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Abstract

While there have been many solutions proposed for storing and analyzing large volumes of data, 

all of these solutions have limited support for collaborative data analytics, especially given the 

many individuals and teams are simultaneously analyzing, modifying and exchanging datasets, 

employing a number of heterogeneous tools or languages for data analysis, and writing scripts to 

clean, preprocess, or query data. We demonstrate DataHub, a unified platform with the ability to 

load, store, query, collaboratively analyze, interactively visualize, interface with external 

applications, and share datasets. We will demonstrate the following aspects of the DataHub 

platform: (a) flexible data storage, sharing, and native versioning capabilities: multiple 

conference attendees can concurrently update the database and browse the different versions and 

inspect conflicts; (b) an app ecosystem that hosts apps for various data-processing activities: 

conference attendees will be able to effortlessly ingest, query, and visualize data using our existing 

apps; (c) thrift-based data serialization permits data analysis in any combination of 20+ 

languages, with DataHub as the common data store: conference attendees will be able to analyze 

datasets in R, Python, and Matlab, while the inputs and the results are still stored in DataHub. In 
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particular, conference attendees will be able to use the DataHub notebook — an IPython-based 

notebook for analyzing data and storing the results of data analysis.

1. Introduction

Organizations collect and acquire data from various sources, such as financial transactions, 

social interactions, user activity logs, server logs, sensor data, inventory tracking, and so on. 

Typically, multiple teams or individuals are interested in extracting insights from these 

datasets, often via their own home-grown tools, and often collaborate on these datasets, 

making modifications, such as normalization and cleaning, and then exchanging these 

datasets back and forth. While there are many point solutions that let individuals or teams 

ingest and analyze large datasets, collaborative data analysis is still excruciatingly difficult 

due to the heterogeneity in tools involved, the wide diversity in skill-sets of participating 

individuals and teams, as well as the difficulty in storing, retrieving, and reasoning about the 

many versions of the exchanged datasets. Consider the following examples, which represent 

two extreme points in our spectrum of users and use cases:

• Expert analysis: Members of a web advertising team want to extract insights from 

unstructured ad-click data. To do so, they would have to take the unstructured ad-

click data, write a script to extract all the useful information from it, and store it as 

a separate dataset. This dataset would then be shared across the team. Oftentimes, 

some team member may be more comfortable with a particular language or tool, 

e.g., R, Python, Awk, and would like to use this tool to clean, normalize, and 

summarize the dataset, saving the intermediate results in some way. Other more 

proficient members may use multiple languages for different purposes, e.g., 

modeling in R, string extraction in awk, visualization in JavaScript. The typical 

way to manage dataset versions is to record it in the file name, e.g., “table_v1”, 

“table_nextversion”, which can quickly get out of hand when we have hundreds of 

versions. Overall, there is no easy way for the team to keep track of, study, process, 

or merge the many different dataset versions that are being created in parallel by 

many collaborating team members using many different tools.

• Novice analysis: The coach and players of a football team want to study, query, and 

visualize their performance over the last season. To do so, they would need to use a 

tool like Excel or Tableau, both of which have limited support for querying, 

cleaning, analysis, or versioning. For instance, if the coach would like to study all 

the games where the star player was absent, there is no easy way to do that but to 

manually extract each of the games where the star player was not playing and save 

it as a separate dataset. Most of these individuals are unlikely to be proficient with 

data analysis tools, such as SQL or scripting languages, and would benefit from a 

library of “point-and-click” apps that let users easily load, query, visualize, and 

share results with other users without much effort.

There are a variety of similar examples of individuals or teams who need to collaboratively 

analyze data, but are unable to do so because of the lack of (1) flexible dataset sharing and 

versioning support, (2) “point-and-click” apps that help novice users do collaborative data 

analysis, (3) support for the plethora of data analysis languages and tools used by the expert 
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users. This includes, for example, (a) geneticists who want to share and collaborate on 

genome data with other research groups; (b) ecologists who want to publish a curated 

population study, while incorporating new field studies from teams of grad students in 

isolated copies first; (c) journalists who want to examine public data related to terrorist 

strikes in Afghanistan, annotating it with their own findings and sharing with their team.

To address these use cases, and many more similar ones, we propose DataHub, a unified 

data management and collaboration platform for hosting, sharing, combining and 

collaboratively analyzing diverse datasets. DataHub has already been used by data scientists 

in industry, journalists, and social scientists, spanning a wide variety of use-cases and usage 

patterns.

DataHub has three key components, designed to support the above use data collaboration 

use cases:

I: Flexible data storage, sharing, and versioning capabilities

DataHub efficiently keeps track of all versions of a dataset, starting from the uncleaned, 

unstructured versions, to the fully-cleaned structured ones. This way, DataHub enables 

many individuals or teams to collaboratively analyze datasets, while at the same time 

allowing them to store and retrieve these datasets at various stages of analysis. Recording, 

storing, and retrieving versions is central to both the use-cases described above. We 

described some of the challenges in versioning for structured or semistructured data in our 

CIDR paper [3]. As part of the demonstration, we will provide a web-based version 

browsing tool, where conference attendees can examine version graphs (encoding derivation 

relationships between versions), and semi-automatically merge conflicting versions (with 

suggestions from the tool).

II: App ecosystem for easy querying, cleaning, and visualization

DataHub has an app library with support for many common data-processing activities, 

including:

• Distill: Distill is a data-cleaning by example tool; the analyst simply provides a 

small number of examples of how to transform the unstructured data into a 

structured, tabular form, and the tool generalizes from these examples to extract 

structured data from the entire dataset.

• DataQ: DataQ is a query builder tool that allows users to build SQL queries by 

direct manipulation of the table in a graphical user interface. This kind of interface 

is suitable for non-technical users such as journalists and social scientists for basic 

operations such as filters, joins, grouping, and ordering.

• DViz: DViz is a visualization tool, enabling analysts to either specify the 

visualization that they would like to examine, or be automatically recommended a 

visualization [11].

While novice analysts stand to gain the most from these tools, expert analysts could also 

benefit if their home-grown tools are insufficient. The goal here is to ensure that each of 

these data processing activities takes a handful of actions — drag and drops, mouse clicks or 
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keystrokes. As part of the demonstration, we will allow conference attendees to use each of 

these apps to process data.

III: Language-agnostic hooks for external data analysis

Expert data analysts often have their preferred languages and libraries to explore and 

manipulate data, such as Python, R, Scala, and Octave. To support data manipulation and 

analysis in these languages, DataHub uses Apache Thrift [10] to translate between these 

languages and datasets in DataHub. Thus, data analysts can continue to use these languages 

while gaining all the storage, versioning, and retrieval benefits that come with DataHub. In 

addition, DataHub has a notebook feature (called DataHub Notebook), modeled after the 

IPython Notebook [9], where data analysts can record all the intermediate commands and 

query results, tightly integrated with the underlying DataHub storage infrastructure. The 

DataHub notebook provides an extension point to add support for other languages that can 

interpret thrift objects. As part of the demonstration, we will allow conference attendees to 

access DataHub datasets in various data analysis languages, and within the DataHub 

Notebook.

We present our storage architecture in Section 2, and then describe our proposed 

demonstration of the key components of DataHub in Section 3. Detailed descriptions of 

related work are omitted due to lack of space, and can be found in the full technical paper 

[3]; we mention below some specific papers that can be used as a starting point for other 

papers.

Related Work

DataHub is related to work in multiple areas. The overall goal of collaboration is also 

espoused by fusion tables [5], however, fusion tables does not support versioning or 

modifications in other external tools. The versioning infrastructure is related to temporal 

databases (see [3]), however, temporal databases only allow a linear chain of versions (not 

conducive to collaboration). Versioning is also related to the large body of literature on 

provenance-enabled databases, e.g., [4], and is related to source-code versioning 

technologies git and svn; however, those technologies are not optimized for storing 

structured or semi-structured data. Some of the apps in the app ecosystem are inspired by 

related work: DataQ is similar to visual query builders such as Dataplay [2], but opts for a 

simpler, more direct specification of SQL commands; Distill is similar to data wrangler and 

flash-fill [7, 6], but gets direct examples from users rather than expecting them to manually 

perform the operations required for structuring a dataset. DViz is similar to Tableau [8], and 

our prior work on SeeDB [11].

2. Datahub Architecture

Figure 1 shows the architecture of DataHub, with the three components described in the 

introduction. DataHub runs as a server-based “hosted” data management platform that users 

can connect to to create, ingest, branch, query, and visualize datasets.
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Storage Architecture

The main abstraction that DataHub uses is that of a table containing records. We adopt a 

simple model where every record in a table has a key, and an arbitrary number of typed, 

named attributes associated with it; we use the word schema to loosely refer to the attributes 

associated with a record. Records are not required to all have the same number/types of 

attributes. We expect that there will be large groups of records with identical schemas in a 

table, with a fully cleaned table having the same schema for every record. For completely 

unstructured data, a single key can be used to refer to an entire file. While there are many 

other models for data that relax relational “schema-first” requirements, we chose this model 

because it offers a flexible approach for storing a wide range of data at different levels of 

structure, allowing both unstructured and fully structured data to co-exist. We do not intend 

this choice to be limiting or controversial; other “semi-structured” representations, e.g., 

XML or JSON, would suffice.

The second abstraction is that of a dataset. A dataset consists of a set of tables, along with 

any correlation/connection structure between them (e.g., foreign key constraints).

The versioning information is maintained at the level of datasets in the form of a version 

graph. A version graph is a directed acyclic graph; the nodes correspond to datasets, and the 

edges capture relationships between versions as well as the provenance information 

recording user-provided and automatically-inferred annotations for derivation relationships 

between data.

Version API

For any internal and external API to interact with a hosted dataset, it must pass through 

DataHub's version manager to ensure that reads and writes are directed to the appropriate 

version. The versioning system is responsible for handling versioning related API requests 

and maintaining appropriate metadata. Examples of these requests include importing a new 

dataset (init), associating a table with a dataset (add), creating a new version of a dataset 

(branch), setting the active version to query against (checkout), or merging two divergent 

versions into a single version(merge).

App Ecosystem and APIs

Clients interact with DataHub, and subsequently the versioning system, either through use of 

a hosted DataHub app, the web-based DataHub application that allows users to explore and 

query datasets through a web browser, a hosted scripting execution environment, or a remote 

data access API.

3. Demonstration Components

The goal of our demonstration is to highlight the benefits of having a single consolidated 

platform for collaborative data analytics. Our demonstration will consist of two end-to-end 

usage scenarios, one involving novice users, and one involving expert users, both centered 

on a political contributions dataset [1].

Bhardwaj et al. Page 5

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Novice Analysis Scenario Walkthrough

In the first scenario, the demonstration will consist of the following steps, mirroring typical 

novice user workflows: (1) The uploads a semi-structured document containing political 

contributions data; this is stored as a new version (Section 3.1 provides details on the web-

based version browser); (2) The user cleans and ingest the dataset using the Distill app, 

which guides the user to semi-automatically generate structured data from the semi-

structured dataset (Section 3.2 describes the details of Distill and other DataHub apps); (3) 

The user “commits” this structured dataset as a new version; (4) The user then decides users 

other apps for data analysis, including DataQ to query for data of interest and DViz to 

visually analyze the data.

Expert Analysis Scenario Walkthrough

In the expert usage scenario, the demonstration will consist of five steps: step (1) and (2) are 

as in the novice scenario. In step (3), the user then exports the dataset into Python using the 

language-agnostic API (see Section 3.3 for details on this API), modifies it by adding a 

derived column, and then saves it as a new version. The user repeats this process, by adding 

or deleting rows, columns, or applying cleaning and normalization steps, saving a number of 

versions along the way. In step (4) the user realizes that they'd like to go back to a previous 

version, so they use the version browser to explore and compare versions. Finally, in step (5) 

the user then decides to document their analysis in the DataHub Notebook (See Section 3.3 

for details on the DataHub Notebook.) in order to share it with their team.

In the remaining sections we provide details of the demo components.

3.1 Version Comparisons and Merging

DataHub allows datasets to be forked and branched, enabling different collaborators to work 

on their own versions of a dataset and later merge with other versions as needed. Users can, 

for example, add new records, delete records, apply transformations, add derived columns, 

delete redundant or useless columns, and so on, all in their own private version of the data, 

without having to create a complete copy or lose the correspondence with the original 

dataset.

With the ability to create multiple versions of a dataset, each with unrestricted 

modifications, complex, divergent datasets may result. As a result, users will often need to 

visualize and understand the differences between versions. For example, imagine a 

constantly evolving master data set that a user branches from at one point in time. A 

common use case will be to compare the branch to the master data, to either see what 

changed in the branch or what new data in the master could be incorporated. Another use 

case arises when merging two versions to create a single child version, where at some point 

the two versions shared a common ancestor and can potentially have conflicting changes to 

the dataset. If there are no conflicts, merging can be done automatically, otherwise DataHub 

will need to walk the user through the differences.

As part this project we are building a version browser to browse and examine versions, as 

well as a version graph (displaying how versions have evolved) for both purposes: general 
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differencing and analysis of how versions have evolved, and for merging two versions. 

Once, say, two versions are selected, the version browser will show a compact 

representation of changes between the two; coloring will indicate the percentage of records 

and attributes that have been added, removed, or deleted. In addition to comparing versions, 

this version browser will allow users to select visualization summaries for certain attributes, 

such as histograms or pie charts. Starting from this point, the version browser will also allow 

users to compare and merge versions, using input from the user as needed. Figure 2 shows a 

screenshot of this demo component. The version graph is on the left, with data histograms 

on the right. The popup in the front shows additions and modifications between the two 

versions.

3.2 App Ecosystem

The DataHub app ecosystem hosts apps for various “point-and-click” data-processing 

activities such as ingestion, curation, querying, and visualization, tailored towards novice (or 

non-programmer) users. DataHub users can find and use apps from the DataHub App Center 

for processing their data as it fits their need.

Current apps include:

1. Distill: a general-purpose, example-based data cleaning or extraction tool for 

converting semi-structured data to a structured table. Here, the user is asked for a 

few example input-output pairs, and the app generalizes from these pairs to extract 

from the entire dataset. If the app encounters any difficulties, it will then ask the 

user for additional targeted examples.

2. DViz (Figure 3): a drag-and-drop interface for creating visualizations. In the 

screenshot, we show how users can take the result of a query and generate a pie 

chart from it.

3. DataQ (Figure 4): a direct manipulation query interface for non-programmers to 

pose SQL queries. In the screenshot, the user first adds tables and selects columns, 

adds filters, then chooses not to perform any aggregation or sorting, and then saves 

the result as a new table.

We are also in the process of adding apps to enable data integration and to perform simple 

machine learning tasks such as clustering and classification. A new DataHub app can be 

written and published to the DataHub App Center using our SDK via thrift-based APIs (see 

Section 3.3).

3.3 Language Agnostic Hooks

We now DataHub's programming interfaces and tools for expert users. We first describe the 

Thrift-based API, followed by the DataHub Notebook.

Remote API—DataHub APIs are described in a Thrift [10] interface description file. Thrift 

is a framework for scalable cross-language services development. Using Thrift, we are able 

to generate language bindings for DataHub in a number of different programming 
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languages, including Go, C++, Java, Python, Ruby, and JavaScript. For instance, the Python 

binding can be generated as follows:

thrift --gen py datahub.thrift

Once the RPC stubs are generated, a python program can call DataHub APIs. A simple code 

snippet is shown below.

transport = THttpClient.THttpClient(‘https://datahub.csail.mit.edu/service’)

transport = TTransport.TBufferedTransport(transport)

protocol = TBinaryProtocol.TBinaryProtocol(transport)

client = DataHub.Client(protocol)

print “Version: %s” %(client.get_version())

# open connection

con_params = ConnectionParams(user=‘anantb’, password=‘*****’)

con = client.open_connection(con_params=con_params)

# execute a query

res = client.execute_sql(

con=con, query=‘select * from anantb.test.demo’, query_params=None)

# print field names

print “\t”.join(res.field_names)

# print tuples

for t in res.tuples:

 print “\t”.join(t.cells)

DataHub Notebook—DataHub notebook (Figure 5) is an extension to IPython [9] to 

enable interactive analysis using many scripting languages, with the ability to record and 

store the code along with the analysis results, ideally suited for reproducible data science. 

The browser-based notebook is integrated with the underlying storage engine of DataHub 

with support for SQL. DataHub notebook supports custom UDFs, and custom packages 

written in Python, Javascript, Octave, R, and Scala. The notebook also provides an extension 

point to add support for other languages which can interpret thrift objects.

Bhardwaj et al. Page 8

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://https://datahub.csail.mit.edu/service


References

1. Fec presidential campaign finance (http://fec.gov/disclosurep/pnational.do). [Online accessed 3-
March-2014].

2. Abouzied A, Hellerstein JM, Silberschatz A. Dataplay: interactive tweaking and example-driven 
correction of graphical database queries. UIST. 2012:207–218.

3. Bhardwaj AP, Bhattacherjee S, Chavan A, Deshpande A, Elmore AJ, Madden S, Parameswaran AG. 
Datahub: Collaborative data science & dataset version management at scale. CIDR. 2015

4. Cheney J, Chiticariu L, Tan WC. Provenance in databases: Why, how, and where. Foundations and 
Trends in Databases. 2009; 1(4):379–474.

5. Gonzalez H, Halevy AY, Jensen CS, Langen A, Madhavan J, Shapley R, Shen W, Goldberg-Kidon 
J. Google fusion tables: web-centered data management and collaboration. SIGMOD. 2010:1061–
1066.

6. Gulwani S, Harris WR, Singh R. Spreadsheet data manipulation using examples. Commun ACM. 
2012; 55(8):97–105.

7. Kandel S, Paepcke A, Hellerstein JM, Heer J. Wrangler: interactive visual specification of data 
transformation scripts. CHI. 2011:3363–3372.

8. Stolte C, Tang D, Hanrahan P. Polaris: a system for query, analysis, and visualization of 
multidimensional databases. Commun ACM. 2008; 51(11):75–84.

9. http://ipython.org. IPython (retrieved June 1, 2014).

10. http://thrift.apache.org. Apache Thrift (retrieved June 1, 2014).

11. Vartak M, Madden S, Parameswaran AG, Polyzotis N. SEEDB: automatically generating query 
visualizations. PVLDB. 2014; 7(13):1581–1584.

Bhardwaj et al. Page 9

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://fec.gov/disclosurep/pnational.do
http://ipython.org
http://thrift.apache.org


Figure 1. DataHub Architecture
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Figure 2. A screenshot of the merging demo
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Figure 3. A screenshot of the visualization app (DViz)
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Figure 4. A screenshot of query builder app (DataQ)

Bhardwaj et al. Page 13

Proceedings VLDB Endowment. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. A screenshot of DataHub Notebook
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