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Abstract

Purpose of review—To overview advances in the genetics of puberty based on studies in the 

general population, describe evidence for sex-specific genetic effects on pubertal timing, and 

briefly review possible mechanisms mediating sexually dimorphic genetic effects.

Recent findings—Pubertal timing is highly polygenic, and many loci are conserved among 

ethnicities. A number of identified loci underlie both pubertal timing and related traits such as 

height and body mass index (BMI). It is increasingly apparent that understanding the factors 

modulating the onset of puberty is important because the timing of this developmental stage is 

associated with a wider range of adult health outcomes than previously appreciated. While most of 

the genetic effects underlying the timing of puberty are common between boys and girls, some 

effects show sex-specificity and many are epigenetically modulated. Several potential 

mechanisms, including hormone-independent ones, may be responsible for observed sex 

differences.

Summary—Studies of pubertal timing in the general population have provided new knowledge 

about the genetic architecture of this complex trait. Increasing attention paid to sex-specific effects 

may provide key insights into the sexual dimorphism in pubertal timing and even into the 

associations between puberty and adult health risks by identifying common underlying biological 

pathways.
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Introduction

The onset of puberty is sexually dimorphic, occurring earlier in girls than in boys and 

exhibiting partly sex-specific impact on health. Recent large studies show strong evidence 

that pubertal timing is linked to a diverse range of adult health outcomes, some of which are 

shared while others are specific to either men or women (1). Investigation of the genetic 

underpinnings of pubertal timing within the general population may improve our 

understanding of male vs. female differences in onset and associations with health 

outcomes. Significant discoveries have been made in recent years by incorporating ever-

larger sample sizes, samples with diverse ethnic backgrounds, and traits which also allow 

the inclusion of males. In particular, studies in both sexes allow investigation not only of the 

common genetic underpinnings, but also of the differences. In this review, we provide a 

brief update of the key developments in our understanding of the genetics of normal pubertal 

timing, explore some evidence for sex-specific genetic effects in pubertal traits, and 

speculate on potential mechanisms that may mediate these effects.

Genetic studies of age at menarche (AAM): larger sample sizes and diverse 

ethnicities

Recent studies have shed light on the genetic architecture underlying pubertal timing in the 

general population. Large-scale genome-wide association studies (GWAS) show that 

pubertal onset is highly polygenic, like other quantitative traits (2,3). However, known 

genome-wide significant variants for AAM (currently 123 SNPs at 106 loci, n > 180,000 

women) still explain only 2.7% of the trait variance (2). Expanding the variants studied to 

include potentially functional low-frequency variants (with a minor allele frequency of 1–

5%) and common variants on the X chromosome found an additional 5 and 7 associated 

loci, respectively, but these variants only explained 0.5% more of the variance (4). The 

small amount of explained variance suggests that other types of genetic variation, such as 

copy number changes and gene-gene and epigenetically mediated gene-environment 

interactions (5), should be investigated to help explain the missing heritability. It is also 

possible that variation in pubertal timing may be the result of hundreds or thousands of 

genetic variants with very small effect sizes.

Until recently, little overlap was seen between genes harboring rare, functionally damaging 

variants and genes near common variants known to influence puberty. However, with the 

publication of 106 AAM loci, a significant enrichment for signals in/near genes causing rare 

Mendelian puberty disorders was observed. Examples include MKRN3, underlying central 

precocious puberty (CPP), and genes associated with hypogonadism, such as LEPR-

LEPROT, encoding the leptin receptor, and TACR3, encoding the neurokinin B receptor. In 

addition, a variant 10 kb away from GNRH1 was suggestively associated with AAM (2).

Other recent studies have examined puberty in non-European populations, notably in 

African American (AA) and Asian women (Table 1). These studies mainly seek to replicate 

European loci, although not necessarily at the same SNPs. Candidate studies in AA women 

have had some success (6,7); in one study, 25 of the 42 loci known at the time contained 

variants that were significantly associated in AA women. However, de novo GWAS in these 
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samples failed to generate statistically significant novel loci, partly due to small sample 

sizes. Furthermore, the linkage disequilibrium (LD) structure differs between populations, 

with Europeans having longer stretches of LD than African populations (8), so widely used 

SNP-chips aimed at tagging common European haplotypes may miss important variation in 

other ethnicities. In other populations, including Koreans (9), Asians, Hispanics, and Native 

Hawaiians (10), and Filipinos (11), effect sizes for variants at the leading European loci (at 

LIN28B and 9q31/TMEM38B) do appear robust across populations, although effect sizes 

vary by ethnicity (Table 1). Taken together, these studies show that some known loci are 

important for pubertal onset regardless of ethnicity, and that larger sample sets are needed.

Epigenetics: imprinting and parent-of-origin effects

The role of epigenetics is a recent key advance in our understanding of the mechanisms 

regulating pubertal onset (5). In the large-scale GWAS of AAM, six loci fell in imprinted 

genomic regions and four of these had parent-of-origin effects, i.e. only the paternal or 

maternal allele was associated with AAM (2). Of these, a paternally-inherited variant at 

MKRN3, an imprinted gene in the Prader-Willi syndrome critical region (chr 15q11-q13), 

was associated at a similar magnitude as variants at LIN28B (> 0.1 yrs per allele). 

Concurrently, a whole-exome sequencing study of 40 individuals from 15 families with CPP 

found 4 heterozygous mutations in MKRN3 (12). All individuals with CPP inherited the 

mutation from their fathers; individuals who inherited mutations from their mothers had 

normal puberty. Further studies revealed additional MKRN3 mutations in Brazilian (13), 

Greek (14), German (15), Ashkenazi-Sephardic Jewish (16), and Korean CPP cases (17).

It is unknown whether MKRN3 or another gene, MAGEL2, is responsible for the GWAS 

signal (2), as truncating mutations in MAGEL2 affecting paternal alleles have been reported 

in Prader-Willi cases with hypogonadism or delayed puberty (18). In mice, however, levels 

of Mkrn3 decreased in the arcuate nucleus of the hypothalamus immediately before puberty 

(12), and circulating MKRN3 also declines preceding pubertal onset in girls (19). 

Collectively, these data indicate that MKRN3 is part of the inhibitory brake that restrains 

puberty. It is interesting in this regard that when prepubertal rodent models were treated with 

chemicals modifying genomic epigenetic marks, each of three approaches showed results 

that were consistent with a mechanism in which epigenetically-mediated suppression is 

lifted at the onset of puberty (5,20).

The closest gene at 19 out of 32 AAM loci published in 2010 is a regulator of the epigenome 

(3,5), and genes in the Jmj-domain-containing lysine-specific demethylase family were 

highly enriched for association with AAM (enrichment P = 0.006) in the most recent GWAS 

(2). Many genes in this family encode proteins that epigenetically modify specific 

methylation marks. In female mice, DNA methylation of Polycomb group silencing complex 

genes leads to the enrichment of activating H3 lysine modifications, triggering pubertal 

onset (20). AAM has been inversely associated with global DNA methylation (21), 

providing further evidence that an epigenetic switch plays an important role in the onset of 

puberty (22,23).
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Sex differences and genetic effects on puberty

Several recent GWAS of pubertal traits investigated the genetic overlap in the regulation of 

pubertal phenotypes between boys and girls. These studies mainly focused on the 

commonalities between the sexes. However, differences also exist, and may prove important 

(Fig. 1). For example, in a GWAS of the timing of the pubertal growth spurt, several 

variants were associated in only one sex in gender-specific analyses (24), including 

rs960273 (GNA12) in males (P for sexual heterogeneity (Psex-het) = 5.2 × 10−4) and 

rs7628864 (VGLL3) in females (Psex-het = 6.8 × 10−6). Of these, rs7628864 was also 

associated with pubertal timing, while rs960273 showed sex-specific associations with total 

postnatal linear growth but not pubertal timing. Additionally, another study found an 

association between an AAM-associated locus, rs480014 (CABLES1), and taller childhood 

height in boys (Psex-het = 0.04) but not girls, as well as other race- and sex-specific 

associations with weight and BMI changes in adolescence (29).

Two additional studies explored the overlap between menarche-associated variants and male 

genital and female breast development assessed by Tanner puberty scales (2,26). These 

studies concluded that much of the genetic architecture underlying pubertal timing is shared 

between the sexes, as the majority of alleles have concordant effect directions in males and 

females. However, further investigation of AAM-associated loci in male and female Tanner 

data revealed that not all menarche-associated loci behave the same way (Table 2; 

Supplemental figure 1). Some variants have the same effect direction but significantly 

different effect sizes, such as rs7759938 and rs2153127 at LIN28B and rs10453225 at 

TMEM38B; some loci show a strong association in one sex only, such as rs17233066 at 

SAT2B; and others have opposite effects, like rs1324913 at KLF12. It should be noted that 

the Tanner dataset was quite small, which could have resulted imprecise estimates and 

random effects. Further in-depth studies of loci with sex-specific associations are necessary 

to understand sexual dimorphism in pubertal timing.

Sex-specific effects at LIN28B have been investigated in humans and mouse models. In 

humans, LIN28B variants have sex-specific associations with postnatal growth (25), and are 

associated with adiposity traits in adult women, but not men (27, 28). LIN28A and LIN28B 

participate in a negative feedback loop with the let-7 family of microRNAs. In mouse 

models of this pathway, Lin28b loss of function (LOF) and reciprocal let-7 gain of function 

(GOF) mice both displayed sex-specific effects on pubertal timing and growth (Corre, et al., 

submitted). Such data suggest that the LIN28-let-7 system is likely to have complex, partly 

sex-specific influences on growth and pubertal timing and that further study of this pathway 

in humans is warranted.

Explaining sex differences

Sex-specific genetic effects are common in model organisms (30,31), and recent GWAS 

show that common genetic variation can influence traits or diseases in a sex-specific manner 

in humans (see (32) for a recent review). Puberty is a dimorphic trait that displays sex-

specific genetic effects. The mechanisms underlying sex-specificity remain largely 

speculative. While sex hormones (testosterone and estrogen) are the primary drivers of 
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differential gene expression, resulting in different trait manifestations and disease risks (33), 

these hormones do not explain all sex differences. For example, in blastocysts, which are 

pre-gonadal and lack influence from sex hormones, almost a third of detected gene 

transcripts showed sexually dimorphic gene expression (34), pointing toward an alternative 

mechanism prior gonadal steroid synthesis.

The most fundamental difference between male and female cells is the sex chromosome 

complement (Fig. 2). The X and Y chromosomes are structurally heteromorphic (37) but 

share a pseudoautosomal region containing 29 genes (38); the human X and Y chromosomes 

have about 1400 (39) and 27 (40) unique genes, respectively. In humans, Turner (45-XO) 

and Kleinfelter (47-XXY) syndromes illustrate the implications of having the correct 

complement of sex chromosomes (41). In mice, the Four Core Genotypes (FCG) model has 

been used to test the contribution of the sex chromosomes versus the gonads (42). In this 

model, a normal XX female is mated with a XY−Sry male (with the Sry region translocated 

from the Y chromosome to an autosome), creating offspring with four potential genotypes: 

XX females, XY− females with normal autosomes and no Sry, XXSry males, and XY−Sry 

males with Sry on an autosome. In studies utilizing this model, X vs Y sex chromosome 

effects have been seen for many traits regardless of the hormonal milieu, including adiposity 

(43), metabolism (44), HDL cholesterol (45), food intake (46,47), hypothalamic neuronal 

development (48), brain structure and function (49), and juvenile behavior (50).

One way the sex chromosomes influence autosomal gene expression is through sex-linked 

genes acting as transcription factors, such as SRY (51,52) (Fig. 2a). Additionally, the sex 

chromosomes can reportedly affect epigenetic regulation of gene expression on the 

autosomes (53). In Drosophila, the large heterochromatic Y chromosome directly impacts 

autosomal gene expression through effects on the epigenetic status of other chromosomes 

(54–57). The heterochromatic inactive X may also bias autosomal expression (52,53).

Gene dosage is another contributor to sex-specific gene expression. Most genes on the 

second female X chromosome are randomly switched off, but around 15% escape X-

inactivation and are expressed at twice the level found in males (58). Mammalian embryos 

may have sex-specific gene expression before random X-inactivation (33), which may have 

later-life effects on gene expression. In addition, 6–10% of autosomal genes are 

monoallelically expressed (59), and in these cases, parent-of-origin effects such as at 

MKRN3 can occur where a variant is expressed when it comes from one parent and not the 

other.

Epigenetic marks can be sex-specific and have lasting impact on sex-differentiated gene 

expression. For example, an X-linked gene was found that had significantly lower 

expression in males and was reduced further by in utero maternal stress (60). This gene had 

long-term effects on metabolic and neurodevelopmental programming (61). Several studies 

showed long-lasting sex-specific epigenetic changes with transcriptional implications for 

nearby genes in the adult brain and liver, some of which are hormone-dependent (62,63). 

However, a small but significant increase in global autosomal methylation is associated with 

being male (64), apparently not driven by sex hormones (65). Epigenetic mechanisms are 

likely to play a large role in how certain genetic polymorphisms regulate gene expression 
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differently in males and females. In lymphoblast cell lines grown without sex hormones, 12–

15% of autosomal expression quantitative trait loci (eQTLs), genomic variants associated 

with variation in mRNA expression levels, were expressed in a sex-specific manner (66) due 

to differential usage of regulatory elements or isoforms (67,68).

In GWAS, mechanisms underlying sex-specific genetic associations remain mostly 

unknown. In two cases, a sex-specific eQTL overlapped a previously reported disease SNP, 

one for eosinophilic esophagitis and one for Crohn’s disease, two conditions more common 

in males (66). In other studies, epigenetic mechanisms, such as sex-specific DNA 

methylation in response to environmental cues, may be sequence-dependent and have been 

highlighted (63,64).

Conclusions

Genetic investigation of pubertal timing is an active field of research with implications for 

understanding the biological basis for how pubertal maturation is triggered. In future 

research, more emphasis should be placed on sex-specific effects, as these may provide keys 

to understanding sexual dimorphism in pubertal onset and perhaps the associations between 

timing and later life health outcomes, some of which are also sex-specific.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key Points

• Significant discoveries into the genetic background of pubertal timing have been 

made in recent years by incorporating ever-larger sample sizes, samples with 

diverse ethnic backgrounds, and traits which also enable the study of puberty in 

males.

• Studies in both sexes show that many genetic effects are similar between boys 

and girls, but differences also exist that may be important for understanding 

sexual dimorphism in pubertal timing and the associations between the timing of 

puberty and adult health.

• Many mechanisms, including hormone-independent ones, may be responsible 

for sex-specific effects.
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Fig. 1. (Original) Puberty-associated loci with sex-specific effects
Genome-wide association studies have resulted in over 100 genome-wide significant loci for 

the pubertal traits of age at menarche, the timing of the pubertal growth spurt, and Tanner 

puberty staging. Body mass is a related trait that shares a genetic component with puberty. 

For AAM, 106 autosomal loci (2), 2 X-chromosome loci, and 5 low-frequency loci (4) are 

currently identified. There are 5 known loci which are significantly associated with the 

pubertal growth spurt and pubertal timing (24), and an additional 2 significant loci for 

Tanner staging (26). Gene names are shown for loci at which sex-specific effects have been 

seen. For example, variants near LIN28B have been associated with age at menarche (2,3), 

the timing of the pubertal growth spurt and postnatal growth (24,25), and Tanner stage (26), 

with stronger associations seen in girls. Additionally, these LIN28B variants were also 

associated with body mass traits in adult women but not adult men (27,28). Other pubertal 

loci at which sex-specific effects have been seen include GNA12 and VGLL3 (24), 

CABLES1 (29), and MKL3, MTCH2, MC4R, FANCL, and TMEM18 (26).
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Fig. 2. (Original) Schematic representation of several mechanisms of sex-specific gene expression
The most fundamental difference between male and female cells is the sex chromosome 

complement; males possess an X and a Y chromosome, while females have two X 

chromosomes. Some examples of how male and female cells may experience differential 

gene expression include A) sex-specific transcription factors, such as the male-specific SRY 

gene on the Y chromosome; B) gene dosage due to incomplete X-inactivation in females, 

resulting in higher transcript levels in females for some genes; and C) sex-differentiated 

epigenetic marks, which may cause differential regulatory element usage, expression of 

different isoforms in each sex, or even differential gene expression entirely. In D) a real 

example of a genetic variant × sex × epigenome interaction is schematically represented. In 

(35,36), GWAS-associated genetic variants at 7q12-q21 were associated with childhood-
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onset asthma in boys only, via sex-specific DNA methylation in response to smoking 

exposure. In the figure, A and B represent two DNA sequence variants in the associated 

region. Only boys with variant A have active gene expression in the presence of sex-specific 

DNA methylation.
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