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Abstract

Purpose of Review—Uterine fibroids are extremely common, and can cause significant 

morbidity, yet the exact etiology of these tumors remains elusive and there are currently no long-

term treatments available. In this review we aim to provide an overview of steroid hormones, 

genetic abnormalities, and stem cells in the pathogenesis of uterine fibroids.

Recent Findings—A universal feature of fibroids is responsiveness to estrogen and 

progesterone, and most of the currently available therapies exploit this characteristic. Ulipristal 

acetate has recently shown particular promise for providing long-term relief from uterine fibroids. 

Additionally, fibroid stem cells were isolated and appear to be necessary for growth. The recent 

discovery of somatic mutations involving MED12 or HMGA2 in the majority of fibroids and the 

links to their pathophysiology were also significant advances.

Summary—The recent shift in focus from hormones to fibroid stem cells and genetic aberrations 

should lead not only to a deeper understanding of the specific etiology of fibroids, but also to the 

discovery of new therapeutic targets. Targeting the products of genetic mutations or fibroid stem 

cells has the potential to achieve both better control of current tumors and the prevention of new 

fibroids.
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Introduction

Uterine fibroids occur in up to 80% of reproductive-age women, causing significant 

morbidity in up to 30% of women[1-4]. In the United States, more than 200,000 surgical 

procedures are performed for the treatment of fibroids, with yearly cost estimates of 

$5.9-34.4 billion[5]. Despite this impressive prevalence, the exact etiology of uterine 

fibroids remains elusive and there are currently no long-term treatments available. Studies 

have suggested that fibroids are monoclonal tumors developed from a single myocyte[6, 7], 

but the inciting event for neoplastic transformation of a myocyte is currently unknown. 
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Tumor growth is characterized by slow proliferation with concurrent deposition of abundant 

extracellular matrix (figure 1), usually in a steroid-hormone dependent manner[8, 9]. This 

review provides an overview of the current state of knowledge on the role of steroid 

hormones in fibroid development, treatments targeting steroid hormone action, and the more 

recent discoveries regarding genetic abnormalities and stem cells in the pathogenesis of 

uterine fibroids.

Steroid Hormones

A universal feature of fibroids is responsiveness to estrogen and progesterone, and most of 

the currently available therapies exploit this characteristic.

Estrogen and Aromatase

Estrogen upregulates gene expression of multiple growth factors, collagens, and the estrogen 

and progesterone receptors (ER, PR), all thought to play a role in fibroid 

pathogenesis[10-12]. Estrogen action is mediated through its nuclear receptors, ERα and 

ERβ, expressed in both myometrial and fibroid tissue[13-15]. ERα is a more potent activator 

of transcription and is thought to be regulated by ERβ, although much remains unknown 

about the exact roles of the two receptors and their interactions[16]. Additionally, there have 

now been several studies that have reported specific ERα polymorphisms that increase 

susceptibility to uterine fibroids[17, 18].

Fibroids respond to estrogen in the bloodstream as a result of ovarian steroidogenesis, and 

also produce estrogen in situ through local conversion of androgens by aromatase[19]. 

Fibroids have been shown to have higher estrogen levels then adjacent myometrium, and 

correspondingly increased aromatase and 17β-HSD type 1 levels[19-22]. Interestingly, 

aromatase RNA is not found in the myometrium of women without fibroids[19]. The 

addition of androstenedione alone to cultured fibroid cells leads to estradiol production, with 

resultant cellular proliferation comparable to that caused by the addition of estradiol alone, 

suggesting that fibroids are capable of producing sufficient estrogen to sustain their own 

growth[21]. The addition of aromatase inhibitors to fibroid cell culture reverses this 

effect[21].

Progesterone

In addition to estrogen and aromatase, there is accumulating evidence that progesterone 

plays a critical role in uterine fibroid expansion[23] and is essential for estrogen-related 

fibroid growth[24-28]. Progesterone acts through two isoforms of PR, PR-A and PR-B, both 

of which exhibit higher expression in fibroids compared with adjacent myometrium[29-31]. 

Similar to ER, relatively little is known about the specific roles and interplay of PR-A and 

PR-B in fibroids.

In support of a key role for progesterone, markers of proliferation and mitotic counts are 

highest in fibroid tissue during the luteal phase[25, 28] and fibroid proliferative activity in 

postmenopausal women has been shown to increase significantly with combined estrogen 

and progestin replacement but not with estrogen replacement alone[25]. In a xenograft 

mouse model, Ishikawa et al. showed that estrogen regulates expression of PR via ERα, and 
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progesterone directly stimulates fibroid growth[26]. In this model, estrogen with 

progesterone stimulated both fibroid cell proliferation and extracellular matrix formation, 

and these effects were abolished by co-treatment with a progesterone receptor 

antagonist[26]. These findings suggest a more permissive role for estrogen, allowing fibroid 

responsiveness to progesterone via induction of PR[4, 26].

Recently, in a xenograft model, Qiang, et al. (2014) demonstrated that treatment with 

estrogen and progesterone resulted in the formation of extracellular matrix production via 

downregulation of miR-29b[32*]. Gene expression of miR-29b has been consistently shown 

to be lower in fibroid tissues compared with adjacent normal myometrium tissues, both in 

vitro and in vivo[32*-34] and increasing mir-29b levels in fibroid cells with mir-29b 

lentivirus decreased levels of collagen 1a1[32*]. Lastly, estrogen with progesterone, but not 

estrogen alone, decreased miR-29b expression, suggesting a role for progesterone in 

promoting uterine fibroid growth via miR29n downregulation[32*].

Medical Treatments

While the mainstay of fibroid treatment has traditionally been surgical, much recent research 

has focused on less invasive medical therapies. Historically, GnRH agonists were first-line 

therapy for fibroids, but they can cause severe menopausal symptoms, and cannot be used 

long-term. A number of reviews are available on non-surgical management of 

fibroids[35,36*,37-39], so the topic will not be reviewed in depth here. Currently available 

therapies are summarized in table 1. As proof of principle of the above-mentioned hormonal 

aspects, we will briefly review aromatase inhibitors and selective progesterone receptor 

modulators (SPRMs), highlighting the exiting recent progress with ulipristal acetate.

Aromatase Inhibitors

Because aromatase is thought to play such a critical role in estrogen production in fibroids, 

aromatase inhibitors are a logical treatment choice. Non-steroidal aromatase inhibitors 

reversibly bind the aromatase enzyme, decreasing binding by androstenedione or 

testosterone and thus decreasing conversion to estradiol[40, 41]. While the original 

aromatase inhibitors were relatively nonselective and fraught with side effects, third 

generation aromatase inhibitors are more selective and have superior bioavailability and side 

effect profiles. Anastrozole and letrozole are able to inhibit >98% of aromatase activity[40, 

42], and have been shown to result in significant reduction of fibroid volume and 

improvement in symptoms in multiple clinical trials[43-46]. Moreover, aromatase inhibitors 

avoid the side effects of the severe hypoestrogenism caused by GnRH agonists, particularly 

hot flushes[44].

While most women tolerate aromatase inhibitors relatively well, there are potential side 

effects. The most commonly reported side effects include hot flashes and musculoskeletal 

pain. Importantly, aromatase inhibitors are often used off-label in the follicular phase for 

ovulation induction or controlled ovarian stimulation, necessitating contraception in women 

not desiring conception[47]. Although there have been conflicting results regarding the 

potential for systemic hypoestrogenism with prolonged aromatase inhibitor use[44, 48], 

there is concern for both increased bone loss and cardiovascular risk with long-term 
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aromatase inhibitor use, particularly in younger patients[42]. The breast cancer literature has 

also brought some questions as to the utility of aromatase inhibitors, reporting both 

decreased effectiveness in overweight and obese women and the development of resistance 

over time[40, 42]. Additionally, the effects of aromatase inhibitors are only temporary, and 

fibroids regrow with cessation of treatment, albeit to smaller volumes[44]. Taken together, 

the current evidence suggests that aromatase inhibitors are, at best, a short-term solution in 

select populations of women.

Selective Progesterone Receptor Modulators

All of the SPRMs that have been studied in clinical trials—mifepristone (RU486), asoprisnil 

(J867), ulipristal acetate (CDB2914), and telapristone acetate (CDB4124)—have been 

shown to reduce fibroid size and improve quality of life[49-51]. In vitro, fibroid cells treated 

with ulipristal acetate, telapristone acetate, or asoprisnil exhibit decreased cell proliferation 

and increased apoptosis[52-56], Moreover, asoprisnil and ulipristal both decrease 

extracellular matrix formation[55, 57, 58]. These effects are not seen with treatment of 

myometrial cells, suggesting tissue-specificity of these drugs. Both asoprisnil and ulipristal 

acetate also have high affinity for PR[59, 60], suggesting that the genome-wide binding 

status of PR liganded with ulipristal or asoprisnil should be further investigated.

Most recent research has focused on ulipristal acetate. Although the Food and Drug 

Administration has not yet approved ulipristal acetate for indications beyond contraception 

in the US, it has been approved in both Canada and Europe for the treatment of fibroids. 

Clinical trials have shown that, while GnRH agonist causes greater overall reduction in 

fibroid volume, ulipristal acetate has longer-lasting effects after cessation of treatment[8, 50, 

61, 62]. Additionally, ulipristal acetate results in a lower incidence of hot flashes, impact on 

bone density, and suppression of E2 levels when compared to GnRH agonist[62, 63]. 

Moreover, Donnez et al. recently reported that repeated 3-month courses of ulipristal 

resulted in amenorrhea in almost 90% of women and was well tolerated[64*, 65**]. This 

exciting study suggests that ulipristal could be the first long-term treatment for uterine 

fibroids.

Because SPRMs block progesterone action in the endometrium, concern has been raised that 

they may result in endometrial thickening and premalignant or malignant transformation. 

There are now studies showing that treatment with SPRMs does not appear to result in 

increased mitosis or atypia; however, asymmetry of stromal and epithelial growth and 

cystic, dilated glands have been reported, and are now classified as progesterone receptor 

modulator-associated endometrial change (PAEC)[49, 66, 67]. Encouragingly, one study 

observed reversal of these changes and return to normal endometrial histology six months 

after ulipristal acetate discontinuation[67], and the study of repeated courses of ulipristal did 

not report any increase in PAEC or other histological changes[65**], but longer term studies 

are needed to definitively understand the risks and side effects of SPRMs.

Somatic Stem Cells

Somatic stem cells were first discovered in myometrial tissues, where they are capable of 

both self-renewal and the production of tissue-specific daughter cells under the influence of 
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estrogen and progesterone[68-70]. More recently, small populations of fibroid cells 

consistent with somatic stem cells have also been isolated[71, 72]. Despite the fact that 

fibroids contain lesser stem cells than the myometrium[73], there is evidence that the fibroid 

stem cell population is essential for steroid hormone-dependent fibroid growth[71, 72]. In a 

mouse xenograft model, injected cell suspensions containing fibroid stem cells mixed with 

myometrial cells grew into substantially bigger tumors and had higher proliferation indices 

under the influence of estrogen and progesterone than injected suspensions containing only 

differentiated fibroid cells with myometrial cells[72]. Perhaps most interestingly, fibroid 

stem cells have minimal to no ER and PR expression, yet respond to estrogen and 

progesterone stimulation with tumor expansion. Additionally, fibroid stem cells cannot 

induce proliferation or tumor growth without the presence of differentiated fibroid or 

myometrial cells. These observations have led us to hypothesize that fibroid stem cells rely 

on paracrine signaling from surrounding mature myometrial and fibroid cells to facilitate 

estrogen and progesterone action[72].

The wingless-type (WNT)/β-catenin pathway was recently proposed by Ono et al.[74*] as a 

possible mechanism for paracrine interaction between fibroid stem and differentiated cells. 

In that study, mature myometrial cells secreted WNT ligands in response to estrogen and 

progesterone treatment, resulting in nuclear translocation of β-catenin in proximal fibroid 

stem cells. Intranuclear β-catenin increased expression of genes involved in growth and 

proliferation. Additionally, inhibiting WNT binding or β-catenin in fibroid stem cells 

resulted in significantly decreased tumor growth—an effect not seen in mature fibroid 

cells[74*].

Much remains to be explored in fibroid stem cells. Originally, fibroid stem cells were 

isolated using the Hoechst dye exclusion technique for side populations (SP)[75, 76], 

however, the SP technique is expensive, exhibits significant sensitivity to minor staining 

variations, and is detrimental to cell survival, making further study of fibroid cells 

difficult[77]. As a solution to these pitfalls, we recently reported a novel way of isolating 

fibroid stem cells using cell surface markers CD34 and CD49b[78**]. Cell sorting using 

antibodies to these cell surface proteins revealed 3 distinct cell populations: CD34+/CD49b

+, CD34+/CD49b-, and CD34-/CD49b- cells (figure 2). CD34+/CD49b+ cells were highly 

enriched with stem cells whereas the other two groups did not contain any stem cells. 

Moreover, genes specific to stem cells, such as KLF4, NANOG, OCT4 were overexpressed 

in the CD34+/CD49b+ cells further suggesting that these cells are indeed stem cells[78**]. 

Interestingly, CD34+/CD49b- cells had intermediate levels of these stem cell factors 

compared to CD34-/CD49b- cells. Additionally, ER-alpha and PR were significantly 

underexpressed in CD34+/CD49b+ cells, consistent with prior studies on SP, and CD34+/

CD49b- cells again showed intermediate expression levels between CD34+/CD49b+ and 

CD34-/CD49b- cells[78**]. Taken together, these results led us to hypothesize that CD34+/

CD49b+ cells are largely fibroid somatic stem cells, capable of asymmetric division 

allowing both self-renewal and the production of intermediary daughter cells, or CD34+/

CD49b-cells, which ultimately develop into fully differentiated fibroid cells, or CD34-/

CD49b- cells. An unbiased genome-wide investigation to better characterize the three 

populations on a molecular level is currently underway and will hopefully lead to new 

therapeutic targets.
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Genetic Abnormalities

Recent research suggests that most fibroids fall into one of four categories of mutations: 

MED12 mutations, FH inactivation, COL4A6-COL4A5 deletions, or HMGA2 

overexpression[79, 80*]. In one study of HMGA2 and MED12 mutations in fibroids, the 

two mutations appear to be mutually exclusive, raising the possibility that different genetic 

abnormalities in fibroids actually represent separate pathophysiology[81]. In support of this 

hypothesis, HMGA2 aberrations are highly correlated with big fibroid tumors, whereas 

tumors with MED12 mutations tend to be smaller[82, 83]. Because of their possible role in 

stem cell action, we will focus on HMGA2 and MED12 mutations in this review.

HMGA2

Mutations involving HMGA2 are found in approximately 7.5% of fibroid tumors and 

HMGA2 overexpression is due to rearrangements involving chromosome 12q14-15[83]. In 

mouse neural stem cells, HMGA2 expression inhibits senescence by downregulating 

p16INK4a, a suppressor of stem cell self-renewal[84]. Similarly, HMGA2 has been shown to 

downregulate p14Arf, also a negative regulator of self-renewal, in fibroid cells[85]. Finally, 

uterine fibroids exhibit underexpression of Let-7, which is known to suppress HMGA2[86]. 

These findings have led us to hypothesize that the Let7-HMGA2-p14Arf pathway may play a 

significant role in fibroid stem cells when altered, resulting in increased self-renewal and 

decreased senescence.

MED12

In the largest study of MED12 mutations in fibroids, specific MED12 mutations were found 

in 70% of fibroids, although smaller studies have reported a prevalence anywhere from 48% 

to 92%[80, 87]. It has been shown that stem cells from fibroid tissue, but not from 

myometrial tissue, carry MED12 mutations, supporting our hypothesis that a genetic hit may 

explain the transformation of a myometrial stem cell to a fibroid stem cell[72]. MED12 

regulates Wnt signaling by binding to β-catenin, making it possible that absence of or 

defects in MED12 in fibroid stem cells could lead to unregulated Wnt/β-catenin pathway-

stimulated tumor growth[4, 88]. Moreover, MED12 deficiency, possibly in somatic stem 

cells, releases negative regulation of TGFβ signaling, resulting in increased proliferation in 

cancer cells[89, 90]. Taken together, this evidence suggests that MED12 deficiency could 

lead to activation of the Wnt/β-catenin and TGFβ pathway, thereby supporting stem cell 

renewal, proliferation, and fibrosis in uterine fibroids[4, 90-92].

Conclusions

Historically, the vast majority of fibroid research has focused on the role of steroid 

hormones in fibroid pathogenesis. The result of this work has been the development of 

medical treatment options targeting steroid hormones, such as GnRH agonists, aromatase 

inhibitors and anti-progestins. To date, we have not found a medical treatment for uterine 

fibroids that results in permanent tumor shrinkage or eradication, or that can be used long-

term with minimal side effects, although the data on ulipristal acetate look promising. 

Finding an effective, long-term treatment for fibroids could have great public health 
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implications, given their high prevalence and associated medical costs. The recent shift in 

focus from hormones to fibroid stem cells and genetic aberrations should lead not only to a 

deeper understanding of the specific etiology of fibroids, but also to the discovery of new 

therapeutic targets. Targeting the products of genetic mutations or fibroid stem cells has the 

potential to achieve both better control of current tumors and the prevention of the 

development of new fibroids.
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Key Points

- A universal feature of fibroids is responsiveness to estrogen and progesterone.

- Ulipristal could be the first long-term treatment for uterine fibroids.

- Fibroids contain somatic stem cells that are necessary for growth, but require 

paracrine signals from surrounding matures cells.

- Genetic mutations, particularly those affecting MED12 and HMGA2, likely explain 

some of fibroid pathogenesis.

- Targeting the products of genetic mutations or fibroid stem cells has the potential 

to achieve both better control of current tumors and the prevention of the 

development of new fibroids.
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Figure 1. 
(A) Gross fibroid specimen after surgical removal; (B) Representative hematoxylin and 

eosin stain of myometrium (left), with organized, normal-appearing smooth muscle cells, 

and fibroid tissue (right), with whorls of acellular extracellular matrix surrounding small 

clusters of disorganized smooth muscle cells.
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Figure 2. 
Cell sorting by flow cytometry using antibodies to CD34 and CD49b revealed 3 distinct 

populations in fibroid cells: CD34+/CD34+ (+/+), CD34+/CD49b- (+/-), and CD34-/

CD49b- (-/-). +/+ cells had characteristics of somatic stem cells, whereas -/- cells had a well-

differentiated phenotype. We hypothesize that +/- are an intermediate cell type between +/+ 

and -/- cells.
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