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Abstract

In this review we discuss the role of ATP synthase as a molecular drug target for natural and 

synthetic antimi-crobial/antitumor peptides. We start with an introduction of the universal nature 

of the ATP synthase enzyme and its role as a biological nanomotor. Significant structural features 

required for catalytic activity and motor functions of ATP synthase are described. Relevant details 

regarding the presence of ATP synthase on the surface of several animal cell types, where it is 

associated with multiple cellular processes making it a potential drug target with respect to 

antimicrobial peptides and other inhibitors such as dietary polyphenols, is also reviewed. ATP 

synthase is known to have about twelve discrete inhibitor binding sites including peptides and 

other inhibitors located at the interface of α/β subunits on the F1 sector of the enzyme. Molecular 

interaction of peptides at the β DEELSEED site on ATP synthase is discussed with specific 

examples. An inhibitory effect of other natural/synthetic inhibitors on ATP is highlighted to 

explore the therapeutic roles played by peptides and other inhibitors. Lastly, the effect of peptides 

on the inhibition of the Escherichia coli model system through their action on ATP synthase is 

presented.
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1. INTRODUCTION

ATP synthase is the primary means of cellular energy production in all animals, plants, and 

almost all microorganisms. ATP, the universal energy currency, is generated by ATP 

synthase by oxidative or photophosphorylation in the membranes of bacteria, mitochondria, 

and chloroplasts. The overall reaction sequence is: ATP synthase + ADP + Pi ↔ ATP 

Synthase + ATP. ATP generation requires a mechanical rotation mechanism in which ATP 
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synthase subunits rotate at approximately 100 times per second in order to convert food into 

energy by oxidation. ATP synthase works like a motor and is indeed one of the smallest 

biological nanomotors found in all livings systems. An average human leading a normal life 

is expected to generate approximately 2.0 million kg of ATP from ADP and Pi (inorganic 

phosphate) in a 75-year lifetime. [1–3]. The structural and functional activity of ATP 

synthase enzymes are essentially the same in all prokaryotes and eukaryotes [4–8]. The total 

number of protons required to synthesize one ATP molecule among different organisms 

ranges from three to four, with the possibility that cells can vary this ratio to suit their 

physiological and environmental conditions [9–11].

2. ATP SYNTHASE ENZYMES

All the metabolic and physiological processes performed by living organisms require 

energy. This source of energy is adenosine triphosphate (ATP). Consequently, ATP is the 

universal energy currency used by all cells from bacteria to human. The third phosphate 

bond of ATP is extremely unstable and its hydrolysis releases a significant amount of free 

energy (~7kcal/mol). The continuous use of ATP in a multitude of functions means every 

cell must generate ATP on a constant basis.

ATP synthase is one of the oldest and most highly conserved enzymes. Consequently, ATP 

synthases, from the inner membrane of mitochondria and chloroplast thylakoid membranes, 

show identical structural and functional properties to their counterparts from the plasma 

membrane of bacteria. ATP synthase (EC 3.6.3.14) is a general term for an enzyme that can 

synthesize adenosine triphosphate (ATP) from adenosine diphosphate and inorganic 

phosphate. ATP synthase molecules are membrane-bound transporters that couple ion 

movement through a membrane with the synthesis or hydrolysis of an ATP nucleotide. A 

variety of membrane- bound ATP synthases evolved to fulfill the explicit needs of different 

cell types. Based on the particular function, these enzymes are categorized as F-, V-, A-, P-, 

or E-type ATP synthase [12–15]. Synthesis and hydrolysis of ATP is the sole function of all 

these forms of ATP synthases.

Before discussing the detailed structure of F1Fo ATP synthase (see Fig. 1A), it would be 

appropriate to briefly describe other types of ATPases. The F-type ATP synthase (for 

‘phosphorylation Factor’, and also known as H+-transporting ATPases or F1Fo-ATPases) are 

extraordinarily conserved among organisms and are the principal enzymes performing ATP 

synthesis in living systems. They are located in the plasma membranes of bacteria, in the 

thylakoid membranes of chloroplasts, and in the inner membranes of mitochondria. In 

certain bacteria, Na+-transporting F-ATP synthase is also present. The V-type ATP synthase 

(for ‘Vacuole’) is found in the eukaryotic endomembrane systems, e.g. in vacuoles, the 

Golgi apparatus, endosomes, lysosomes, and in the plasma membrane of prokaryotes and 

certain specialized eukaryotic cells. V-ATPases hydrolyze ATP to drive a proton pump, but 

cannot work in reverse to synthesize ATP [16, 17]. The A-type ATP synthases (A-ATPases, 

for ‘Archaea’) are found solely in Archaea and have a similar function to F-ATPases 

(reversible ATPases). A-type ATPases may have arisen as an adaptation to different cellular 

needs and the more extreme environmental conditions faced by Archaeal species. The P-

type ATP synthases (P-ATPases, also known as E1-E2 ATPases) are found in bacteria and 
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in a number of eukaryotic plasma membranes and organelles. P-ATPases function to 

transport a variety of different compounds, including ions and phospholipids, across a 

membrane using ATP hydrolysis for energy. There are many different classes of P-ATPases, 

each of which transport a specific type of ion: H+, Na+, K+, Mg2+, Ca2+, Ag+ and Ag2+, 

Zn2+, Co2+, Pb2+, Ni2+, Cd2+, Cu+ and Cu2+. The E-type ATP synthases (E-ATPases, for 

‘Extracellular’) are membrane-bound cell surface enzymes that have broad substrate 

specificity, hydrolyzing other NTPs besides ATP, as well as NDPs – although their most 

likely substrates are ATP, ADP, and UTP, as well as extracellular ATP [18–22].

The F1Fo ATP synthase has a long research history and is the prime focus of this review. 

The F1 particle was first isolated by Ephraim Racker in 1961 (for factor 1). The name Fo 

comes from the oligomycin inhibition of the membrane-embedded portion of ATP synthase. 

Fundamentally, F1Fo-ATP synthase is structurally and functionally similar whatever the 

source. In its simplest form, as shown in Fig. (1A), Escherichia coli ATP synthase contains 

eight different subunits, namely α3β3γεab2c10. The total molecular mass is ~530 kDa. F1 

corresponds to α3β3γδε and Fo to ab2c. The yeast ATP synthase is one of the most complex 

known enzymes with ~20 different subunit types [7, 8, 23]. In plants ATP synthase is also 

present in chloroplasts (CFoF1-ATP synthase). The enzyme is integrated into the thylakoid 

membrane where; the CF1-part inserts into the stroma, and is integral to the dark reactions of 

photosynthesis (Calvin cycle) and ATP synthesis. In chloroplasts, the structure is the same 

except that there are two isoforms. In mitochondria, there are 7–9 additional subunits 

depending on the source, but in toto they contribute only a small fraction of additional mass 

and may have regulatory functions [24–26]. ATP hydrolysis and synthesis occur on three 

catalytic sites in the F1 sector, whereas proton transport occurs through the membrane 

embedded Fo sector. The γ-subunit forms a coiled coil of α-helices that extends into the 

central space of the α3β3 hexagon. Proton gradient-driven clockwise rotation of γ (as viewed 

from the outer membrane) leads to ATP synthesis and anticlockwise rotation of γ results in 

ATP hydrolysis. In recent nomenclature, the rotor consists of γεcn, and the stator consists of 

α3β3δab2 [27–29]. The function of the stator is to prevent co-rotation of catalytic sites with 

the rotor. Current understanding of the F1Fo structure and mechanism has been thoroughly 

reviewed by Senior’s group and others [1–3, 29–42].

3. FORMATION OF ATP THE ENERGY CURRENCY

A total of six nucleotide binding sites exist on the F1 sector of ATP synthase. The three that 

are catalytic are mainly contributed by the β-subunit, and the three that are non-catalytic are 

mainly contributed by α-subunits. The three catalytic sites are designated as βTP, PDP, and 

βE by x-ray crystallographers based on the binding of ATP, ADP, and Pi respectively [43, 

44]. Pi initially binds to the βE (the empty site) for ATP synthesis. The synthesis reaction in 

the three catalytic sites is interdependent and occurs successively. The three catalytic sites 

are known to have different affinities for nucleotides at any given moment. Each catalytic 

site undergoes a conformational change that results in the following sequence: substrate 

(ADP+Pi) binding → ATP synthesis → ATP release. Boyer [4, 45, 46] predicted that 

catalysis requires the sequential involvement of three catalytic sites, each of which changes 

its binding affinity for substrate and product as it proceeds through the cyclical mechanism. 

Boyer named this sequence the “binding change mechanism.” In Fo, a proton motive force is 
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converted to a mechanical rotation of the rotor shaft, which drives conformational changes 

of the catalytic domains in F1 to synthesize ATP. The reverse reaction hydrolysis of ATP 

induces reverse conformational changes of the Fo sector and consequently reverses rotation 

of the rotor shaft. These conformational changes in the catalytic sites are linked to rotation 

of the γ-subunit. Yoshida and Kinosita, with colleagues in Japan, and subsequently by 

several other labs [10, 47–51], have observed the γ-subunit rotation in an isolated α3β3γ 

subcomplex. The catalytic function of ATP synthase with respect to ATP hydrolysis or 

synthesis in F1Fo and its relationship to the mechanical rotation of γ-subunit is not the focus 

of this review. However, a better understanding of the structure and function of F1Fo would 

illuminate the possible pathways to developing ATP synthase as a molecular drug target and 

its use in nanotechnology and nanomedicine [52–55]. Hence, understanding the structure 

and catalytic function of ATP synthase, particularly Pi binding leading to ATP formation, is 

of paramount importance to embarking on the details of its inhibition by peptides [2, 3, 56–

59].

4. SIGNIFICANCE OF INORGANIC PHOSPHATE (Pi) BINDING

Understanding Pi binding can reveal a wealth of information on the reaction mechanism of 

ATP synthesis, hydrolysis, and the γ-subunit rotation induced conformational changes of 

αβ-subunits. These relationships are appreciated from the following two central questions. 

(I) What causes the ATP synthase to bind ADP and Pi rather than ATP at catalytic sites? 

The interesting fact is that in active cells, the cytoplasmic concentrations of ATP and Pi are 

approximately in the 2–5 mM range, whereas the ADP concentration is at least 10–50-fold 

lower. However, it has been established from the equilibrium binding assays that both ADP 

and ATP bind to catalytic sites of purified F1 and detergent solubilized F1Fo with nearly 

comparable binding affinities [60–63]. Apparently, a specific mechanism favors the 

selective binding of ADP into catalytic sites while simultaneously obstructing access to ATP 

during proton driven rotation and ATP synthesis. One hypothesis is that during ATP 

synthesis, proton gradient driven rotation of subunits drives an empty catalytic site to bind Pi 

tightly, thus stereochemically preventing ATP binding and resulting in ADP binding [30]. 

(II) How does subunit rotation affect the Pi binding [45, 64, 65]? Theoretical and 

experimental evidence suggests that Pi binding appears to be “energy linked”, implying that 

it is linked directly to subunit rotation [24, 66, 67]. Thus, the details of Pi binding are not 

only necessary for understanding the mechanism of ATP synthesis, but as suggested earlier, 

molecular features of Pi binding derived from mutational and biochemical studies may in the 

near future, assist in the development of potent and novel molecular drug inhibitors of ATP 

synthase [2, 59, 68, 69].

Selective Pi binding, carried out by the catalytic site Pi binding subdomain residues, is the 

key for ATP formation. Residues αPhe-291, αSer-347, αGly-351, αArg-376, βLys-155, 

βArg-182, βAsn-243, βArg-246, and other highly conserved αVISIT-DG sequence residues 

are found in close proximity to bound phosphate analogs AlF3 or SO4
2− in the X-ray 

crystallographic structure of ATP synthase catalytic sites, which suggests their involvement 

in preferential Pi binding [44, 70]. [E. coli residue numbers are used throughout]. Moreover, 

Orris et al. [71] showed by X-ray crystallography that the covalent adduct formed by NBD-

Cl (7-chloro-4-nitrobenzo-2-oxa-1, 3,-diazole) is specifically in the βE catalytic site, thus the 

Ahmad et al. Page 4

Curr Med Chem. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



protection afforded by Pi against the NBD-Cl inhibition of ATP synthase indicates that Pi 

binding occurs at the βE catalytic site.

For mitochondrial ATP synthase Perez et al. [72] showed that Pi protects against the NBD-

Cl inhibition of ATPase activity, providing a means to measure Pi binding. Alteration of the 

Pi protection against the NBD-Cl assay for E. coli purified F1 or membrane bound F1Fo 

resulted in defining the relationship between Pi binding and catalysis for eight residues, 

namely aPhe-291, aSer-347, aGly-351, aArg-376, βLys-155, βArg-182, βAsn-243, and 

βArg-246. The following five residues; αSer-347, αArg-376, βLys-155, βArg-182, and 

βArg-246 grouped in a triangular fashion, were found to be involved in Pi binding. Three 

other residues; αPhe-291, αGly-351, and βAsn-243, though important for function and 

overall structural maintenance, are not directly involved in Pi binding [35, 53, 73–78]. The 

presence of Pi binding residues in the catalytic site causes the preferential binding of ADP 

over ATP. As mentioned elsewhere [3] there are other residues, such as rest of the αVISIT-

DG sequence residues, in close proximity to Pi binding subdomain in the catalytic sites that 

appear to be potential candidates for direct or indirect Pi binding and require further 

characterization.

5. ATP SYNTHASE AND DISEASE STATES

It is well known that failure of the ATP synthase complex can result in a wide variety of 

diseases and that this enzyme may also be used as a therapeutic drug target in the treatment 

of many diseases such as cancer, tuberculosis, obesity, neuropathies, Alzheimer’s, microbial 

infections, mitochondrial diseases, immune deficiency, cystic fibrosis, diabetes, ulcers, and 

Parkinson’s [2, 56, 79, 80]. For example, one of the forms of Leigh syndrome, a 

neurodegenerative disease, is the result of mutation in the a-subunit of ATP synthase [81]. 

The c-subunit of ATP synthase is involved in both lysosomal storage diseases and Batten 

disease. Alzheimer’s disease patients show accumulation of α-subunit and low expression of 

β-subunit in the cytosol. The presence of circulating subunit F6 has been associated with 

hypertension [82, 83]. Furthermore, ATP synthase is a possible molecular target for 

antiobesity drugs. The inhibition of non-mitochondrial ATP synthase resulted in the 

inhibition of cytosolic lipid droplet accumulation [84]. The presence of ATP synthase on the 

surface of multiple animal cell types is also correlated with several other cellular processes 

including angiogenesis, intracellular pH regulation, and programmed cell death [85–90]. 

Angiostatin, a known inhibitor of angiogenesis, was shown to bind to ATP synthase on the 

surface of human endothelial cells. The transport of H+ across the plasma membrane by 

mitochondrial ATP synthase was associated with cytolysis of tumor cells and is the basis for 

angiostatin’s antiproliferative effect on endothelial cells because of its interaction with the 

α-subunit of ATP synthase [91].

The potential use of ATP synthase protection against microbial infections is straight forward 

because it is an appropriate target enzyme for antimicrobial agents. Protection against dental 

cavities caused by the microbe Streptococcus mutans presents a nice example for this 

potential. S. mutans is an important microbial agent in the pathogenesis of dental cavities 

through acid production and biofilm formation. Inhibition of S. mutans ATP synthase 

provides a prophylactic effect against S. mutans metabolism by arresting biofilm formation 
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and acid production [92, 93]. Another instructive example is the case of Mycobacterium 

tuberculosis ATP synthase, where two mutations in its c-subunit (D32V and A63P) confer 

resistance to the tuberculosis drug diarylquinoline [94, 95], providing insight into the causes 

of drug resistance against tuberculosis. Hence, a better understanding of ATP synthase 

inhibition and its interaction with known inhibitors may be of value in the treatment of these 

and other diseases.

The importance of ATP synthase as a promising target for drug development is also evident 

from the fact that many antibiotics such as efrapeptins, aurovertins, and oligomycins inhibit 

its function. Efrapeptins and aurovertins inhibit both synthesis and hydrolysis of ATP by 

ATP synthase [96, 97]. Oligomycin on the other hand is a potent inhibitor of ATP synthase 

by binding in the Fo sector and blocking proton conduction. One study showed that 

oligomycin induces an apoptotic suicide response in cultured human lymphoblastoid and 

other mammalian cells within 12–18 hrs, but not in ρo cells that are depleted of a functional 

mitochondrial respiratory chain [98]. Another similar study suggested that oligomycin 

interaction with components of mitochondrial pathways may lead to apoptosis of select cells 

via CD 14 [99]. Thus, it is quite possible that some degree of similar inhibition, or 

interactions between ATP synthase and other inhibitors, may occur and play a significant 

role in apoptosis via mitochondrial pathways [68, 69, 79].

6. NON PEPTIDE ATP SYNTHASE INHIBITORS

A wide variety of natural and synthetic products are known to bind and inhibit ATP synthase 

[2, 3, 56, 59, 68, 69, 100–104]. 7-chloro-4-nitrobenzo-2-oxa-1, 3-diazole (NBD-Cl), sodium 

azide (NaN3), aluminum fluoride (AlFx), scandium fluoride (ScFx), beryllium fluoride 

(BeFx) are known inhibitors. (In a biochemical reaction Al, Sc, and Be can be coordinated 

by different numbers of fluoride ions. The presence of F- species is indicated with x). 

Several naturally occurring antibiotics such as oligomycin, efrapeptins, aurovertins, 

leucinostatins, a number of polyphenols like resveratrol, piceatannol, quercetin, morin, 

epicatechin, and peptides to be discussed later are additional inhibitors of ATP synthase [2, 

35, 53, 59, 68, 69, 97, 101, 105–112]. Fig. (3) shows inhibitory effects of some inhibitors.

Recently there has also been a focus on polyphenol induced inhibition of ATP synthase. 

This is due to their natural occurrence, compatibility with the human system, and ubiquitous 

availability. Polyphenols are mainly naturally occurring, but are also synthetic or 

semisynthetic organic chemicals characterized by the presence of single or multiple phenolic 

structural units. The number and characteristics of the phenolic groups stimulates the unique 

metabolic, toxic, or therapeutic properties associated with them [113–115].

A variety of dietary flavonoids or polyphenolic compounds exert a broad range of 

pharmacological effects, such as protection of cells or tissues through multiple responses, 

including cell death, through their actions on a multitude of targets. A large body of 

experimental data is available on the effects of dietary polyphenolic compounds and their 

derivates on human health. Some polyphenols are known to block the action of enzymes and 

other substances that promote the growth of cancer cells [102, 116–120]. Physiological 

relevance of dietary polyphenols can be ascribed to their interaction with the mitochondria 
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of eukaryotic cells, while degenerative diseases such as cancer, aging, and neurological 

disorders are attributed to mitochondrial dysfunction [121, 122]. Interestingly enough, 

experimental results suggest that the mechanism of inhibitory actions of both polyphenols 

and peptides on ATP synthase may be somewhat similar [59, 68, 69, 119]. X-ray 

crystallographic structures, in addition to biochemical assays of polyphenol and peptide 

inhibited ATP synthase, may help in revealing the exact inhibitory mechanism.

7. ANTIMICROBIAL AND ANTITUMOR PEPTIDES - THE POTENTIAL 

THERAPEUTIC DRUGS INHIBITORS OF ATP SYNTHASE

Insulin, thyroid hormone, and factor VII were among the first peptide drugs [123]. Recent 

interest in peptides for therapeutic applications has developed in part from the need for new 

antibiotics because of evolved bacterial resistance to traditional molecules [124]. The 

potential utility of AMPs for the development of new antibiotics is also related to the 

observation that there may be no general mechanism for the evolution of bacterial resistance 

to the activity of different peptides [2, 59, 125, 126]. Additionally, peptides are 

characterized by a wide spectrum of activity against multiple bacteria types and by low 

levels of evolved resistance [127]. Bio-active peptides can be grouped into a number of 

functional classes such as 1) peptide hormones and neurohormones, 2) peptide toxins, 3) 

antimicrobial peptides (AMPs), and 4) cell penetrating peptides, with these having a number 

of different effects, such as being neurotoxic, cytolytic, necrotic, hemor-rhagic, anti-

inflammatory and analgesic, among others [128].

A number of peptides with antimicrobial activity known as Antimicrobial Peptides (AMPs) 

or Host Defense Peptides (HDPs) are in various stages of development. Possible clinical 

applications include anticancer activity, immunomodulation, wound healing, drug carriers, 

vaccine adjuvants, innate defense regulators, and both pro and anti-inflammatory agents 

[125]. Potential general applications under development include topical antibiotics and 

antiseptics, anti-inflammatory activity, nosocomial infections, and respiratory [129]. Present 

efforts to develop AMPs for specific therapeutic applications include therapies for oral 

diseases [130], biofilm infections [131], bacterial sepsis [132], antimalarial host-directed 

adjunctive therapy [133], and methicillin-resistant Staphylococcus aureus [134].

Since 2000 about 20 new antibiotics have been developed and 40 compounds are in clinical 

development. At least 15 peptides or peptide mimics for therapeutic applications are in 

active development [129]. A predominance of natural product compounds now present in 

late stage trials suggests the possibility that natural products such as AMPs may have an 

increased likelihood of success [135]. Potential weaknesses of AMPs as candidates for new 

antibiotics include weak activity, nonspecific cytotoxicity, susceptibility to proteolysis, high 

production costs, loss of activity, potential interference with host innate immunity, and 

interference with normal flora [126, 127, 136, 137].

Natural defenses against pathogens include a wide variety of systems in both plants and 

animals and include various types of oligopeptides and peptides [138]. AMPs are a 

component of vertebrate innate immunity that have been present in most living organisms 

for over 2.6 billion years [139] and were first described in insects as an inducible system of 

Ahmad et al. Page 7

Curr Med Chem. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



protection against bacterial infection [140–142]. AMPs are generally cationic and 

amphipathic molecules of less than 50 amino acids residues. They have been isolated from 

all investigated phyla, including microbes, plants, invertebrates, and vertebrates. AMPs have 

been shown to exhibit inhibitory activity against Gram-positive and Gram-negative bacteria, 

fungi, parasites, and viruses [139]. Plant AMPs also exhibit activity against human 

pathogens [136]. A large number of AMPs are known to have selective anticancer activity as 

well [143]. AMPs have a neutralizing effect on bacterial endotoxins that are a primary cause 

of lethality in sepsis [144–146] and may have multiple additional inhibitory properties with 

unclear modes of actions [137].

There are 2065 entries in the Antimicrobial Peptide Database (APD) [147], (http://

aps.unmc.edu/AP/main.php), of which 1664 (80.6%) are identified as having antibacterial 

activity, 732 (35.4%) have antifungal activity, 141 (6.8%) have anticancer activity, and 125 

(6.0%) have antiviral activity. The mean length of all peptides in the APD is 30.63 residues 

and the mean net charge is +3.11. Identification of secondary structure among database 

AMPs shows 14.67% (N=303) are α-helical, 4.35% (N=90) are in β-conformation, and 

2.76% (N=57) are α+β. 17.96% (N=371) were found to have disulfide bonds and 5.52% 

(N=114) were rich in unusual amino acids [147]. While the updated APD is sufficient to 

serve our purpose in this article, interested readers may refer to other databases dedicated to 

AMPs listed in the APD links. Additional information on helical AMPs from both synthetic 

and natural sources can be found in YADAMP, which was built based on the information 

from the APD as well as other literature sources [148].

Of all APD listed animal derived AMPs, 1490 (56.5%) are from amphibians. Following the 

discovery of AMPs in insects, biochemically active substances in frog skin were identified 

as bioactive peptides [149–151]. AMPs are gene-encoded and produced by phagocytes and 

epithelial cells [128]. Frogs and toads secrete AMPs from granular glands of the skin, 

typically in response to infection or environmental stress [152] and at concentrations as high 

as mg/g of wet skin [150]. The single largest source of AMPs found in the APD is from 

amphibian skin with 842 (40.7%) of all listed AMPs from this source. The first amphibian 

AMPs identified were the magainins from skin secretions of the frog Xenopus laevis [149]. 

Currently known amphibian AMPs were derived from the European toad in the family 

Bufonidae, South American tree frog species of the family Hylidae, and species of frogs in 

the family Ranidae in Europe, North America and South America [146, 153]. Frog skin 

produces a variety of AMPs with up to 100 unique amino acid sequences per species [154]. 

Based on structural similarity and species of origin, there are four identified classes of 

amphibian AMPs: 1) magainins from Xenopus, 2) dermaseptins from species in the genus 

Phyllomedusa, 3) bombinins and bombinin H from European toads, and 4) temporins, 

brevinins, esculentins, ranalexins, and ranauerins from species in the genus Rana [146].

Most AMPs are cationic, between 10 and 50 residues in length, and frequently include a C-

terminal amide group. Mode of action studies indicate that AMPs appear to interact with 

negatively charged phospholipids and then insert into the bacterial cell membrane, or they 

may also move across the cell membrane by passive transport and there disrupt a number of 

cellular processes. AMPs are associated with a number of other antimicrobial processes as 

well, including cell proliferation and angiogenesis [139]. Several mechanisms have been 
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hypothesized regarding the activity of AMPs, such as membrane permeabilization and cell 

death by either a “barrel-stave” model [155] or a “torodial pore” model proposed for 

magainins from Xenopus skin [156–158]. Dermaseptins appear to cause a non-pore-

dependent cytolytic activity that causes membrane bilayer micellization and disintegration 

[159]. Laughlin and Ahmad [59] showed that several cationic α-helical amphibian AMPs 

such as Ascaphin-8, XT-7, Citropin 1.1, Aurein 2.2, Aurein 2.3, Maculatin 1.1, Melittin-

related peptide, Carein 1.8, Carein 1.9, Maganin II, Maganin II -amide, and dermaseptin 

have reversible inhibitory effects on the ATPase activity of E. coli ATP synthase. ATP 

synthase is present of the plasma membrane of bacteria while in eukaryotic cells it is present 

on the inner membrane of mitochondria. Therefore, inhibitory actions of membrane 

targeting AMPs may be attributable to their interactions with membrane bound ATP 

synthase. Similarly in tumor cells the presence of the F1 sector of ATP synthase on the 

plasma membrane [56].

AMPs have become potential sources of compounds with useful pharmacological properties 

and medical utility in antimicrobial [160–162] and anticancer [163] applications. One 

probable drawback of the usefulness of these molecules is that they seem to be effective 

only at very high doses [164]. This may be related to the observed high concentrations in 

vivo, but may possibly be improved for pharmacological purposes by modifications of 

amino acid sequences or functional groups, based on molecular modeling studies, as has 

been observed recently with polyphenolic compounds [100] and peptides [Z. Ahmad and T. 

Laughlin unpublished results]. Synergistic effects with AMPs among different α-helical 

peptides have also been observed [165] and may be related to the large number of different 

isoforms found in several species [166]. This suggests that the evaluation of potential ATP 

synthase inhibitory activity by AMPs may be enhanced by combinatorial studies.

A number of experimental studies described below used α-helical peptide to induce 

inhibition of ATP synthase. α-helical peptides used to inhibit ATP synthase have been 

derived from a variety of organisms, including insects, yeasts, and frogs Apparently the 

sterochemical interactions of α-helical peptides with the β-DELSEED-motif of ATP 

synthase are more compatible than other secondary structures.

Melittin, the primary component of honey bee venom (A. mellifera), is an α-helical basic 

peptide composed of 26 residues and is known to have inhibitory effects on the ATPase 

activity of F1-ATP synthase [2, 57–59]. The peptide is a potent inhibitor of both E. coli and 

bovine ATP synthase (IC50~5µM) [58, 59], and may have an effect similar to that of other 

known α-helical peptide inhibitors, IF1, Wild-type yeast cytochrome oxidase, and synthetic 

Syn-A2 [57, 58, 167–171].

Fig. (1B) shows the x-ray crystallographic structure of anionic βDELSEED-loop (residue 

numbers β380–386) of ATP synthase, while some select cationic α-helical peptides with 

potential therapeutic properties are shown in Fig. (2). Indirect experimental evidence on 

protection against the inhibition of quinacrine mustard by melittin suggested a common 

βDELSEED binding site for peptides. To date, several peptides that form basic amphiphilic 

α-helical structures have been shown to bind at the βDELSEED-loop of E. coli ATP 

synthase. [57, 58].
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Previous studies indicated that during conditions of high gradients and low ATP 

concentrations, the c-terminal α-helical domain of the ε-subunit of F1-ATPase undergoes 

large conformational changes and interacts with the α3β3 hexagon ring, where it comes in 

close proximity to the βDELSEED-loop. Electrostatic interactions between basic residues of 

the ε-subunit and the acidic residues of βDEL-SEED-motif cause inhibition of ATPase 

activity [172–174]. ATP synthase activity is also affected by mitochondrial if1 [175, 176]. 

if1 is a natural regulatory peptide of 56–87 residues in length that inhibits the ATPase 

activity of ATP synthase in a manner that is both reversible and noncompetitive [177]. A 

crystal structure of if1 with the F1- subunit shows the N-terminal domain of IF1 to be bound 

at the α and βF1 interface [178].

We expect AMPs with potential inhibitory effects on ATP synthase through binding at the 

βDELSEED-loop to be relatively short cationic peptides of approximately 10–30 amino acid 

residues, with α-helical secondary structure, and having previously identified anti-bacterial 

or anti-cancer effects. Candidate AMPs for anti ATP synthase activity and anti-microbial 

activity (Table I and Table II) were selected from the APD based on an α-helical secondary 

structure, a net positive charge, a total length of 10–30 residues, and identified antibacterial, 

antiviral, anticancer, or antifungal activity. Laughlin and Ahmad [59] tested fifteen peptides 

for ATP synthase inhibitory activity based on the previously identified ATP synthase 

inhibition by the melittin peptide [57, 58]. It was shown that MRP and MRP-amide strongly 

inhibited the ATPase activity of ATP synthase. However, magainin II, magainin II-amide, 

and caerin 1.9 only partially inhibited ATPase activity. Other peptides exerting partial 

inhibition of E. coli ATP synthase, but not shown in Fig. (2), were ascaphin-8, aurein 2.2, 

aurein 2.3, citropin 1.1, and maculatin 1.1. The presence of an amide group at the c-terminal 

end of MRP and magainin II caused an additional ~20–40% inhibition. All the above 

amphibian AMPs had varying degrees of effect on E. coli cell growth. Ascaphin-8, aurein 

2.2, aurein 2.3, caerin 1.9, citropin 1.1, dermaseptin, magainin II-NH2, MRP, or MRP-NH2 

resulted in significant inhibition of cell growth, which was interpreted as a possible result of 

anti ATP synthase activity [2, 59].

It seems probable that there will be variable results from the testing of AMPs for inhibition 

of ATP synthase or of cell growth for therapeutic applications, depending on the particular 

target molecules and organisms. We also found that various modifications of naturally 

occurring AMPs may be used to modulate their effectiveness on a molar scale with regard to 

both ATP synthase inhibition and cytotoxicity (Z. Ahmad and T.F Laughlin unpublished 

results). By virtue of the great variability in the structures and potential functions of AMPs, 

these relatively simple molecules may constitute a rich natural resource of new drug 

compounds that may be targeted at microorganisms and neoplasms through inhibitory 

effects on ATP synthase.
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Fig. (1). Structure of Escherichia coli ATP synthase and peptide binding siteβDELSEED
(A) Water soluble F1 form of E. coli enzyme in backbone form showing catalytic Pi binding 

subdomain triangle, polyphenol, and peptide binding sites in space fill form. Membrane 

bound Fo sector is also show in backbone form. Polyphenol and peptide binding sites are 

identified with circles at the interface of α/β subunits. (B) Enlarged peptide binding pocket 

in wireframe form identifies the involved residues. Figure was generated by PDB file 1H8E 

[44] using Rasmol [179].

Ahmad et al. Page 21

Curr Med Chem. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ahmad et al. Page 22

Curr Med Chem. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ahmad et al. Page 23

Curr Med Chem. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. (2). X-ray crystallographic structures of select peptides
(A & B) found to have only antimicrobial properties, (C) with antibacterial and anticancer 

properties, (D) with antibacterial and anti fungal properties, and (E) with antibacterial, anti 

cancer, and anti-fungal properties. Associated positively charged residues are identified for 

each peptide. RasMol [179] was used to generate these figure using PDB files 2LRR [180], 

2AP7 Zangger, K., Jilek, A., Khatai, L. “Solution structure and orientation of bombinin H2 

and H4 in a membrane-mimetic environment”,2AMN [181], 1XKM [182], 1OT0 Lee, K.H., 

Lee, D.G., Park, Y., Hahm, K.-S., Kim, Y. “Structure of Antimicrobial Peptide, HP (2–20) 

and its Analogues Derived from Helicobacter pylori, as Determined by 1H NMR 

Spectroscopy”, 1T51 [183], 2RLG [184], 2JQ0 [185], 1Z64 [186], 2KET Yang, S., Jung, H., 

Kim, J. “solution structure of BMAP-27”, 1YTR [187], 2JMY [188], 1ZRV [189], 2LMF 

[190], 2PCO [191], 1FRY [192], 1DUM [193], 2JOS [194], 2MLT [168].
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Fig. (3). Inhibition of ATP synthase
Inhibition profiles induced by NaN3 taken from [74], resveratrol taken from [68], modified 

resveratrol 2-[[(4-hydroxy-2-nitrophenyl)imino]methyl] phenol taken from [100], melittin/

melittin-NH2, MRP/MRP-NH2 taken from [59]. For experimental details see the associated 

references.
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Table 2

Sequence and Origin of Table I Peptides. Peptide Data Taken From Antimicrobial Peptide Database [147]

Name Sequence Source

Alyteserin-1c GLKEIFKAGLGSLVKGIAAHVAS Amphibian

Ascaphin-8 GFKDLLKGAAKALVKTVLF Amphibian

Aurein 2.2 GLFDIVKKVVGALGSL Amphibian

Bactrocerin-1 VGKTWIKVIRGIGKSKIKWQ Insect

BMAP-27 GRFKRFRKKFKKLFKKLSPVIPLLHLG Mammal

Bombinin H2 IIGPVLGLVGSALGGLLKKI Amphibian

Bombinin-like peptide 1 GIGASILSAGKSALKGLAKGLAEHFAN Amphibian

Brevinin-1BYa FLPILASLAAKFGPKLFCLVTKKC Amphibian

Buforin II TRSSRAGLQFPVGRVHRLLRK Amphibian

Caerin 1.6 GLFSVLGAVAKHVLPHVVPVIAEK Amphibian

Cathelicidin-BF KFFRKLKKSVKKRAKEFFKKPRVIGVSIPF Reptile

Ceratotoxin A SIGSALKKALPVAKKIGKIALPIAKAALP Insect

Chicken CATH-1 RVKRVWPLVIRTVIAGYNLYRAIKKK Bird

Chrysophsin-1 FFGWLIKGAIHAGKAIHGLIHRRRH Fish

Ci-MAM-A24 WRSLGRTLLRLSHALKPLARRSGW Urochordate

Citropin 1.1 GLFDVIKKVASVIGGL Amphibian

Clavanin A VFQFLGKIIHHVGNFVHGFSHVF Urochordate

Clavaspirin FLRFIGSVIHGIGHLVHHIGVAL Urochordate

CM15 KWKLFKKIGAVLKVL Synthetic

CM-3 ALKAALLAILKIVRVIKK Synthetic

Cryptonin GLLNGLALRLGKRALKKIIKRLCR Insect

Decoralin SLLSLIRKLIT Insect

Dermaseptin-S3 ALWKNMLKGIGKLAGKAALGAVKKLVGAES Amphibian

Dicynthaurin ILQKAVLDCLKAAGSSLSKAAITAIYNKIT Urochordate

Distinctin NLVSGLIEARKYLEQLHRKLKNCKV Amphibian

Eumenitin LNLKGIFKKVASLLT Insect

Fallaxidin 4.1 GLLSFLPKVIGVIGHLIHPPS Amphibian

FK-13 FKRIVQRIKDFLR Synthetic

Frenatin 3 GLMSVLGHAVGNVLGGLFKS Synthetic

Halictine 1 GMWSKILGHLIR Insect

Halocyntin FWGHIWNAVKRVGANALHGAVTGALS Urochordate

Hedistin LGAWLAGKVAGTVATYAWNRYV Annelid

HFIAP-3 GWFKKAWRKVKNAGRRVLKGVGIHYGVGLI Hagfish

HP 2–20 AKKVFKRLEKLFSKIQNDK Synthetic

Human Histatin 5 DSHAKRHHGYKRKFHEKHHSHRGY Human

Human KR-20 KRIVQRIKDFLRNLVPRTES Human

Human KS-30 KSKEKIGKEFKRIVQRIKDFLRNLVPRTES Human
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Name Sequence Source

Human LL-23 LLGDFFRKSKEKIGKEFKRIVQR Human

Hylaseptin P1 GILDAIKAIAKAAG Amphibian

Hylin a1 IFGAILPLALGALKNLIK Amphibian

IsCT ILGKIWEGIKSLF Arachnid

Japonicin-1CDYa FFPLALLCKVFKKC Amphibian

Japonicin-1Npa FLLFPLMCKIQGKC Amphibian

Kassinatuerin-1 GFMKYIGPLIPHAVKAISDLI Amphibian

L5K5W KKLLKWLKKLL Snythetic/amphibian

Lasiocepsin GLPRKILCAIAKKKGKCKGPLKLVCKC Insect

Lasioglossin LL-I ILGKLLSTAAGLLSNL Insect

Latarcin 1 SMWSGMWRRKLKKLRNALKKKLKGEK Arachnid

Lycotoxin I IWLTALKFLGKHAAKHLAKQQLSKL Arachnid

Magainin 2 GIGKFLHSAKKFGKAFVGEIMNS Amphibian

Mastoparan B LKLKSIVSWAKKVL Insect

Maximin 4 GIGGVLLSAGKAALKGLAKVLAEKYAN Amphibian

MB-21 FASLLGKALKALAKQ Synthetic

Melectin GFLSILKKVLPKVMAHMK Insect

Melittin GIGAVLKVLTTGLPALISWIKRKRQQ Insect

Meucin-13 IFGAIAGLLKNIF Arachnid

Misgurin RQRVEELSKFSKKGAAARRRK Fish

Moronecidin FFHHIFRGIVHVGKTIHKLVTG Fish

MUC7 20-Mer LAHQKPFIRKSYKCLHKRCR Human

Nigrocin-2 GLLSKVLGVGKKVLCGVSGLC Amphibian

Ocellatin-F1 GVVDILKGAAKDIAGHLASKVMNKL Amphibian

Odorranain-B1 AALKGCWTKSIPPKPCFGKR Amphibian

Oxt 4a GIRCPKSWKCKAFKQRVLKRLLAMLRQHAF Arachnid

P-18 KWKLFKKIPKFLHLAKKF Synthetic

Pandinin 2 FWGALAKGALKLIPSLFSSFSKKD Arachnid

Parasin I KGRGKQGGKVRAKAKTRSS Fish

Parkerin GWANTLKNVAGGLCKITGAA Amphibian

Pd_mastoparan PDD-A INWKKIFEKVKNLV Insect

Pep27 MRKEFHNVLSSGQLLADKRPARDYNRK Bacteria

PGLa GMASKAGAIAGKIAKVALKAL Amphibian

Phylloseptin-H1 FLSLIPHAINAVSAIAKHN Amphibian

Phylloxin-B1 GWMSKIASGIGTFLSGMQQ Amphibian

Piscidin 1 FFHHIFRGIVHVGKTIHRLVTG Fish

Plantaricin A KSSAYSLQMGATAIKQVKKLFKKWGW Bacteria

Pleurocidin GWGSFFKKAAHVGKHVGKAALTHYL Fish

PMAP-23 RIIDLLWRVRRPQKPKFVTVWVR Mammal
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Name Sequence Source

Polybia-MP-I IDWKKLLDAAKQIL Insect

Ponericin G1 GWKDWAKKAGGWLKKKGPGMAKAALKAAMQ Insect

PP13 GAARKSIRLHRLYTWKATIYTR Insect

Pseudin-1 GLNTLKKVFQGLHEAIKLINNHVQ Amphibian

Ranalexin FLGGLIKIVPAMICAVTKKC Amphibian

RP-1 ALYKKFKKKLLKSLKRL Synthetic

SMAP-29 RGLRRLGRKIAHGVKKYGPTVLRIIRIAG Mammal

Spinigerin HVDKKVADKVLLLKQLRIMRLLTRL Insect

Styelin A GFGKAFHSVSNFAKKHKTA Urochordate

Substance P RPKPQQFFGLM Human

Temporin A FLPLIGRVLSGIL Amphibian

The K4 peptide KKKKPLFGLFFGLF Synthetic

Uperin 3.6 GVIDAAKKVVNVLKNLF Amphibian

WLBU2 RRWVRRVRRWVRRVVRVVRRWVRR Synthetic

XT-7 GLLGPLLKIAAKVGSNLL Amphibian
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