Skip to main content
. 2016 Feb 1;11(2):e0147467. doi: 10.1371/journal.pone.0147467

Table 5. Prediction results of peptide motifs binding to 14-3-3 isoforms by different regression techniques.

Elastic Net Simple Linear Regression Support Vector Regression Neural Network
PCC RMSE PCC RMSE PCC RMSE PCC RMSE
N-terminal
σ 0.84 252.31 0.82 261.69 0.79 283.16 0.60 368.39
β 0.72 229.12 0.69 238.40 0.70 236.18 0.57 270.43
ϵ 0.83 417.38 0.82 498.71 0.80 529.34 0.64 675.74
η 0.81 230.83 0.80 238.09 0.79 239.43 0.55 327.70
γ 0.86 470.08 0.86 474.16 0.83 506.56 0.59 745.79
τ 0.78 637.67 0.78 637.58 0.75 669.53 0.56 844.41
ζ 0.87 2087.20 0.88 2042.67 0.84 2306.04 0.56 3526.35
C-terminal
σ 0.77 269.13 0.76 273.19 0.74 279.54 0.64 321.78
β 0.63 245.10 0.61 247.96 0.59 252.64 0.51 269.64
ϵ 0.75 491.73 0.74 479.30 0.73 483.90 0.63 550.81
η 0.71 252.94 0.69 256.66 0.69 257.90 0.48 311.73
γ 0.79 463.40 0.79 459.40 0.80 454.01 0.68 558.68
τ 0.72 678.95 0.71 686.52 0.70 691.33 0.59 786.58
ζ 0.81 2365.42 0.80 2352.32 0.79 2429.84 0.66 3012.30