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Adventitious roots are plant roots that form from any nonroot tissue and are produced both during normal development (crown
roots on cereals and nodal roots on strawberry [Fragaria spp.]) and in response to stress conditions, such as flooding, nutrient
deprivation, and wounding. They are important economically (for cuttings and food production), ecologically (environmental
stress response), and for human existence (food production). To improve sustainable food production under environmentally
extreme conditions, it is important to understand the adventitious root development of crops both in normal and stressed
conditions. Therefore, understanding the regulation and physiology of adventitious root formation is critical for breeding
programs. Recent work shows that different adventitious root types are regulated differently, and here, we propose clear
definitions of these classes. We use three case studies to summarize the physiology of adventitious root development in
response to flooding (case study 1), nutrient deficiency (case study 2), and wounding (case study 3).

ECONOMY, ECOLOGY, AND EXISTENCE

In plants, roots that form from nonroot tissues are
known as adventitious roots. This general definition
distinguishes adventitious roots from primary and lat-
eral roots. However, there are subgroups of adventi-
tious roots that can be formed as a stress response and
during normal development. Figure 1 illustrates some
examples of this diversity of adventitious root types,
including but not restricted to junction roots; nodal
roots (both crown and brace roots in monocots and
nodal roots in eudicots such as strawberry [Fragaria
spp.]); nonnodal prop or stem roots used for support (as
in ivy and mangroves); stress-induced roots (Arabi-
dopsis [Arabidopsis thaliana] etiolated hypocotyl, flood-
ing, burial, and dark induced); and roots formed in
response to soil chemicals (nutrient deficiency and
heavy metals) or wounding (on cuttings).

Recent work has shown that many of these root types
are differentially regulated (Hochholdinger et al., 2004;
Atkinson et al., 2014; Bellini et al., 2014; Pacurar et al.,
2014), and this likely impacts their function and phys-
iology. As a result, we suggest that descriptions of ad-
ventitious roots be precise; to this end, we have
composed Table I to provide clear descriptions, which
include the conditions triggering each specific type of
adventitious root development. For example, roots that
form on stems in response to flooding are described as
flood-induced stem roots; likewise, crown roots that
form as a result of flooding are described as flood-
induced crown roots. This scheme can be applied to
most plant root systems and will help the plant com-
munity clarify differences among root types.

Economically, adventitious roots are very important.
Propagation using cuttings is central to many forestry
and horticulture industries, including the production of
woody crops like apple (Malus domestica), grapes (Vitis
vinifera), and stone fruit. In addition, cereal crops depend
on a root system dominated by crown and brace roots.

Ecologically, adventitious roots are important for
stabilizing shifting environments such as coastal re-
gions (seagrasses; Ondiviela et al., 2014), estuaries, and
river flood plains (Krauss et al., 2003). They are im-
portant for plant survival under abiotic and biotic stress
conditions and are induced during flooding in a wide
range of species (see case study 1). They are also im-
portant in response to other stresses, including heavy
metals (for review, see Steffens, 2014), burial (Dech and
Maun, 2006), drought (Liao et al., 2012), nutrient
deficiencies (see case study 2), and biotic or abiotic
wounding (Simberloff et al., 1978). This wound-
induced adventitious rooting is the basis of cutting
propagation (see case study 3).

In addition to the economic and ecological impor-
tance of adventitious roots, they play a key role for our
existence. The cereal crops wheat (Triticum aestivum),
rice (Oryza sativa), and maize (Zea mays) provide 60% of
global caloric intake (Food and Agriculture Organisa-
tion of the United Nations). Cereal crops, like most
monocots, rely on root systems composed almost ex-
clusively of adventitious roots. If we are to achieve
global food security, we need to improve food pro-
duction in the face of increasing extremeweather events
such as floods. In addition, we must do this more sus-
tainably through reduced fertilizer applications. Ad-
ventitious roots have evolved to help plants tolerate a
variety of stressful conditions, and understanding the
importance of these adventitious root types in many
crops will aid our development of nutrient-efficient and
environmentally resilient crops.

To highlight the potential of exploiting adventitious
roots for crop improvement, we now present three
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case studies of adventitious root physiology, focusing
on responses to flooding, nutrient deficiency, and
wounding.

CASE STUDY 1: FLOOD-INDUCED
ADVENTITIOUS ROOTS

Flooding is a severe abiotic stress that is increasing in
frequency worldwide (Brakenridge). One key aspect of
flooding is the 10,000-fold slower diffusion rate of gases
in water compared with that in air (Armstrong et al.,
1991; Blom and Voesenek, 1996; Bailey-Serres and
Voesenek, 2008), resulting in low oxygen availability
and the trapping of gases in submerged tissues. Higher
plants have evolved many metabolic and morphologi-
cal adaptations to flooding (Bailey-Serres et al., 2012;
Voesenek and Bailey-Serres, 2013; Abbas et al., 2015). A
key response of many species, including rice (Lorbiecke
and Sauter, 1999), Rumex spp. (Visser et al., 1996),
tamarack (Larix laricina; Calvo-Polanco et al., 2012),

Eucalyptus spp. (Argus et al., 2015), and tomato (Sola-
num lycopersicum), is the emergence of adventitious
roots.

In rice, bittersweet (Solanum dulcamara), and Rumex
palustris, adventitious root primordia form during nor-
mal development and, upon flooding, can emerge as
roots. In sunflower (Helianthus annuus), some tomato
cultivars (Kramer, 1951; Negi et al., 2010; Dawood et al.,
2014), and trees such as Eucalyptus spp. and tamarack,
adventitious roots develop de novo upon flooding stress
(Table II). Submergence-induced adventitious root
growth is a complex process mediated by cell division in
the root apical meristem and elongation of basal cells in
root primordia (Lorbiecke and Sauter, 1999).

The timing of flood-induced adventitious root emer-
gence is species specific (Lorbiecke and Sauter, 1999;
Dawood et al., 2014; Argus et al., 2015) and de-
pends on the developmental stage of the plant, the
water temperature (Zhang et al., 2015) and depth (e.g.
soil waterlogging, partial or complete submergence),
and the flood duration (summarized in Table II). In rice,

Figure 1. Examples of adventitious root types. This
figure highlights a few examples of the diversity of
adventitious roots. A to D show types of adventitious
roots that form during normal development, including
those potentially established in the embryo (A); the
dominant root system of monocots, including maize
(top image) crown roots (yellow) and brace roots (or-
ange) and nodal roots on other grasses (bottom image;
B) and on eudicots such as strawberry (C); and non-
nodal roots that provide support for plants such as ivy
(top image) and mangroves (bottom image; D). E to H
show adventitious root development under stressed
conditions: Arabidopsis under low or no light (used as
a model for adventitious root regulation; E); burial (top
image) or flooding (bottom image) can induce ad-
ventitious roots from either nodal or nonnodal stem
positions (F); nutrient or heavy metal stress increases
adventitious root development (G); and wounding
such as cutting induces de novo adventitious root
development (H). Primary and seminal roots are
depicted in white, first order lateral roots in blue, and
second order lateral roots in pink.
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root emergence also depends on the age and develop-
mental stage of the respective node (Lorbiecke and
Sauter, 1999; Steffens et al., 2012). At the third and
fourth nodes, adventitious root emergence occurs ear-
lier than at more apical nodes, because in older nodes,

almost all root primordia tips are in direct contact with
the epidermis, while in younger nodes, parenchymal
cells cover the root primordia (Steffens et al., 2012).

Adventitious roots facilitate gas transport and water
and nutrient uptake during flooding. Following flooding,

Table II. Comparison of adventitious root growth induced by flooding in some model species

Species Adventitious Root Primordia Adventitious Root Emergence Reference

Poaceae
Deepwater rice Preformed at nodes 10 h after onset of partial submergence Lorbiecke and Sauter (1999)

Asteraceae
Sunflower De novo upon flooding 2 d after onset of waterlogging Wample and Reid (1978)

Solanaceae
Bittersweet Preformed at the main

stem and branches
2 to 3 d after onset of partial submergence

at 20˚C or after 7 d at 13˚C
Dawood et al. (2014);

Zhang et al. (2015)
Tomato Preformed or de novo

upon flooding
1 d after onset of flooding at hypocotyls;

2 to 3 d after onset of flooding
in 4-week-old plants

Vidoz et al. (2010)

Wetland species
R. palustris Preformed 2 d after onset of waterlogging Visser et al. (1996)

Flood-tolerant trees
E. camaldulensis ssp. refulgens De novo upon flooding 5 d of waterlogging at seedling stage Argus et al. (2015)
Tamarack De novo upon flooding Time unknown; analyzed after

6 months of flooding
Calvo-Polanco et al. (2012)

Table I. Adventitious root descriptions based on physical characteristics and induction conditions

Parameter Junction Roots Hypocotyl Roots Crown Roots Brace Roots Nodal Roots Stem Roots Prop Roots

Definition Roots that form
specifically at
the root-shoot
junction (e.g.
Arabidopsis
and bean)

Roots that
form
on the
hypocotyl
(e.g. bean
and
tomato)

Nodal roots that
form below
soil level as
part of normal
postembryonic
development
(e.g. rice,
wheat,
and maize)

Nodal roots
that form
above soil
level as part
of normal
postembryonic
development
(e.g. maize)

Roots that
form from
nodes (e.g.
strawberry
and grass
rhizomes)

Roots that
form from
internode
(e.g. ivy)

Roots used
for physical
support (e.g.
mangroves,
where they
also aid in
aeration via
lenticels and
aerenchyma)

Induced by
Flood Flood-induced

hypocotyl
roots

Flood-induced
crown roots

Flood-induced
brace roots

Flood-induced
nodal roots

Flood-
induced
stem roots

Burial
(including
layering
in propagation)

Burial-induced
nodal roots

Burial-
induced
stem roots

Etiolation Etiolation-
induced
hypocotyl
roots

Wound Wound-
induced
stem roots

Wound-induced
prop roots

Heavy
metals

Heavy-metal-
induced
crown roots

Heavy metal-
induced
brace roots

Heavy metal-
induced
nodal roots

Heavy
metal-
induced
stem roots

Nutrient Nutrient-
induced
crown roots

Nutrient-
induced
brace roots

Nutrient-
induced
nodal roots
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they help take up nutrients and ensure plant survival
(Sauter, 2013). In the next sections, we summarize the
signals and morphological changes involved in flood-
induced adventitious root formation and growth in both
monocots (e.g. rice) and eudicots (e.g. tomato).

Adventitious Root Growth Regulation upon Flooding

During submergence, ethylene biosynthesis in-
creases in deepwater rice plants (Raskin and Kende,
1984a, 1984b; Kende et al., 1998), and because it is a gas,
it also accumulates due to physical entrapment (Fig. 2;
Musgrave et al., 1972). Ethylene is the major hormone
that induces adventitious root growth in rice (Lorbiecke
and Sauter, 1999) and tomato (Kim et al., 2008; Negi
et al., 2010; Vidoz et al., 2010). The production of eth-
ylene increases in submerged tomato plants due to
enhanced ethylene biosynthesis via the rate-limiting
enzyme 1-aminocyclopropane-1-carboxylic acid synthase
(Vidoz et al., 2010). This increased ethylene promotes
adventitious root formation through NEVER-RIPE

(NR; Kim et al., 2008; Negi et al., 2010; Vidoz et al., 2010),
which encodes the ethylene receptor LeETR3 of sub-
family I of the LeETR1 to LeETR6 gene family (Wilkinson
et al., 1995). NR-deficient tomato plants are ethylene in-
sensitive and exhibit a reduced number of adventitious
roots either upon submergence or after ethylene treat-
ment (Clark et al., 1999; Vidoz et al., 2010).

In rice, ethylene-mediated adventitious root devel-
opment also requires signaling via auxin (Fig. 2; Zhou
et al., 2003; Pacurar et al., 2014). Auxin is well known to
regulate adventitious root development. In flooded rice
plants, inhibitor studies usingN-1-naphthylphthalamic
acid indicate that polar auxin transport through the
PIN-FORMED (PIN) family of auxin efflux carriers is
required for adventitious root growth both in adult
plants (B. Steffens, unpublished data) and in seedlings
(Xu et al., 2005). OsPIN1 RNA interference transgenic
plants exhibit the same number of adventitious root
primordia but show fewer emerged adventitious roots,
indicating that PIN1 is involved in root emergence but
not initiation (Xu et al., 2005). In addition, auxin

Figure 2. Adventitious root development in response to flooding. Under aerated conditions, gaseous ethylene escapes from plant
tissues, but during flooding, water acts as a physical barrier, trapping ethylene in the plant. GA enhances the ethylene-promoted
adventitious root growth, while abscisic acid reduces the effect. Ethylene triggers reactive oxygen species production, and to-
gether they trigger epidermal programmed cell death for root emergence and cortical programmed cell death lysigenous aer-
enchyma formation. Themain difference in some eudicots (e.g. tomato) is the requirement for de novo adventitious root initiation
via auxin and ethylene signaling. In the cross section, epidermis and exodermis are combined, but the exodermis can be several
cell layers adjacent to the epidermis. Yellow roots are adventitious roots, blue and pink roots are lateral roots, and white roots are
primary roots. Pointed arrows represent positive interactions, and flat-ended arrows represent negative interactions.

606 Plant Physiol. Vol. 170, 2016

Steffens and Rasmussen



transport is a prerequisite for adventitious root devel-
opment in tomato (Tyburski and Tretyn, 2004; Negi
et al., 2010; Vidoz et al., 2010). Together with ethylene,
auxin positively regulates adventitious root initiation
through DIAGEOTROPICA (DGT; Vidoz et al., 2010;
Lombardi-Crestana et al., 2012), which encodes SlCYP1,
a cyclophilin A-type protein. SlCYP1 changes the abun-
dance of auxin efflux carriers of the PIN family at the
plasma membrane and, hence, modulates polar auxin
transport (Oh et al., 2006; Ivanchenko et al., 2015;
Retzer and Luschnig, 2015; Spiegelman et al., 2015).
dgt mutant plants exhibited low sensitivity to auxin
and inhibited submergence-induced ethylene biosyn-
thesis, resulting in a reduced number of adventitious
roots relative to the wild type (Vidoz et al., 2010).
In rice, the development of nodal adventitious root

primordia requires the transcription factors CROWN
ROOTLESS5 (CRL5) and ADVENTITIOUS ROOT-
LESS1 (ARL1 [also named CRL1]; Suge, 1985; Bleecker
et al., 1986; Inukai et al., 2005; Liu et al., 2005). CRL5
belongs to the APETALA2/ETHYLENE RESPONSE
FACTOR gene family, and ARL1 is an ethylene- and
auxin-responsive gene that belongs to the ASYMMET-
RIC LEAVES2/LATERAL ORGAN BOUNDARIES
domain gene family (Inukai et al., 2005; Liu et al., 2005).
Both CRL5 andARL1 are targets of transcription factors
of the AUXINRESPONSE FACTOR gene family, which
link crown root development to auxin signaling (for
review, see Sauter and Steffens, 2014).
Another class of hormones suggested to modu-

late polar auxin transport is the terpenoid lactone
strigolactones (see case studies 2 and 3). However, the
involvement of strigolactones in submergence-induced
adventitious root development has yet to be deter-
mined.
Ethylene-induced adventitious root growth in adult

rice plants upon flooding is mediated not only by hor-
monal signals but also by reactive oxygen species (Fig.
2; Steffens et al., 2012). Reactive oxygen species such as
superoxide anion and hydrogen peroxide are created as
a normal part of development, and antioxidant en-
zymes maintain normal homeostatic levels (for review,
see Steffens, 2014). Superoxide anions are converted to
hydrogen peroxide by superoxide dismutase and/or
peroxidase enzymes (for review, see Steffens, 2014).
Catalase then detoxifies hydrogen peroxide, which is
involved in both signaling and programmed cell death.
Under stress conditions, the amount of reactive oxygen
species changes via either increased production of re-
active oxygen species or changes in antioxidant levels
(Bouranis et al., 2003; Steffens, 2014). In flooded rice
plants, ethylene enhances superoxide anion generation
by plasma membrane-located NADPH oxidase (Fig. 2).
The accumulation of endogenous reactive oxygen spe-
cies enhanced root growth through inhibition of the
scavenging enzyme catalase (with aminotriazole),
whereas hydrogen peroxide scavenging (with potas-
sium iodide) inhibited this growth (Steffens et al., 2012),
demonstrating the importance of hydrogen peroxide in
crown root growth.

In rice, nodal adventitious root primordia never
break through the epidermis without an exogenous
trigger and internal ethylene accumulation (Steffens
et al., 2006). When stimulated to grow, these nodal
adventitious roots exert a mechanical force on the
overlying epidermal cells, resulting in epidermal pro-
grammed cell death (Steffens et al., 2012). Epidermal
programmed cell death above root primordia ensures
that the tip of the growing root is not damaged during
emergence (Mergemann and Sauter, 2000). Both epi-
dermal programmed cell death and adventitious root
growth are regulated through the interaction of ethyl-
ene, GA, and abscisic acid (Fig. 2; Steffens and Sauter,
2005; Steffens et al., 2006). GA promotes ethylene-
triggered adventitious root growth (Suge, 1985; Lorbiecke
and Sauter, 1999; Steffens et al., 2006), and abscisic
acid inhibits both ethylene-induced and GA-promoted
adventitious root emergence (Steffens et al., 2006). In
adult mhz4 mutant rice plants, a decreased abscisic acid
level and an increased ethylene concentration resulted in
enhanced adventitious root growth (Ma et al., 2014),
supporting the idea that alterations in abscisic acid and
ethylene concentrations are a prerequisite for adventi-
tious root growth in rice. It is unknown whether ad-
ventitious root emergence in tomato is facilitated by cell
wall loosening of stem tissue through expansins such as
LeEXP1 (Rose et al., 2000) or by programmed cell death
of covering epidermal cells, as was described for rice
(Mergemann and Sauter, 2000; Steffens et al., 2012).

Flooded tamarack seedlings possess fewer but longer
adventitious roots compared with seedlings grown in
air (Calvo-Polanco et al., 2012). Interestingly, the en-
dodermis of these longer adventitious roots is poorly
developed, cell walls are less suberized, tracheids pos-
sess a smaller diameter, and cortex cells are filled with
starch (Calvo-Polanco et al., 2012). Despite the reduced
chlorophyll content in needles of flooded seedlings,
photosynthesis and transpiration were not altered,
suggesting that the morphological changes of these
adventitious roots contribute to seedling survival.
These nonwoody secondary roots may serve as sinks
for carbohydrates, as perhaps indicated by the abun-
dance of starch in cortex cells. This adaptive response is
considered to be a typical mechanism of flooding-
tolerant trees (Gravatt and Kirby, 1998).

Adventitious Root Aerenchyma Facilitate Gas Transport

Another type of morphological response to flooding
is the production of air-filled aerenchyma (Fig. 2).
Newly formed adventitious roots of many species de-
velop aerenchyma in the root cortex together with an
inducible barrier of thickened cell walls to prevent ra-
dial oxygen loss upon flooding (Drew et al., 1979;
Colmer et al., 2006; Argus et al., 2015). Root aeren-
chyma connected to the shoot help to maintain the
diffusion of gases and, hence, enable the plant to sur-
vive under flooded and oxygen-deficient conditions.
Radial oxygen loss supports longitudinal gas transport
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toward the apex, as demonstrated in roots of different
deepwater, paddy, or upland rice varieties (Armstrong,
1971; Colmer, 2003).

In rice, aerenchyma formation in adventitious roots
in stagnant water is induced within 12 h (Webb and
Jackson, 1986) and results in a relatively high porosity
of 30% to 40% depending on the genotype (Colmer,
2003). Ethylene mediates aerenchyma formation in
adventitious roots but does not induce the barrier to
radial oxygen loss (Colmer et al., 2006), indicating dif-
ferential regulation of both processes.

Flood-tolerant trees also develop adventitious root
aerenchyma upon flooding. In adventitious roots of soil-
flooded Eucalyptus camaldulensis ssp. refulgens seedlings,
root porosity increased about 14% in comparison with
unflooded seedlings (Argus et al., 2015), indicating that
the presence of aerenchyma upon flooding is an adap-
tive response of this riparian tree species. Aerenchyma
formation was linked to flood tolerance in Rumex spp.,
with the more flood-tolerant Rumex palustris producing
more aerenchyma than the less tolerant Rumex acetosa
(Herzog and Pedersen, 2014).

CASE STUDY 2: ADVENTITIOUS ROOTS FOR
IMPROVED NUTRIENT USE EFFICIENCY

Plants require a combination of three structural nu-
trients (carbon, hydrogen, and oxygen), six macronu-
trients (nitrogen, phosphorus, potassium, calcium,
magnesium, and sulfur), and eight micronutrients (bo-
ron, chlorine, cobalt, copper, iron, manganese, molybde-
num, and zinc; Timilsena et al., 2015). In most intensive
farming situations, nutrients are added to the soil in the
form of fertilizer. In 2010 to 2011, global application of
nitrogen, phosphorus, and potassium totaled 104.1, 40.5
and 27.6 million tons, respectively (Timilsena et al., 2015).
However, between 50% and 70% of nitrogen (for exam-
ple) is lost through volatilization or runoff, polluting
waterways through eutrophication (Robinson et al., 2011;
Timilsena et al., 2015). Fertilizer production is also
both energy and financially expensive, highlighting
the importance of developing nutrient-efficient crops.
To efficiently improve food production, we need an
understanding of nutrient mobility in the rhizosphere
and in the plant.

Responses to nutrient deficiencies begin with changes
in deficiency-responsive genes, which then lead to
physiological changes. There is less known about the
deficiency-responsive genes in adventitious roots, and
we recommend reviews on these genes in Arabidopsis
and other model species (Atkinson et al., 2014; Bellini
et al., 2014). Using cereals and the eudicot bean
(Phaseolus vulgaris), the following section will focus on
nutrient uptake by different adventitious roots and
physiological responses to changing nutrient conditions.

Adventitious Root Responses to Nutrient Deficiency

Nutrient uptake occurs via transporters in the root
(Fig. 3). Rice has 13 known phosphate transporters and

an additional 13 putative transporters (Rose et al.,
2013). Upon detection of low nutrient levels, the ex-
pression of these transporter genes increases to improve
uptake capacity. For example, in rice crown roots, low
potassium (Chen et al., 2015) or zinc (Widodo et al.,
2010) increases expression of the potassium (OsHAK1
and OsHAK5; Chen et al., 2015) or zinc (ZIP family;
Widodo et al., 2010) transporters, respectively, and
maize nitrogen transporter gene expression increases in
different root types under low-nitrogen conditions (Yu
et al., 2014).

Perhaps surprisingly, there are differences in nutrient
uptake ability among different types of roots (Table III).
For example, using labeled uptake studies, under high-
nitrogen (maize) or high-sulfur (rice) conditions, pri-
mary roots show greater nitrogen uptake than seminal
roots (embryonic roots that emerge adjacent to the
radicle; Fig. 3). The crown roots had the lowest nitrogen
uptake (although the crown root measurements for the
nitrogen studywere done in plants different in age from
those used for the primary and seminal measurements;
Maniou et al., 2014; Yu et al., 2014). For low-nitrogen
conditions, crown root uptake is reduced less (Yu et al.,
2014), whereas for sulfur, the percentage reduction was
similar for each root type (except for mesocotyl roots,
which are similar to hypocotyl roots in monocots and
had a much bigger reduction in sulfate uptake; Maniou
et al., 2014). In wheat plants grown in aerated condi-
tions, phosphorus uptake was initially higher in semi-
nal roots than in crown roots, but this trend reversed in
slightly older plants (Wiengweera and Greenway,
2004). However, in stagnant, flooded conditions, crown
roots showed consistently higher phosphorus and
potassium uptake than did seminal roots (Wiengweera
and Greenway, 2004). This trend was also found in the
eudicot bean, in which basal roots (i.e. roots at the base
of the bean hypocotyl) had higher phosphate uptake
under low phosphorus (Rubio et al., 2004).

When maize roots are exposed to patchy nutrient
conditions, nutrient uptake responds differently for each
root type. This is summarized in the lower part of Table
III (Yu et al., 2014). For example, crown roots take up
more 15N under homogenous low-nitrogen conditions
than they do under homogenous high nitrogen, a trend
that is reversed for primary and seminal roots (Yu et al.,
2014). However, both primary and crown roots have the
highest uptake of nitrogen when that root type is ex-
posed to local high nitrogen, whereas seminal roots had
the highest uptake under locally low levels of nitrogen
(Yu et al., 2014). These findings demonstrate significant
physiological differences between each root type.

Root Architecture Response to Nutrient Deficiency

Each root type forms in different vertical positions,
exposing them to different layers of the soil. Because
nutrients are not evenly distributed in the soil, changes
in root architecture can change the efficiency of nutrient
uptake. For example, phosphorus is more available in
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the 10- to 15-cm depth (Miller et al., 2003), so increased
tolerance to phosphorus-deficient soils may be a result
of having more surface roots (Fig. 3). Phosphorus-
efficient bean lines grew more adventitious roots (ei-
ther stem or basal roots) in the surface soil layers,
whereas less efficient lines either increased the number
of deeper roots or failed to respond to phosphorus
deficiency (Bonser et al., 1996; Liao et al., 2001; Miller
et al., 2003; Miguel et al., 2013). This was also the case
in pea (Pisum sativum) and soybean (Glycine max;
Bonser et al., 1996).
Furthermore, the root system response is systemic,

such that if any root is exposed to high phosphorus,
the root system as a whole responded as if it were
exposed to uniform high phosphorus (Bonser et al.,
1996). Increases in phosphorus uptake with shallower
roots also corresponded with increased yield in bean

(Bonser et al., 1996; Liao et al., 2001; Richardson et al.,
2011), so improvements in phosphorus efficiency
could be achieved by selecting shallower root systems.
However, the tradeoff with shallow roots is a reduc-
tion in drought tolerance because the deeper soil layers
contain more water, so the ideal scenario for tolerating
drought and phosphorus deficiency is a combination
of deep and shallow roots (Uga et al., 2011, 2012; Rose
et al., 2013). Recent identification of quantitative trait
loci for both shallow and deep rooting in rice (Uga et al.,
2011, 2012) and bean (Liao et al., 2004; Richardson et al.,
2011) suggest that this may be a real possibility (Rose
et al., 2013).

The growth and response of adventitious roots vary
between nutrients and between tolerant and intolerant
varieties. For example, zinc deficiency reduces the
number of crown roots by up to 75% in a sensitive rice

Figure 3. Nutrient responses in adventitious roots. Under nutrient-replete conditions, crown roots have the lowest nutrient uptake
rates, followed by seminal roots, while the primary roots have the highest uptake. When nutrients are deficient, the expression of
nutrient transporters increases. In addition, strigolactone increases while auxin decreases, resulting in long roots with minimal
lateral roots. Reactive oxygen species increase via changes in antioxidant enzyme activity (catalase, superoxide dismutase, and
peroxidase) and, together with enhanced ethylene sensitivity, trigger lysigenous aerenchyma formation. When nutrients are
replaced, nutrient transporter expression decreases systemically, cytokinin production increases, strigolactone levels decrease,
and lateral root initiation increases on the adventitious roots. In potassium and zinc deficiency-tolerant lines, auxin signaling
increases, and in potassium-efficient lines, cytokinin signaling decreases, together resulting in more adventitious roots. In
phosphorus-efficient lines, more adventitious roots are found in the surface layers of the soil. In the cross section, epidermis and
exodermis are combined, but the exodermis can be several cell layers adjacent to the epidermis. Pointed arrows represent positive
interactions, and flat-ended arrows represent negative interactions. –K, Potassium deficiency; –P, phosphorus deficiency; –Zn =
zinc deficiency. Yellow roots are crown roots, orange roots (the upper, short ones here) are brace roots (both adventitious root
types), cream roots are seminal roots, white roots are primary roots, and blue and pink roots are lateral roots. ACC, 1-Amino-
cyclopropane-1-carboxylic acid (an ethylene precursor).
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cultivar, whereas crown root number is maintained in a
tolerant cultivar, a trait shared by many tolerant culti-
vars (Widodo et al., 2010; Rose et al., 2013).

Work has begun on improving tolerance to nutrient-
deficient conditions by introducing genes linked to
changes in root architecture, such as PHOSPHORUS-
STARVATION TOLERANCE1 (PSTOL1; Gamuyao
et al., 2012) or the WUSCHEL-related homeobox gene
OsWOX11 (Chen et al., 2015). PSTOL1 is a phosphorus
deficiency-tolerant protein kinase found in the aus-
type rice varieties but not in all other types (Gamuyao
et al., 2012). The OsWOX11 lines have used a potas-
sium deficiency-induced gene promotor that drives
the expression of OsWOX11 (Chen et al., 2015). The
OsWOX11 and PSTOL1 rice varieties produced bigger
root systems than the wild types under low potas-
sium (Chen et al., 2015) and phosphorus (Gamuyao
et al., 2012), respectively. These larger root systems
also showed improved uptake of other nutrients
(Gamuyao et al., 2012; Chen et al., 2015), resulting in
higher yield (Chen et al., 2015). These two examples
demonstrate that manipulating the adventitious
root system can benefit the uptake of more than just
that single nutrient. PSTOL1 expression correlates
with the expression of ARL1/CRL1 and RR2 (a cy-
tokinin type A response regulator), suggesting that
changes in architecture could be linked to these net-
works (Gamuyao et al., 2012). Interestingly, PSTOL1
expression is present in primordia of crown roots but not
in seminal roots (Gamuyao et al., 2012), highlighting
differences in root types.

Not only do root types differ in the number of roots
produced and their growth response to different nu-
trient deficiencies, but they also differ in the number of
lateral roots that form on each root type. In rice, phos-
phate or nitrate deficiency results in longer roots with
fewer lateral roots on the seminal roots (Rose et al.,
2013; Sun et al., 2014), whereas zinc deficiency reduced
the number on crown roots but had little effect on root
length (Widodo et al., 2010). Using split-root experi-
ments, Yu et al. (2014, 2015) demonstrated that, al-
though lateral root density increased on maize crown

roots that were exposed to locally high concentrations
of nitrate, lateral root density was not affected on
seminal roots (Yu et al., 2014). This difference in lateral
root initiation between seminal and crown roots further
highlights the complex differences between the differ-
ent root classes in maize.

Lateral root density also increased on adventitious
roots of phosphorus-efficient bean lines (Miller et al.,
2003). Low phosphorus increased the distance from the
root tip to the first lateral root in adventitious roots, but
in basal roots there was no change except in one inef-
ficient line (Miller et al., 2003), again demonstrating
differences between adventitious root types.

Nutrient Changes Alter Hormone Signaling in
Adventitious Roots

Root induction is dependent on the interaction of
different hormone networks (for a summary comparing
adventitious and lateral roots, see Atkinson et al. [2014]
and Bellini et al. [2014]). Generally, auxin promotes
adventitious (and lateral) root initiation and decreases
elongation, whereas cytokinin and strigolactones in-
hibit root initiation. Strigolactone levels increase system-
ically under low-phosphorus or low-nitrogen conditions
inmonocots, including rice and sorghum (Sorghumbicolor;
Fig. 3; Yoneyama et al., 2007, 2015; López-Ráez et al., 2008;
Umehara, 2011; Sun et al., 2014), and in dicots, such as pea
and tomato (López-Ráez et al., 2008; Balzergue et al., 2011;
Kohlen et al., 2012). Nitrogen and phosphorus deficiency
responses were lost in the rice strigolactone mutants (Sun
et al., 2014), demonstrating the importance of the
strigolactone signaling pathway for nutrient responses in
monocot roots (Umehara, 2011). However, the exact na-
ture of the interaction between low nutrients, increased
strigolactones, and changes in root architecture is not well
understood (Rasmussen et al., 2013).

Because nutrient efficiency is linked to changes in
root architecture, and because root architecture is
regulated by signaling molecules, it is perhaps not
surprising that tolerance of nutrient deficiency can

Table III. Trends in nutrient uptake of different root types of monocot species

Growth Condition Nutrient Measured Trends for Monocot Root Type Uptake Species/Reference

Replete nitrogen Nitrogen Primary . seminal . . crown Maize/Yu et al. (2014)
Low nitrogen Nitrogen Primary . crown . seminal Maize/Yu et al. (2014)
Replete sulfur Sulfur Primary . seminal . mesocotyl . crown Rice/Maniou et al. (2014)
Low sulfur Sulfur Seminal . primary . mesocotyl . crown Rice/Maniou et al. (2014)
Replete sulfur Sulfate Seminal . mesocotyl . primary . crown Rice/Maniou et al. (2014)
Low sulfur Sulfate Seminal . primary . crown . mesocotyl Rice/Maniou et al. (2014)
Aerated Phosphorus Seminal . crown (reversed over time) Wheat/Wiengweera and Greenway (2004)
Stagnant Phosphorus Crown . seminal (all times measured) Wheat/Wiengweera and Greenway (2004)
Aerated Potassium Crown . seminal (all times measured) Wheat/Wiengweera and Greenway (2004)
Stagnant Potassium Crown . seminal (all times measured) Wheat/Wiengweera and Greenway (2004)
Root type Trends for nitrogen (N) uptake (Yu et al., 2014)
Primary Local high N . homogenous high N . local low N . homogenous low N (60% reduction)
Seminal Local low N . homogenous high N . local high N . homogenous low N (71% reduction)
Crown Local high N . homogenous low N . homogenous high N . local low N (86% reduction)
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result from changes in hormone signaling (Fig. 3). For
example, in rice, zinc deficiency-tolerant lines and the
potassium-induced WOX11 lines have increased ex-
pression of genes linked to auxin signaling compared
with the intolerant line (Widodo et al., 2010; Chen
et al., 2015). Furthermore, WOX11 rice lines had re-
duced cytokinin signaling (Chen et al., 2015). The
combination of down-regulating cytokinin signaling
while up-regulating auxin signaling may explain the
increase in adventitious root number and growth in
these nutrient-efficient rice lines.
Lateral root induction also relies on changes in hor-

mone signaling. Lateral root induction in maize crown
roots exposed to local nitrogen patches occurs via a
nitrate-induced increase in auxin levels. This includes
increased expression of the monocot-specific PIN9
followed by cell cycle induction in the phloem pole
pericycle cells (Yu et al., 2015). The presence of monocot-
specific PIN transporters involved in crown root de-
velopmental patterns supports the idea that they have
evolved separately or divergently to control features of
monocot-specific morphogenesis such as adventitious
root development (Yu et al., 2015).

Nutrient Deficiency-Induced Aerenchyma

In addition to flooding (see case study 1), many nu-
trient deficiencies, including phosphorus (Drew et al.,
1989; He et al., 1992; Siyiannis et al., 2012; Rose et al.,
2013; Fu et al., 2014; Hu et al., 2014), nitrogen (Drew
et al., 1989; He et al., 1992; Siyiannis et al., 2012), and
sulfur (Bouranis et al., 2003; Siyiannis et al., 2012;
Maniou et al., 2014), have been shown to induce root
aerenchyma formation. This induction varies in speed
of onset and severity depending on the specific nutrient
deficiency. For example, in maize, nitrogen deficiency
caused the fastest production of aerenchyma followed
by sulfur; the least production was caused by phos-
phorus (Drew et al., 1989; Siyiannis et al., 2012), al-
though the final percentage of aerenchyma was similar
between both nitrogen and phosphorus deficiency
(Drew et al., 1989).
Lysigenous aerenchyma forms through the lysis of

cortical cells and helps improve themovement of gasses
(Maniou et al., 2014), initiating in the center of the cortex
(Bouranis et al., 2003). The spaces increase in size,
leaving bridges of intact cells linking the epidermal
layers to the endodermis. Similar to aerenchyma for-
mation in flooded conditions, nutrient deficiency-
induced aerenchyma formation depends on ethylene
signaling (He et al., 1992). However, in contrast to
during and following flooding, ethylene production
decreases under nitrogen- or phosphorus-deficient
conditions (Drew et al., 1989) but sensitivity to ethyl-
ene is increased (He et al., 1992). After the inductive
ethylene signal (Fig. 3), cellulase activity peaks (Siyiannis
et al., 2012), probably leading to the controlled destruc-
tion of cortical cells. In nitrogen-deprived roots, this peak
in cellulase activity was earlier and higher than in

phosphorus-deficient roots (Siyiannis et al., 2012),
corresponding to the faster production of aeren-
chyma under nitrogen-deficient conditions.

In addition to changes in ethylene signaling, nu-
trient stress increases the production of reactive
oxygen species (Bouranis et al., 2003; Fu et al., 2014).
A deficiency of phosphorus (Fu et al., 2014) or sulfur
(Bouranis et al., 2003) leads to increased levels of
superoxide anion and hydrogen peroxide in crown
roots of maize (Bouranis et al., 2003) and rice (Fu
et al., 2014). In flooded conditions, hydrogen perox-
ide is known to be involved in programmed cell death
(for review, see Quan et al., 2008), and in sulfur-
deficient maize, superoxide anions and hydrogen
peroxide were found in the degenerating cells of the
root cortex (Bouranis et al., 2003) where aerenchyma
form (Fig. 3). Changes in reactive oxygen species
levels and peroxidase activity also increase lignifica-
tion (Quan et al., 2008), which occurs in the exoder-
mis, sclerenchyma (Fu et al., 2014), and endodermis
(Bouranis et al., 2003) under phosphorus or sulfur
deficiency (Fu et al., 2014). This potentially stabilizes
the remaining cells, avoiding complete tissue col-
lapse. Concurrent with the formation of aerenchyma,
root porosity increased, resulting in higher levels of
oxygen and hydrogen peroxide released from the
roots (Fu et al., 2014).

CASE STUDY 3: WOUND-INDUCED ADVENTITIOUS
ROOTS: CUTTING PROPAGATION

Wound-induced adventitious roots are central to the
propagation of forestry and horticultural species, and
recent work has begun to unravel the molecular and
physiological steps leading to rooting.We focus here on
the physiology of adventitious root initiation and emer-
gence, including the wound response and the networks
regulating adventitious root induction (summarized
in Fig. 4).

Wound Response

Immediately after cutting, wound response signaling
pathways are initiated at the base of the cutting
(Creelman et al., 1992; Schilmiller and Howe, 2005),
with a fast increase in jasmonic acid levels peaking
30min after cutting (Fig. 4; Ahkami et al., 2009; Rasmussen
et al., 2015). The presence of this peak correlated with
adventitious root formation (Ahkami et al., 2009;
Fattorini et al., 2009; Rasmussen et al., 2015), and a short
pulse of jasmonic acid increased adventitious root for-
mation (Rasmussen et al., 2015). However, in Bupleurum
kaoi cuttings and intact Arabidopsis hypocotyls,
prolonged exposure to jasmonic acid inhibited adven-
titious root formation (Chen et al., 2007; Gutierrez et al.,
2012). In natural conditions, this wound response may
be triggered by herbivory, physical damage, disease, or
parasites (Schilmiller and Howe, 2005; Wasternack
et al., 2006; Wasternack and Hause, 2013).
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Similar to other stresses, including flooding and nu-
trient deficiency, physical damage also increases the
production of reactive oxygen species (Fig. 4; Wasternack
et al., 2006). Hydrogen peroxide is important for the
wound response (Quan et al., 2008), as it increases
adventitious root formation (Li et al., 2009; Santos
Macedo et al., 2009; Li and Xue, 2010; Liao et al., 2010;
She et al., 2010) via diamine oxidases (She et al., 2010).
By contrast, catalase and ascorbic acid, which reduce
hydrogen peroxide levels, both inhibited adventitious
rooting (Li et al., 2009). Furthermore, the reduction in
adventitious rooting that occurs by reducing auxin
signaling (see below) can be partially rescued by
treatment with hydrogen peroxide (Li et al., 2009).
Hydrogen peroxide production begins to increase from
12 h after cutting and can reach seven times higher after
36 h (Li et al., 2009). Indole-3-butryic acid also increased
hydrogen peroxide production (Li et al., 2009), sug-
gesting feedback loops between auxin biosynthesis and
signaling and reactive oxygen species signaling.

Because phenolic compounds help protect against
reactive oxygen species (Jaleel et al., 2009), it is not
surprising that they also increase in response to

wounding. De Klerk and others (2011) tested a wide
range of polyphenols and found that all of them pro-
moted adventitious rooting, with ferulic acid having
the strongest effect.

Adventitious Root Initiation

Adventitious root induction is promoted by high
auxin and low cytokinin levels (Fig. 4; Bollmark and
Eliasson, 1986; Bollmark et al., 1988; De Klerk et al.,
1999; Kuroha et al., 2002, 2005). Auxin levels peak early
after cutting in petunia (Petunia hybrida) and pea
(Ahkami et al., 2013; Rasmussen et al., 2015) and then
decrease, while cytokinin levels rapidly plummet with
the removal of roots and then begin to recover at later
stages (Bollmark et al., 1988; Rasmussen et al., 2015).

Auxin levels can be regulated by biosynthesis,
transport, conjugation, and degradation. Reductions in
any of these also alter adventitious rooting (Ahkami
et al., 2013; da Costa et al., 2013). Auxin transport in-
hibitors significantly reduce adventitious rooting
(Garrido et al., 1998, 2002; Koukourikou-Petridou, 1998;

Figure 4. Adventitious root formation on cuttings. In intact plants, cytokinin and strigolactones are predominantly produced in
the root, while auxin is predominantly produced in the shoot. On wounding, jasmonic acid peaks within 30 min and is required
for successful root development. Reactive oxygen species, polyphenols, and hydrogen sulfide also increase and promote ad-
ventitious rooting. Polyphenols do this via reducing auxin degradation. Auxin builds up in the base of the cutting, acting upstream
of nitric oxide to promote adventitious root initiation. Auxin, nitric oxide, and hydrogen peroxide (H2O2) increase soluble sugars,
which can be used for root development. Furthermore, levels of root initiation inhibitors (cytokinin and strigolactone) are reduced
with the removal of the original root system. At later stages, auxin inhibits primordia elongation while ethylene promotes ad-
ventitious root emergence. As the new root system establishes, the production of cytokinin and strigolactones is restored. Pointed
arrows represent positive interactions, and flat-ended arrows represent negative interactions. Yellow roots are adventitious roots,
the white root is a primary roots, and blue roots are lateral roots.
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Ford et al., 2001). More recently, however, it has been
suggested that auxin degradation may also be respon-
sible for changes in the rooting ability of pea or Prunus
spp. cuttings (Liao et al., 2010; De Klerk et al., 2011;
Osterc and Štampar, 2011; Rasmussen et al., 2015). De
Klerk and others (2011) found that, at optimal concen-
trations of many of the phenolics tested, auxin degra-
dation by decarboxylation was almost completely
blocked, resulting in higher active auxin levels (Fig. 4).
This protective role of auxin may explain the im-
provement in adventitious rooting with phenolic ap-
plications.
In addition to auxin and cytokinin, strigolactones

also regulate adventitious root initiation (Kohlen et al.,
2012; Rasmussen et al., 2012b). Strigolactones are pro-
duced predominantly in the roots (Gomez-Roldan
et al., 2008; Umehara et al., 2008), so the main strigo-
lactone source has been removed in cuttings. Shoot re-
moval by decapitation (which is often used in cutting
propagation) also reduces strigolactone levels (Gomez-
Roldan et al., 2008; Umehara et al., 2008). Inhibition of
strigolactones using mutants or chemical inhibitors
improved the adventitious rooting of pea and tomato
cuttings (Kohlen et al., 2012; Rasmussen et al., 2012a,
2012b), and strigolactones act independently of cyto-
kinins in intact Arabidopsis hypocotyls (Rasmussen
et al., 2012b). Strigolactones may act by altering auxin
transport (Bennett et al., 2006; Rasmussen et al., 2012b);
however, an independent role for strigolactones on
adventitious rooting cannot be fully ruled out (Rasmussen
et al., 2012b).
The effect of ethylene on adventitious rooting under

nonwaterlogged conditions has been shown to be
contradictory. For example, in tobacco (Nicotiana taba-
cum; McDonald and Visser, 2003), sunflower (Liu et al.,
1990), and Prunus avium (Biondi et al., 1990), ethylene
treatments reduced adventitious rooting. By contrast,
the ethylene precursor 1-aminocyclopropane-1-
carboxylic acid enhanced adventitious rooting in stem
cuttings of grape (Riov and Yang, 1989) and Norway
spruce (Picea abies; Bollmark and Eliasson, 1990),
whereas ethylene appeared to have no effect on ad-
ventitious rooting in apple (Harbage and Stimart, 1996).
Adding even more complexity, at high auxin levels,
ethylene is inhibitory in mung bean (Vigna radiata) and
Eucalyptus spp. (De Klerk and Hanecakova, 2008;
Kilkenny et al., 2012), but at low auxin levels, ethylene
promoted adventitious rooting in mung bean (De Klerk
and Hanecakova, 2008). Ethylene is known to interact
with both auxin (R�uzicka et al., 2007; Lewis et al., 2011)
and cytokinin (Bollmark and Eliasson, 1990; Ramírez-
Carvajal et al., 2009), but the precise nature of this in-
teraction in cutting propagation requires further study.
Nitric oxide and hydrogen sulfide increase adventi-

tious rooting in a wide range of species (Fig. 4; Zhang
et al., 2009; Li and Xue, 2010; Liao et al., 2010; Li et al.,
2011). Zhang and others (2009) showed that hydrogen
sulfide is produced 24 h after cutting, followed by
auxin, followed by nitric oxide. Nitric oxide medi-
ates the auxin response leading to adventitious root

formation (Pagnussat et al., 2003, 2004; Zhang et al.,
2009), and using treatments and inhibitors, it has been
demonstrated that auxin acts upstream of nitric oxide
(Zhang et al., 2009).

Aside from hormonal signals, resource availability is
also an important factor in adventitious root formation
on cuttings (Fig. 4; da Costa et al., 2013). During ad-
ventitious root development in teak (Tectona grandis)
cuttings, the soluble sugar and starch levels decreased
(Jasik and Klerk, 1997; Husen and Pal, 2007). Higher
levels of soluble sugars improve adventitious rooting
and survival in many species, including petunia
(Druege and Kadner, 2008), Pelargonium spp. (Druege
et al., 2004), Chrysanthemum spp. (Druege et al., 2000),
and Eucalyptus spp. (Hoad and Leakey, 1996). Auxin
(Jasik and Klerk, 1997; Husen and Pal, 2007), nitric ox-
ide, and hydrogen peroxide (Liao et al., 2010) treat-
ments increase total soluble sugar levels. Furthermore,
it has been demonstrated that increased rooting of
cuttings kept in low light can be linked to an increase in
soluble sugar (Druege et al., 2004; Druege and Kadner,
2008; Husen, 2008; Klopotek et al., 2010).

These signaling pathways control the cell division
and differentiation that leads to a new root primor-
dium. In many species, adventitious roots form from
cambial cell divisions, which either develop directly
into a new primordium or first divide into a callus tis-
sue before tracheid differentiation and primordia es-
tablishment (Bollmark et al., 1988; Kevers et al., 1997;
De Klerk et al., 1999; Naija et al., 2009; Rasmussen et al.,
2009; Rasmussen and Hunt, 2010). As the root tissues
form, hormone signaling changes with the restoration
of higher strigolactone and cytokinin production, pos-
sibly preventing uncontrolled cell division and root
initiation. At these later stages of root development, the
hormone signaling requirements also change, with
auxin inhibiting root elongation (Kevers et al., 1997; De
Klerk et al., 1999; da Costa et al., 2013) and cytokinin
(Bollmark and Eliasson, 1986) and ethylene enhancing
adventitious root emergence and elongation.

CONCLUSION

Clear evidence is emerging demonstrating that each
type of adventitious root is regulated and responds to
environmental cues in unique ways. Because adventi-
tious roots are important for tolerance to stresses such
as flooding, nutrient deficiency, and wounding in both
monocot and eudicot species, it is important that we
understand the commonalities and differences among
these important root types.

In each of the case studies, the timing of both hor-
monal interaction and reactive oxygen species homeo-
stasis is very important. In addition, a core signaling
network regulates root initiation and emergence, with
auxin and ethylene promoting and cytokinin and stri-
golactones inhibiting. The formation of aerenchyma in
adventitious roots is common to both flooding and
nutrient deficiency and reduces the energy requirement
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for growth and maintenance. In flooded plants, aeren-
chyma is also crucial for enhancing gas exchange in this
low-oxygen environment. Under nutrient deficiency,
being able to adapt root architecture enables maximum
nutrient capture, improving plant survival and crop
yield. By manipulating recently identified nutrient
transporters and quantitative trait loci for root angle,
we now have the potential to improve breeding pro-
grams for nutrient-efficient crop lines. In future studies
with combined stresses, this will prove extremely im-
portant. When flooding was combined with nutrient
uptake studies, it was found that the adventitious roots
had higher nutrient uptake ability compared with other
root types (see case study 2). This could mean that
nutrient-efficient lines, depending on surface adventi-
tious roots, may also have improved flood tolerance.
However, much more work is still required.

In summary, we have precisely defined and de-
scribed the different adventitious root types and their
physiological responses in particular to three stress
conditions. Understanding the functional similarities
and differences shared by these advantageous adven-
titious roots is crucial for maximizing efficient and re-
silient crop production.
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