (b) FLAIR images. (c) Color-coded image shows tumor and peripheral nonenhancing regions. 
(d) Color-coded image shows the result of intratumor segmentation. Blue areas = hypointense to mildly 
hyperintense, green areas = moderately hyperintense, orange areas = strongly hyperintense.
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in the moderately hyperintense sub-
region, and (e) copula bin of the two-
dimensional joint histogram (2,5). In 
particular, tumor surface area ranked 
as the most dominant feature affecting 
OS, with the risk for decease increasing 
by 29.3% per unit increase.

In the training TCIA cohort, our 
model had a concordance index score 
of 0.749, which means that, on average, 
it could correctly order the survival of 
two randomly selected patients three 

bootstrapping. To predict OS, only five 
imaging features remained in the final 
Cox regression model (ie, they had 
nonzero weights) (Table 3). The five 
features with prognostic significance 
were: (a) surface area, (b) 40% quan-
tile of the postcontrast T1-weighted MR 
image signal intensity, (c) skewness of 
the FLAIR image signal intensity in the 
hypointense to mildly hyperintense sub-
region, (d) kurtosis of the postcontrast 
T1-weighted MR image signal intensity 

Statistical Analysis
On the basis of the extracted imaging 
features, we aimed to build a prognos-
tic model for predicting survival in pa-
tients with GBM. A multivariate Cox 
regression model was trained on the 
basis of data from TCIA. Because the 
number of imaging features was rela-
tively large compared with the number 
of patients, special care is needed to 
reduce the potential risk for over-fitting 
or false discovery. Here, we adopted 
the regularization method on the basis 
of the least absolute shrinkage and se-
lection operator (LASSO) (27). LASSO 
works by shrinking irrelevant variables 
to zero and only retains useful features, 
effectively reducing the number of var-
iables for model fitting. We used cross-
validation to find the optimal regular-
ization parameter for LASSO. We then 
repeated this procedure with 100 boot-
straps and obtained the final weights as 
the average of the bootstrap estimates.

To validate our prognostic model, 
we fixed it as previously described and 
applied it to an independent cohort of 
33 patients from the local institution. 
The concordance index score between 
the predicted hazard and true OS was 
computed to evaluate the performance 
of the model (28). Concordance index 
ranged from 0 to 1, with 1 indicating a 
perfect model (a random guess would 
give a concordance index of 0.5). The 
predictive value of our imaging features 
was compared with established prog-
nostic factors such as age, tumor vol-
ume, and extent of resection (9,29,30).

Results

Imaging Biomarker Discovery on the 
Basis of TCIA Data
Tumor delineation showed excellent 
agreement between the two observers 
(Dice index range, 0.988–0.991). After 
the robustness test and redundancy re-
moval were performed, 95 out of the 
initial 110 imaging features remained. 
These remaining features were normal-
ized and then used to train a sparse Cox 
regression model based on the TCIA 
cohort. The optimal model parameters 
were obtained with 100 repetitions of 

Figure 2

Figure 2:  Graph shows the distributions of postcontrast T1-weighted and 
FLAIR signal intensity within a tumor, with each voxel color-coded by the subregion 
to which it belongs according to intratumor segmentation. Regions are ordered 
by their mean T1-weighted postcontrast signal intensity level. Blue = low signal 
intensity, green = medium signal intensity, orange = high signal intensity.

Table 3

Imaging Features Selected by Cox Model with LASSO and Corresponding Weights and 
Ranked by their Dominance in the Model

Imaging Feature Weight 

Surface area 0.2569 6 0.0231
40% quantile of postcontrast T1-weighted signal intensity 0.1203 6 0.0269
Skewness of FLAIR signal intensity in R1 20.0633 6 0.0227
Kurtosis of postcontrast T1-weighted signal intensity in R2 0.0577 6 0.0158
Copula bin of joint histogram (2, 5) 0.0495 6 0.0093

Note.—Data are the mean plus or minus standard deviation. R1 = subregion of hypointense to mildly hyperintense T1-weighted 
signal intensity, R2 = subregion of moderately hyperintense T1-weighted signal intensity.
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these intratumor subregions may pro-
vide a more reliable representation 
of the microenvironmental selection 
forces that drive clonal evolution in a 
tumor (31). While similar data-driven 
approaches have been proposed, they 
usually rely on simple thresholding or 
clustering techniques that are solely 
based on signal intensity patterns and, 
consequently, yield nonintuitive results 
with widely dispersed and intermin-
gled subregions (15–17). These ap-
proaches are also limited by technical 
factors, such as image noise and arti-
facts. By taking spatial constraints into 

significantly improved upon known 
prognostic factors.

Our study represents several meth-
odologic advances in analyzing GBM 
tumors at multiparametric MR imag-
ing. First, a general method is present-
ed for intratumor segmentation, which 
divides the tumor volume into spatially 
distinct regions that demonstrate co-
herent signal intensity patterns across 
multiparametric MR imaging. Because 
the segmentation is data driven rather 
than based on an a priori assumption 
of the compartments (eg, contrast 
enhancement, edema, and necrosis), 

out of four times. The Kaplan-Meier 
plot of the two groups divided by the 
median-predicted hazard indicates that 
their survival difference was significant 
(log-rank test, P , .0001; hazard ratio, 
0.743) (Fig 3).

Independent Validation
In the independent validation cohort, 
our prognostic model achieved a con-
cordance index score of 0.674, meaning 
that it correctly predicted the order of 
survival of two randomly selected pa-
tients approximately two out of three 
times. This finding compared favorably 
with established prognostic factors, in-
cluding age, tumor volume, and extent 
of resection (Table 4). After dividing the 
validation cohort into two equal-sized 
groups by the median-predicted haz-
ard, results of the log-rank test revealed 
that the difference in OS distributions 
of these two groups were significant (P 
= .018; hazard ratio, 0.240), whereas 
separation based on conventional prog-
nostic factors was not (Table 4) (Fig 4).

When nine patients with unknown 
survival were excluded from the vali-
dation cohort (ie, they were still alive 
and censored at the last follow-up), our 
prognostic model achieved a slightly 
higher concordance index score of 
0.698 and significant stratification of 
OS (P = .012) in the remaining 24 pa-
tients with known survival. Again, this 
outperformed age (concordance index, 
0.545; P = .476), tumor volume (con-
cordance index, 0.622; P = .201), and 
extent of resection (P = .591).

Discussion

In the current study, we identified sev-
eral new imaging biomarkers that had 
prognostic value in predicting OS in 
patients with glioblastoma. The most 
dominant imaging feature was surface 
area, which quantifies both tumor 
extent and morphologic characteris-
tics, as large tumors with spiculated 
surfaces tend to have large surface 
areas. Other imaging features char-
acterize the statistical distributions of 
signal intensity pattern within the tu-
mor and its subregions. When tested 
on an independent cohort, our model 

Figure 3

Figure 3:  Graph shows Kaplan-Meier survival estimates for the training TCIA 
cohort, which were determined with the log-rank test (P , .0001; hazard ratio, 
0.743).

Table 4

Prognostic Value of the Sparse Cox Model and Conventional Factors in the Validation 
Cohort

Predictor Concordance Index P Value Hazard Ratio

Sparse Cox model 0.674 (0.588, 0.760) .018 0.240 (0.086, 0.672)
Age 0.570 (0.443, 0.697) .389 0.702 (0.306, 1.609)
Tumor volume 0.594 (0.503, 0.684) .409 0.693 (0.298, 1.611)
Extent of resection … .108 0.510 (0.222, 1.73)

Note.—Data in parentheses are 95% confidence intervals. 
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