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Abstract

Although several dozen studies of gene expression in sepsis have been published, distinguishing 

sepsis from a sterile systemic inflammatory response syndrome (SIRS) is still largely up to clinical 

suspicion. We hypothesized that a multicohort analysis of the publicly available sepsis gene 

expression data sets would yield a robust set of genes for distinguishing patients with sepsis from 

patients with sterile inflammation. A comprehensive search for gene expression data sets in sepsis 

identified 27 data sets matching our inclusion criteria. Five data sets (n = 663 samples) compared 

patients with sterile inflammation (SIRS/trauma) to time-matched patients with infections. We 

applied our multicohort analysis framework that uses both effect sizes and P values in a leave-one-

data set-out fashion to these data sets. We identified 11 genes that were differentially expressed 

(false discovery rate ≤1%, inter–data set heterogeneity P > 0.01, summary effect size >1.5-fold) 

across all discovery cohorts with excellent diagnostic power [mean area under the receiver 

operating characteristic curve (AUC), 0.87; range, 0.7 to 0.98]. We then validated these 11 genes 

in 15 independent cohorts comparing (i) time-matched infected versus noninfected trauma patients 

(4 cohorts), (ii) ICU/trauma patients with infections over the clinical time course (3 cohorts), and 

(iii) healthy subjects versus sepsis patients (8 cohorts). In the discovery Glue Grant cohort, SIRS 

plus the 11-gene set improved prediction of infection (compared to SIRS alone) with a continuous 

net reclassification index of 0.90. Overall, multicohort analysis of time-matched cohorts yielded 

11 genes that robustly distinguish sterile inflammation from infectious inflammation.

INTRODUCTION

Sepsis, a syndrome of systemic inflammation in response to infection, kills about 750,000 

people in the United States every year (1). It is also the single most expensive condition 

treated in the United States, costing the healthcare system more than $20 billion annually 

(2). Prompt diagnosis and treatment of sepsis is crucial to reducing mortality, with every 

hour of delay increasing mortality risk (3). Sepsis is defined by the presence of the systemic 

inflammatory response syndrome (SIRS), in addition to a known or suspected source of 

infection (1). However, SIRS is not specific for sepsis, because sterile inflammation can 

arise as a nonspecific response to trauma, surgery, thrombosis, and other non-infectious 

insults. Thus, sepsis can be difficult to distinguish clinically from systemic inflammation 

caused by non-infectious sources, such as tissue trauma (4). There is no “gold standard” 

blood test for distinguishing patients with infections at the time of diagnosis before results 

become available from standard microbiological cultures. One of the most common 

biomarkers of infection, procalcitonin, has a summary area under the receiver operating 

characteristic (ROC) curve (AUC) of 0.78 (range, 0.66 to 0.90) (5). Several groups have 

evaluated whether cytokine or gene expression arrays can accurately diagnose sepsis; 

however, because of the highly variable nature of host response and human genetics, no 

robust diagnostic signature has been found (6–10).

Both infections and tissue trauma activate many of the same innate immune receptor 

families, such as the Toll-like receptors (TLRs) and NOD-like receptors (NLRs), and 
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consequently activate largely overlapping transcriptional pathways. Thus, distinguishing 

conserved downstream effects attributable solely to infections has been exceedingly 

difficult. Recent work has shown that there are pattern recognition receptors potentially 

specific to pathogen response, including several glycan receptor families (11). Hence, it may 

be possible that an infection-specific immune response could be differentiated from sterile 

inflammation.

The ongoing search for new therapies for sepsis, and for new prognostic and diagnostic 

biomarkers, has generated several dozen microarray-based genome-wide expression studies 

over the past decade, variously focusing on diagnosis, prognosis, pathogen response, and 

underlying sepsis pathophysiology (10). Despite tremendous gains in the understanding of 

gene expression in sepsis, few insights have translated to improvements in clinical practice. 

Many of these studies have been deposited into public repositories such as the National 

Institutes of Health Gene Expression Omnibus (GEO) and ArrayExpress, and thus, there is 

now a wealth of publicly available data in sepsis. In particular, there are several studies 

comparing patients with sepsis to patients with noninfectious inflammation (such as SIRS) 

that occurs after major surgery, traumatic injury, or in non–sepsis-related intensive care unit 

(ICU) admission (thrombosis, respiratory failure, etc.).

One data set in particular, the Inflammation and Host Response to Injury Program (Glue 

Grant) (6, 12, 13), has yielded several important findings about the effects of time on gene 

expression after trauma and in sepsis. One part of the Glue Grant longitudinally examined 

gene expression in patients after severe traumatic injuries. Several groups have examined 

these data with respect to time; notable findings are that (i) more than 80% of expressed 

genes show differential expression after traumatic injury (6); (ii) different clusters of genes 

recover over markedly different time periods (12); (iii) differing scenarios of inflammation 

such as trauma, burns, and endotoxicosis exhibit similar gene expression changes (12); and 

(iv) the extent to which posttrauma gene expression profiles differ from those of healthy 

controls and their degree of gene expression recovery over time are correlated with clinical 

outcomes (13, 14). There is thus growing understanding of the importance of the changes 

that underlie recovery from trauma and their impact on specific clinical outcomes.

We hypothesized that only time-matched comparisons, such as those that compare SIRS/

trauma to sepsis at the same clinical time points, would yield genes robustly diagnostic of 

sepsis. We carried out a comprehensive, time-course–based multicohort analysis of the 

publicly available gene expression data in sepsis to identify a conserved 11-gene set that can 

robustly distinguish noninfectious inflammation (such as SIRS, trauma, and ICU 

admissions) from inflammation due to acute infections, as in sepsis. This 11-gene set had 

excellent diagnostic power in the discovery cohorts and was then validated in 15 

independent cohorts.

RESULTS

Comprehensive search and labeled principal components analysis visualizations

We identified 27 independent gene expression data sets that satisfied our criteria in GEO 

and ArrayExpress, from which we included a total of 2903 microarrays (table S1) (7, 8, 15–
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40). These 27 data sets comprised only 22 independent cohorts, because the six data sets 

from the Genomics of Pediatric SIRS/Septic Shock Investigators (GPSSSI) were combined 

into a single cohort containing 219 patients with SIRS or sepsis at ICU day 1 (15–20). Many 

of the samples used were from the Glue Grant trauma data sets, which have a total of 333 

patients sampled at up to eight time points (1301 samples used here) after traumatic injury. 

These 27 data sets contain cohorts of children and adults, men and women, with a mix of 

community- and hospital-acquired sepsis, sampled from whole blood, neutrophils, and 

peripheral blood mononuclear cells (PBMCs).

First, we sought to use the simplest possible methods to see whether noninfected SIRS/

trauma patients and sepsis/infection patients could be separated by gene expression. We thus 

co-normalized all available data sets comparing SIRS/trauma with sepsis/infection in a 

single matrix. Labeled principal components analysis (PCA) (using 168 genes identified by 

10-fold cross-validated Lasso-penalized logistic regression) showed that SIRS/trauma 

patients can be separated from sepsis patients with modest overlap (Fig. 1A). Next, we 

labeled each sample as “early” (within 48 hours of admission) or “late” (more than 48 hours 

after admission). Most of the nonseparable samples were the late samples (Fig. 1B). This 

finding remained true even when we included healthy controls as a separate class (fig. S1). 

Previous work has shown that gene expression after trauma, burns, or endotoxemia changes 

nonlinearly over time (6, 12, 14, 35). This continuous change in expression after initial 

insult could explain the inability to distinguish noninfected SIRS/trauma from sepsis in the 

late samples if all time points are treated as equal.

Therefore, we sought to get a qualitative sense of whether gene expression during the 

hospital course after injury is similar among different cohorts. We included all peripheral 

blood data sets that examined gene expression longitudinally over time after admission for 

nonseptic events. We used CUR matrix decomposition to identify the 100 genes that were 

most orthogonal to each other and used these to perform labeled PCA with classes 

determined by days after injury. Reassuringly, the gene expression at each time point was 

closest to the time points by which it was bounded (for example, the days [1,2) group was 

preceded by days [0,1) and followed by days [2,3); Fig. 2 and movie S1). Furthermore, 

changes in expression over time explained most variance in the data sets, as evidenced by 

the different day groups changing in each of the first three labeled principal components. In 

summary, our analysis showed that the changes in gene expression after trauma/ICU 

admissions (i) proceed in a nonlinear fashion over time and (ii) show similar changes over 

time across data sets.

Time-matched multicohort analysis

Because changes in gene expression after admission for trauma explain a large amount of 

variance in the data set, and because these changes proceed nonlinearly, direct comparisons 

of a patient at admission with that same patient several days later at the time of infection 

would be confounded by “normal” changes in expression due to recovery from the inciting 

event, as well as any “abnormal” changes due to the hospital-acquired infection. It would be 

extremely difficult to disentangle these changes, if not impossible. Consequently, 

comparisons that do not take clinical time into account will not yield biomarkers that can 
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robustly discriminate infected from noninfected patients (Fig. 1). Therefore, we focused 

only on infection data sets that also included a time-matched noninfected cohort (to allow 

for direct time-matched comparisons). We thus separated the data sets into two groups: (i) 

data sets comparing patients at hospital admission for trauma, surgery, or critical illness 

versus patients at admission to the hospital for sepsis [GSE28750 (27), GSE32707 (31), 

GSE40012 (26), and the GPSSSI unique combined data sets (n = 408 samples) (15–20)] and 

(ii) the Glue Grant data sets containing patients with hospital-acquired infections and day-

matched noninfected patients, from which we used only patients in the buffy coat sample 

cohort (Table 1). The Glue Grant trauma cohorts were sampled at roughly 0.5, 1, 4, 7, 14, 

21, and 28 days after injury; these cohorts were thus divided into their sampling time bins, 

creating subgroups in which patients diagnosed with an infection in a given time bin can be 

compared to noninfected patients in the same time bin. For the buffy coat samples, there 

were at least 10 patients present in five time bins, and these were thus taken for further 

study. Thus, we used a total of nine cohorts comparing time-matched SIRS/trauma to sepsis/

infection, comprising 663 samples (326 SIRS/trauma controls and 337 sepsis/ infection 

cases; Table 2 shows the cohorts in the multicohort analysis; table S2 shows the individual 

microarray design matrix).

We then applied our previously described (41, 42) multicohort gene expression analysis 

framework to compare SIRS/trauma with sepsis/ infection, including all nine cohorts in a 

leave-one-data set-out fashion. The output from this analysis underwent a three-step 

thresholding process [false discovery rate (FDR) <1% for both pooled effect size and 

Fischer’s method, inter–data set heterogeneity P > 0.01, and absolute summary effect size 

fold change > 1.5], which yielded 82 genes differentially expressed between SIRS/trauma 

and sepsis patients across all time points (summary statistics for all 82 genes shown in table 

S3). To obtain the most parsimonious set of significant genes that best discriminates 

between classes, we carried out a greedy forward search to identify which combination of 

the 82 genes produced the best improvements in AUC across all discovery data sets. Here, 

discrimination is based on an “infection z score” that combines gene expression levels (using 

the difference of geometric means between positive and negative genes) into a standardized 

score for each sample in each data set. This yielded a final set of 11 genes (6 overexpressed 

and 5 underexpressed in sepsis; Table 3 and Fig. 3). Table S4 shows probe-level expression 

data for these 11 genes in the discovery cohorts. The mean ROC AUC of this 11-gene set in 

the nine discovery cohorts was 0.87 (range, 0.70 to 0.98; Fig. 4A and fig. S2).

Glue Grant sorted-cells cohort validation

The Glue Grant trauma cohorts have two independent subcohorts: one is the buffy coat 

cohort (samples processed from 2004 to 2006 on Affymetrix array GPL570), and the other is 

the sorted-cells cohort, which included neutrophils, monocytes, and T cells [samples 

processed from 2008 to 2011 on custom Glue Grant Human (GGH) arrays; Table 4]. These 

cohorts are separate patients, separated in time and profiled using different technologies. 

Although their inclusion criteria and enrolling sites are largely the same, they are otherwise 

independent. We thus validated our 11-gene signature in the Glue Grant sorted-cells cohorts. 

Here, we split the sorted-cells cohorts into the same time bins as the discovery buffy coat 

cohorts and treated each time bin separately.
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From the sorted-cells subcohort, we expected the neutrophil set to perform most similarly to 

a whole-blood sample, because neutrophils make up 75 to 85% of the total leukocyte pool 

after trauma in both infected and noninfected patients (and hence most of the gene 

expression present in peripheral blood) (fig. S3). Indeed, the 11-gene set performed very 

well at separating time-matched noninfected trauma patients from septic trauma patients (4 

cohorts; 218 samples; mean AUC, 0.83; range, 0.73 to 0.89) (Fig. 4B). Surprisingly, the 11-

gene set also showed discriminatory power in the monocytes and T cells from these same 

patients (monocytes AUC range, 0.71 to 0.97; T cells AUC range, 0.69 to 0.9) (figs. S4 and 

S5). Because we excluded any sorted-cells data sets from the multicohort analysis, we did 

not expect diagnostic capability in these cell types. In the sorted-cells cohort, AUC increased 

with greater time since initial trauma; this may suggest that inflammation due to infection is 

easier to discriminate as the “genomic storm” of traumatic injury begins to recover.

Examination of the 11-gene set in the Glue Grant cohorts

As expected, in the Glue Grant buffy coat cohort, patients within ±24 hours of diagnosis of 

infection have significantly higher infection z scores at all time points as compared to time-

matched patients with-out infection; this was validated in the neutrophils cohort [repeated-

measures analysis of variance (ANOVA) P < 0.0001; Fig. 4, C and D, and table S5A]. 

Comparison of the infection z score by time since injury in the buffy coat cohort shows a 

significant decline over time (repeated-measures ANOVA change over time P < 0.0001), 

but there appears to be a lesser (though still significant) effect in the neutrophils validation 

cohort (repeated-measures ANOVA change over time P < 0.05) (Fig. 4, C and D, and table 

S5A). The interaction of group with time since injury was not significant in either discovery 

or validation cohorts, suggesting that the decline in infection z scores over time for both 

groups is likely due to recovery from traumatic injury resulting in reduced inflammation 

(table S5A).

Next, we analyzed how infection z scores changed in infected patients before and after 

diagnosis of infection (samples that were not included in identifying the 11-gene set). We 

grouped the samples from patients who were ever diagnosed with infection on the same 

hospital stay into four groups according to their time from diagnosis of infection (either 

greater than 5 days before infection, 5-to-1 days before infection, within ±1 day of diagnosis 

of infection, or 2-to-5 days after diagnosis of infection, where no group besides the ±1 day 

of diagnosis of infection was included in the multicohort analysis for discovery of the 11-

gene set). We further divided these groups into bins according to days since injury. Within 

each time bin, the infection z scores for the diagnostic groups increased significantly as they 

progressed toward infection for both the discovery buffy coat cohort and the validation 

neutrophils cohort [Jonckheere trend (JT) test P < 0.01; Fig. 4, E and F]. Furthermore, in all 

cohorts, the infection z score declined in the groups that were 2 to 5 days after infection 

diagnosis, when patients were beginning to recover from infection, presumably due to 

antibiotic treatment. This may also explain the increase in diagnostic power as time 

increases since initial injury. We emphasize that the resulting “peak” in infection z score 

around the time of infection diagnosis validates the association of the infection z score with 

clinical infection, because neither the >5 days prior cohorts, the 5-to-1 days prior cohorts, 

nor the 2-to-5 days after cohorts were included in the multicohort analysis, but still shows 
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the hypothesized trends in both the discovery buffy coat cohort and the validation 

neutrophils cohort. Similar results were seen in the monocytes and T cells samples (same 

patients as the neutrophils validation cohorts; figs. S4B and S5B).

The infection z scores for patients who were later infected during their hospital stays were 

significantly higher in buffy coat samples at the time of admission than for those never 

infected during their hospital admission (P < 0.01; neutrophils validation group P = 0.05; 

Fig. 4, E and F). One possibility is that there was a baseline difference in injury severity, and 

that this might influence the infection z score. Severely injured patients are known to be 

more susceptible to infection (43). To test this hypothesis, we used linear regression of 

eventual hospital-acquired infection status, injury severity score, and their interaction to 

predict infection z score as the independent variable (table S5B). Both eventual hospital-

acquired infection status and injury severity score were independently significant in 

predicting infection z score at admission, indicating that injury severity alone does not 

explain these effects. The interaction term was significant and negative in both the discovery 

buffy coat cohort and the validation neutrophils cohort samples, perhaps suggesting that 

higher infection z score at admission may indicate greater susceptibility to later infection. 

Further studies are needed to examine this observation.

Clinical utility in the Glue Grant

To test whether the infection z score might add to the clinical determinations of infection, 

we compared logistic regression using SIRS criteria alone to that using SIRS criteria plus 

our infection z score in discriminating Glue Grant trauma patients (both buffy coat and 

neutrophils cohorts) with and without infection. The logistic regression model using SIRS 

criteria alone had an AUC of 0.64, whereas SIRS criteria plus the infection z score had an 

overall AUC (using a single coefficient for infections at all time points) of 0.81 (fig. S6). 

The continuous net reclassification index (NRI) is a measure of how many patients would be 

correctly reclassified by improving a disease marker; here, the continuous NRI of adding the 

infection z score to SIRS alone was 0.90 (95% confidence interval, 0.62 to 1.17), where a 

continuous NRI greater than 0.6 is associated with “strong” improvement in prediction (44).

Independent validation of the infection z score

Next, we validated our score in three independent longitudinal cohorts that included only 

trauma or ICU patients who eventually acquired infections: GSE6377 (35), GSE12838, and 

EMEXP3001 (23) (Table 5). All three cohorts followed patients from the day of admission 

at least through the day of infection diagnosis (mostly VAP). Because all patients in each of 

the three cohorts acquired infections, they did not have time-matched noninfected controls. 

To compare the validation cohort infection cases with noninfected trauma patients, we used 

Glue Grant buffy coat noninfected controls. We internally normalized each cohort using 

housekeeping genes and then co-normalized with the Glue Grant buffy coat patients using 

empiric Bayes batch correction. Then, we compared the validation cohorts to the Glue Grant 

noninfected patients at matched time points as a variable reference. Comparing trauma/ICU 

patients to a time-matched baseline is necessary because our earlier findings (Fig. 4, C to F) 

showed a change over time in infection z score in the noninfected patients (table S5A). The 

three independent longitudinal trauma/ICU cohorts show that patients within ±1 day of 

Sweeney et al. Page 7

Sci Transl Med. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



infection are generally separable from time-matched non-infected Glue Grant patients, with 

ROC AUCs ranging from 0.68 to 0.84 (Fig. 5).

We further validated the 11-gene set in eight additional independent data sets that compared 

healthy controls to those with bacterial or viral sepsis at admission using whole-blood 

samples [n = 446: GSE11755 (38), GSE13015 (7), GSE20346 (37), GSE21802 (22), 

GSE25504 (39), GSE27131 (32), GSE33341 (30), and GSE40396 (25); Table 6]. The 

infection z scores for all eight data sets were combined in a single violin plot, showing 

excellent separation (Wilcoxon P < 1 × 10−63; Fig. 6A). The mean ROC for separating 

healthy and septic patients is 0.98 (range, 0.94 to 1.0; Fig. 6B).

Our results provide strong evidence that the infection z score declines over time since 

admission/injury in whole blood, buffy coat, neutrophils, and monocytes. We have also 

shown that non–time-matched comparison yields inaccurate classification of infection, 

especially for late-acquired infections in SIRS/trauma patients. Hence, comparing infection z 

scores of SIRS/trauma patients at admission with those of late-acquired sepsis/infection 

patients would be an inaccurate measure of diagnostic power. However, because the effect 

of the decrease in infection z score over time is relatively monotonous, comparison of 

admission SIRS/trauma/surgery patients with late-acquired sepsis/infection would provide a 

lower limit on detection of ROC AUC for the infection z scores. That is, because the 

infection z score decreases over time, if the noninfected patients tested at admission had 

been sampled later (at matched times to the sepsis patients), their infection z scores would be 

lower at that later time (and hence more easily separable from the higher infection z scores 

in the septic patients). Using this inference, we examined four independent data sets that 

compared SIRS/trauma/ surgery patients either to the same patients later in their hospital 

course at onset of sepsis or to a mixed cohort of patients with community-and hospital-

acquired sepsis. These data sets included whole blood [EMTAB1548 (21)], neutrophils 

[GSE5772 (29)], and PBMCs [GSE9960 (8); EMEXP3621 (40)] (Table 7). In each of these 

four data sets, the infection z score separated late-acquired infections from admission SIRS 

or trauma, with ROC AUCs ranging from 0.48 to 0.76 in PBMCs to 0.86 in whole blood 

(fig. S7). We emphasize that these AUCs are expected to be lower due to their time-

mismatched comparison and are essentially the lower limits of what properly time-matched 

infection z scores would be in each of these cell compartments.

Finally, we examined our 11-gene set in one data set comparing healthy controls or those 

with autoimmune inflammation to acute bacterial infections after diagnosis confirmation 

(GSE22098, n = 274) (33). Exact sampling times are not available, but typically, 

confirmation of infection takes 24 to 72 hours, so these infection samples are expected to 

show lower z scores than at the time of diagnosis. Still, the infection z score was able to 

discriminate healthy and autoimmune inflammation patients from those with acute 

infections (ROC AUC, 0.72; fig. S8). Considering that cohorts with autoimmune 

inflammation were not included in our discovery set, this provides validation of the 

specificity of the infection z score for infectious inflammation.
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The effect of infection type on infection z score

To examine whether there were any infection type–specific differences in the infection z 

score, we compared patients infected with Gram-positive versus Gram-negative bacteria, as 

well as those with viral infections to those with bacterial infections. The Glue Grant patients 

were not analyzed, because there were too few time-matched infection patients in each 

subcohort. Four data sets had information on Gram-positive versus Gram-negative infection, 

and four had data on bacterial versus viral infections; in neither case was there a clear trend 

of differences in infection z score based on infection subtype (table S6).

Gene set pathway evaluation and transcription factor analysis

Having validated the 11-gene set, we examined whether any mechanism might explain why 

these genes were acting in concert. We analyzed the 11-gene set with Ingenuity Pathway 

Analysis, which showed that several of the genes are downstream of IL-6 and JUN (fig. S9). 

All 11 genes identified by the multicohort analysis were tested with both EncodeQT and 

PASTAA (chosen for a mix of experimental results and in silico transcription factor 

predictions). EncodeQT found only one significant transcription factor among the positive 

genes (MAX) and none for the negative genes (EncodeQT Q ≤ 0.01, table S7A). PASTAA 

showed enrichment for well-known proinflammatory transcription factors, such as nuclear 

factor κB (NF-κB) member c-REL, STAT5, and interferon response factors (IRF) 1 and 10 

(table S7B).

Because we did not find an obvious network driver, we next studied whether the genes were 

enriched in certain immune cell types that might explain their relation to sepsis. We 

searched GEO for human immune cell type–specific gene expression profiles and found 277 

samples from 18 data sets matching our criteria (table S8). We aggregated these into broad 

immune cell type signatures using mean gene expression scores. We then calculated 

standardized enrichment scores using the same method as the infection z score (difference of 

geometric means between positive and negative genes). We did this both for the initial set of 

82 genes found to be significantly enriched in the multicohort analysis and for the 11-gene 

set found after forward search (the genes included in the infection z score) (Fig. 7). The set 

of all 82 significant genes was found to be highly enriched in band cells only (>4 SDs above 

the mean; P < 1 × 10−6). The 11-gene set was significantly enriched (>2 SDs above the 

mean; P = 0.015) in band cells but also showed up-regulation in regulatory T cells (Tregs) 

and down-regulation in dendritic cells. This suggests that one driving force in differential 

gene expression between sterile SIRS and sepsis is the presence of band cells; however, the 

best set of genes for diagnosis contains information that may incorporate multiple cell type 

shifts at once. Finally, we checked whether there was a difference in band counts (where 

present) between acutely infected and noninfected patients in the Glue Grant trauma cohort, 

but there was no significant difference (mean noninfected = 2.13; mean infected = 2.74; P = 

0.49).

DISCUSSION

The dozens of studies that we examined here have reported valuable insights into changes in 

gene expression that occur in response to SIRS, trauma, surgery, and sepsis; one key insight 
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is that time after injury is an important factor in gene expression after injury (6, 12, 14, 35). 

Across multiple independent cohorts, we showed that changes in gene expression over time 

during recovery are nonlinear but follow a similar trajectory (Fig. 2). Therefore, a 

comparison of gene expression across early and late time points in the same patient will 

yield a large number of differentially expressed genes solely due to the recovery process. It 

is thus very difficult to identify relatively small changes in gene expression due to late 

complication such as infection from the large changes caused by recovery. Therefore, we 

separated longitudinal studies into subcohorts of patients at matched time points. We used 

an integrated, time-course–based multicohort analysis (41, 42) to evaluate differential gene 

expression between sterile SIRS/trauma and sepsis/infection patients. We then used a 

forward search to select a parsimonious set of differentially expressed genes optimized for 

discriminatory power for sepsis. An infection z score, derived from the geometric mean of 

the 11-gene set, had a mean ROC AUC of 0.87 in the discovery cohorts for distinguishing 

SIRS/trauma from sepsis/ infection patients.

We validated the 11-gene set in an independent group of patients from the Glue Grant. The 

mean AUC for distinguishing sepsis from noninfectious inflammation was 0.83 in the 

neutrophils validation cohort, with a trend toward better diagnostic power with greater time 

since initial injury, when initial traumatic inflammation wanes and hospital-acquired 

infections manifest (43). Although we expect the whole-blood transcriptional profiles to be 

largely driven by neutrophils, the signal in sorted cells will certainly differ from whole 

blood. Despite this limitation, the infection z scores performed comparably in validation 

cohorts. We further validated the infection z score in several additional external data sets, 

which included three longitudinal cohorts of ICU/trauma patients who developed VAP/

VAT; eight cohorts of healthy controls compared to patients with bacterial or viral sepsis; 

four cohorts of admission SIRS/trauma patients compared to patients at mixed or later time 

points using whole blood, neutrophils, and PBMCs; and one cohort of patients with 

autoimmune inflammation compared to patients with acute infection. Finally, we showed 

that the infection z score does not have systematic trends with regard to infection type 

(Gram-positive versus Gram-negative and bacterial versus viral) across those data sets for 

which infection type information is available.

Using the extensive clinical phenotype data available for patients in the Glue Grant, we 

illustrated two important points about the application of the infection z score. First, the 

infection z score showed a decline over time since injury that was similar in both infected 

and non-infected patients. Thus, for maximal discriminatory power, if the infection z score 

were to be tested in a longitudinal study, the diagnostic thresholds would need to be a 

function of the time since initial injury/ event. Second, the infection z scores increased over 

the days before infection, peaked within 1 day of diagnosis, and decreased afterwards 

(presumably due to treatment of infection). This observation raises the possibility that earlier 

diagnosis or stratification of patients at risk of developing sepsis may be possible using the 

11-gene set. In particular, we note that the early rise in infection z score that precedes a 

clinical diagnosis of infection is not a false positive but an “early positive” result.

In the Glue Grant buffy coat cohort, SIRS binary parameters alone performed poorly in 

discriminating patients at time of infection from noninfected patients. SIRS criteria plus the 
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infection z score with a global cutoff (that is, not broken into separate time bins) increased 

the discriminatory power with a continuous NRI of 0.9. However, SIRS is only one of 

several criteria used to diagnose sepsis. Procalcitonin is a well-studied biomarker for 

differentiating sepsis from SIRS, with a summary ROC AUC of 0.78 (range, 0.66 to 0.90) 

(5). The average AUC in our discovery cohorts was 0.87 and the time-matched neutrophils 

validation cohort had a mean AUC of 0.83, both of which are thus at least comparable to 

procalcitonin. None of the publicly available data sets included procalcitonin levels, so no 

direct comparison is available. We emphasize, however, that each of these markers need not 

be used separately; any prospective study of the infection z score should also include known 

biomarkers to test for better diagnostic performance using biomarker combinations and for 

head-to-head comparisons.

Both infectious and noninfectious inflammation can lead to SIRS through activation of the 

same innate immune pathways [TLRs, RIG-like receptor (RLRs), NLRs, etc.], so the 

“typical” proinflammatory genes and cytokines (such as tumor necrosis factor and the inter-

leukins) are generally expressed in both sterile and infectious inflammation (45). For 

instance, one recent study showed high correlation in gene expression between sterile 

inflammation (Glue Grant burns cohort) and four independent sepsis data sets, with as much 

as 93% of the genes changing in the same direction in the two conditions (12). Thus, a 

standard hypothesis-driven approach in the search of biomarkers specifically differentially 

expressed between sterile SIRS and sepsis is unlikely to succeed, given that the “standard” 

suite of cytokines and chemokines known to be expressed in sepsis is mostly also activated 

in sterile SIRS. However, several protein families have been shown to have specificity for 

pathogen-associated molecular patterns, thus giving rise to the possibility of infection-

specific innate immune signaling pathways (11). Our data-driven, unbiased approach 

searched specifically for genes that are homogeneously statistically differentially expressed 

between sterile SIRS/trauma patients and sepsis patients across multiple cohorts.

Some of the genes in the sepsis-specific 11-gene set, such as CEACAM1, C3AR1, GNA15, 

and HLA-DPB1, have been previously associated with sepsis or infections (46, 47). The 

regulatory control of these genes may be enriched for several proinflammatory factors, but 

no single common factor explained the network. The gene sets found here may be better 

explained by cell type enrichment analyses. We show that band cells and the myeloid cell 

line are highly enriched for the gene sets found to be significantly differentially expressed 

between sterile SIRS and sepsis. The finding of enrichment in band cells is particularly 

intriguing, because bands have previously been shown to help differentiate sterile SIRS and 

sepsis (48). However, there is very high variability in band counts both by automatic blood 

counters and by hand (49), and no good serum marker exists. The 11-gene set may 

distinguish sepsis from sterile SIRS at least in part because it also includes information on 

increased Tregs and decreased dendritic cells, both of which have previously been implicated 

in sepsis (50, 51). In particular, the joint findings that the 11-gene set is overexpressed in 

bands but underexpressed in adaptive immune cells are remarkably similar to the phenotype 

of increased immature granulocytes and decreased adaptive immunity caused by myeloid-

derived suppressor cells in infection and chronic critical illness (52, 53). The connection 
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between the 11-gene set and different immune cell types may help explain some sepsis 

biology, but certainly, these 11 genes require further study.

Our study has some limitations. First, although we validated the 11-gene set in all available 

independent data sets, prospective validation is required. Second, the Glue Grant buffy coat 

and neutrophils cohorts were incorporated in a way that treated different periods of time 

since injury as different data sets, though the noninfected controls came from the same 

patient cohort at different sampling times (with some dropouts due to injury, recovery, or 

missed sampling). These time-based control subsets are thus not independent of one another, 

which may lead to underestimation of effect size variance; however, this was only the case 

for the two Glue Grant data sets and not the rest of the data sets.

This work presents several future directions. First, both the 11-gene set and the protein 

products of these genes will need to be tested prospectively in a time-matched manner. 

Although protein assays are faster than transcript quantitation assays, a number of advances 

in polymerase chain reaction technology have brought assay times down toward the range of 

clinical applicability (54). Second, our results showed that the changes in gene expression 

due to normal recovery from a traumatic event (such as injury or surgery) mean that time 

must be properly accounted for in any gene expression study of acute illness. Our search 

found several studies that examine time course after SIRS/trauma (GSE6377, GSE12838, 

GSE40012, and EMEXP3001) and several that examine the time course since onset of 

sepsis/infection (GSE20346, GSE2713, GSE40012, and EMEXP3850). However, we found 

only one publicly available microarray study (the Glue Grant) that examined a cohort of 

patients over time, where some of the cohorts develop infection and some do not. Thus, on 

the basis of our results, we recommend that future studies of sepsis diagnostics should be 

designed with longitudinal cohorts both with and without infection to enable appropriate 

time-matched comparisons (9, 10).

Overall, our comprehensive analysis of publicly available gene expression data in SIRS/

trauma and sepsis has yielded a parsimonious 11-gene set with excellent discriminatory 

power in both the discovery cohorts and in 15 independent cohorts. Optimizing a clinical 

assay for this gene set to get results within a window of clinical relevance should be feasible. 

Further study will be needed both to confirm our clinical findings in a prospective manner 

and to investigate the molecular pathways upstream of these genes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Labeled PCA comparing sterile SIRS/trauma versus sepsis patients
(A) Sterile SIRS/trauma and sepsis patients appear to be largely separable in the 

transcriptomic space, with only a minimal non-separable set. (B) The same labeled PCA is 

shown, with labels updated to reflect patients in recovery from noninfectious SIRS/trauma 

and patients with hospital-acquired sepsis; the late group (>48 hours after hospital 

admission) is much harder to separate. n = 1094 combined from 15 studies.

Sweeney et al. Page 19

Sci Transl Med. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. Two views of the first three principal components of labeled PCA of time-course data sets
Five peripheral whole-blood gene expression data sets were combined and matched for 

common genes. The genes with the top 100 orthogonality scores were selected via CUR 

matrix decomposition, and labeled PCA was performed, broken into classes by day. (A and 

B) The three-dimensional plots of the first three principal components demonstrate that 

changes by day explain most variance in the data sets, different data sets show similar 

changes over time, and the changes over time proceed in a nonlinear fashion. Parts (A) and 

(B) show two different views of the same data; also see movie S1.
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Fig. 3. Effect sizes of the 11-gene set
Forest plots for random effects model estimates of effect size of the positive genes, 

comparing SIRS/ trauma/ICU to infection/sepsis patients in each of the discovery cohorts.
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Fig. 4. Results of the 11-gene set in the discovery and neutrophils validation data sets
(A) ROC curves shown for separating sterile SIRS/ICU/trauma patients from those with 

sepsis in the discovery data sets. (B) ROC curves shown for separating trauma patients with 

infections from time-matched trauma patients without infection in the Glue Grant 

neutrophils validation data sets. (C and D) Glue Grant buffy coat discovery (C) and 

neutrophils validation samples (D) after >1 day since injury, showing average infection z 

score in noninfected patients versus patients within ±24 hours of diagnosis. In both cases, 

there is a significant effect due to both time and infection status. (E and F) Box plots of 
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infection z score by time since injury for buffy coat discovery (E) and neutrophils validation 

samples (F): patients never infected are compared to patients >5 days before infection, 5-

to-1 days before infection, ±1 day of diagnosis (cases), and 2-to-5 days after infection 

diagnosis. JT trend test was significant (P < 0.01) for an increasing trend from never 

infected to ±1 day of infection for each time point after admission.
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Fig. 5. No-controls data sets of trauma/ICU patients who develop VAP
These data sets did not include noninfected patients, so they were empiric Bayes co-

normalized with time-matched Glue Grant patients. Orange line shows Glue Grant loess 

curve. (A) EMEXP3001. (B) GSE6377. (C) GSE12838, both neutrophils and whole-blood 

samples. In all cases, only the first 8 days since admission are shown, and patients are 

censored >1 day after diagnosis of infection. (D) ROC curves compare patients within ±1 

day of diagnosis (blue points in A to C) with time-matched noninfected Glue Grant patients. 

See Table 5 for further data set details.

Sweeney et al. Page 24

Sci Transl Med. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. Discrimination of healthy versus sepsis
Eight independent validation data sets that met inclusion criteria (peripheral whole blood or 

neutrophils, sampled within 48 hours of sepsis diagnosis) were tested with the infection z 

score. (A) Infection z scores for all patients (n = 446) were combined in a single violin plot; 

error bars show middle quartiles. P values calculated with Wilcoxon rank-sum test. (B) 

Separate ROC curves for each of the eight data sets discriminating sepsis patients from 

healthy controls. Mean ROC AUC = 0.98. See Table 6 for further data set details.
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Fig. 7. Cell type enrichment analyses
(A and B) Standardized enrichment scores (z scores, dots) for human immune cell types for 

both (A) the entire set of 82 genes found to be significant in multicohort analysis and (B) the 

11-gene set found after forward search (subset of the 82 genes). Part (B) also shows a box 

plot of distributions of z scores.
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Table 2
All data sets used in the multicohort analysis

The numbers after the Glue Grant cohort titles indicate days since infection in the given cohort (for instance, 

[1,3) are patients from 1 to 3 days since injury).

Cohort
SIRS/

trauma
controls (n)

Sepsis/
infection
cases (n)

Total
(n)

Admission
comparisons

GSE28750 11 10 21

GSE32707 55 48 103

GSE40012 24 41 65

GPSSSI unique 30 189 219

Hospital-acquired
comparisons (Glue
Grant buffy coat
cohorts)

Glue Grant
buffy coat

[1,3)

65 9 74

Glue Grant
buffy coat

[3,6)

63 17 80

Glue Grant
buffy coat

[6,10)

50 15 65

Glue Grant
buffy coat

[10,18)

22 4 26

Glue Grant
buffy coat

[18,24)

6 4 10

Total used in multicohort analysis 326 337 663
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