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Abstract
Inflammatory bowel disease (IBD) is characterized 
by chronic relapsing inflammatory disorders of 
the gastrointestinal tract, and includes two major 
phenotypes: ulcerative colitis and Crohn’s disease. 
The pathogenesis of IBD is not fully understood as of 
yet. It is believed that IBD results from complicated 
interactions between environmental factors, genetic 
predisposition, and immune disorders. miRNAs are a 
class of small non-coding RNAs that can regulate gene 
expression by targeting the 3′-untranslated region 
of specific mRNAs for degradation or translational 
inhibition. miRNAs are considered to play crucial 
regulatory roles in many biologic processes, such 
as immune cellular differentiation, proliferation, and 
apoptosis, and maintenance of immune homeostasis. 
Recently, aberrant expression of miRNAs was revealed 
to play an important role in autoimmune diseases, 
including IBD. In this review, we discuss the current 
understanding of how miRNAs regulate autoimmunity 
and inflammation by affecting the differentiation, 
maturation, and function of various immune cells. 
In particular, we focus on describing specific miRNA 
expression profiles in tissues and peripheral blood that 
may be associated with the pathogenesis of IBD. In 
addition, we summarize the opportunities for utilizing 
miRNAs as new biomarkers and as potential therapeutic 
targets in IBD.

Key words: Autoimmunity; Immune system; Inflam
mation; Inflammatory bowel disease; miRNA

© The Author(s) 2016. Published by Baishideng Publishing 
Group Inc. All rights reserved.

TOPIC HIGHLIGHT

2016 Inflammatory Bowel Disease: Global view

miRNAs as new molecular insights into inflammatory 
bowel disease: crucial regulators in autoimmunity and 
inflammation

Xiao-Min Xu, Hong-Jie Zhang

Submit a Manuscript: http://www.wjgnet.com/esps/
Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx
DOI: 10.3748/wjg.v22.i7.2206

World J Gastroenterol  2016 February 21; 22(7): 2206-2218
 ISSN 1007-9327 (print)  ISSN 2219-2840 (online)

© 2016 Baishideng Publishing Group Inc. All rights reserved.



Xu XM et al . MicroRNAs as crucial regulators in IBD

2207 February 21, 2016|Volume 22|Issue 7|WJG|www.wjgnet.com

Core tip: Inf lammatory bowel disease (IBD) is 
characterized by chronic relapsing inflammation in the 
gastrointestinal tract, but its pathogenesis remains 
unclear. Further understanding of the molecular 
mechanisms of IBD is helpful to find new therapeutic 
strategies. miRNAs play crucial regulatory roles in 
immune cellular differentiation and maturation, and 
maintaining immune homeostasis. Aberrant expression 
of miRNAs is present in IBD. Here, we summarize how 
miRNAs regulate autoimmunity and inflammation, and 
describe specific miRNA expression profiles in IBD. We 
also discuss the opportunities in utilizing miRNAs as 
new biomarkers and potential therapeutic targets in 
IBD.
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INTRODUCTION
Inflammatory bowel disease (IBD) comprises ulce­
rative colitis (UC) and Crohn’s disease (CD). IBD 
is characterized by chronic relapsing inflammation 
in the gastrointestinal tract, and its incidence and 
prevalence are increasing[1]. The precise pathogenic 
mechanism of IBD remains unknown. Accumulated 
evidence suggests that IBD results from complicated 
interactions between environmental factors, genetic 
predisposition, and immune dysregulation. Of these, 
immune dysregulation is believed to play an important 
role in the pathogenesis of IBD[2]. Consequently, it is 
important to uncover the molecular mechanisms that 
regulate the immune responses in IBD.

miRNAs are a new class of small non-coding RNAs 
that regulate immune responses in physiologic and 
pathologic conditions[3]. miRNAs are considered to play 
significant roles in many biologic processes, including 
cellular proliferation, differentiation, maturation, and 
apoptosis[4]. In addition, miRNAs have been implicated 
in the pathogenesis of common human diseases, such 
as cardiovascular[5], neurologic[6], and hematologic 
diseases, cancer[7], and inflammatory and autoimmune 
diseases[8]. These research findings have led to new 
insights into IBD pathogenesis.

In this review, we summarize recent findings that 
miRNAs regulate autoimmunity and inflammation by 
affecting the differentiation, maturation, and function 
of various immune cells. We particularly focus on 
providing evidence of specific miRNA expression 
profiles in IBD pathogenesis. In addition, we also 
discuss the possibility for miRNAs as new biomarkers 

and potential therapeutic targets in IBD.

GENERAL OVERVIEW OF MIRNA
miRNAs are a new class of small (about 22 nucleotides), 
endogenous, non-coding single-stranded RNA mole­
cules that can negatively regulate target gene 
expression at the post-transcriptional level[9]. The first 
miRNA, lin-4, was identified in 1993 in Caenorhabditis 
elegans[10]. The miRNA sequence database, miRBase, 
contains 35,828 mature miRNAs in 223 species at time 
of publication (http://www.mirbase.org/, Release 21, 
June 2014)[11].

miRNA genes are located either within intronic 
sequences of protein-coding genes, within intronic or 
exonic regions of non-coding RNAs, or within intergenic 
regions[12]. The biogenesis of miRNAs includes two 
parts: one is transcription in the nucleus, and the other 
is generation of mature miRNAs in the cytoplasm. 
First, miRNA is transcribed from the genome by RNA 
polymerase Ⅱ or Ⅲ to generate primary miRNA[13,14]. 
The primary miRNA is then cleaved by RNase Ⅲ-type 
enzyme Drosha to produce a pre-miRNA of appro­
ximately 70 nucleotides with a stem-loop structure in 
the nucleus[15]. Next, the pre-miRNA is exported to the 
cytoplasm by Exportin 5[16]. Once in the cytoplasm, 
the pre-miRNA is cleaved by Dicer in cooperation with 
protein partners, into an approximately 22-nucleotide 
miRNA duplex[17]. Then, one strand is selected as 
a functional miRNA, while the passenger strand is 
degraded. The functional miRNA is loaded into the RNA-
induced silencing complex and acts as a guide strand 
that recognizes the target mRNA by complementary 
sequences[18]. Full complementarity occurs in plants, 
resulting in target mRNA degradation. However, 
incomplete complementary binding occurs in humans, 
and this leads to mRNA destabilization and translational 
inhibition[12].

MIRNAS AND THE INNATE IMMUNE 
SYSTEM
The innate immune system forms the first line of 
host defense, which is non-specific, and responds to 
pathogens in a generic way. It is comprised of tissue 
barriers, immune cells, and immune molecules. The 
tissue barriers include mechanical (epithelial) barriers, 
chemical barriers such as antimicrobial peptides, and 
biologic barriers (commensal flora). The innate immune 
cells include monocytes/macrophages, dendritic cells 
(DCs), neutrophils, natural killer (NK) cells, NK T 
cells, mast cells, eosinophils, and basophils. These 
cells perform phagocytosis, antigen presentation, 
and activation of the adaptive immune responses[19]. 
miRNAs regulate autoimmunity and inflammation by 
affecting the differentiation, maturation, and function 
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of various immune cells (Figure 1).

miRNAs and intestinal tissue barriers
The intestinal mucosa forms a barrier that separates 
luminal contents from the interstitium. Tissue barriers 
include tight junctions (TJs), adherens junctions, 
and desmosomes, which regulate the paracellular 
permeability of epithelial layers across the apical/
basolateral axis[20]. The main protein complexes of 
TJs are composed of transmembrane proteins such as 
claudins, occludin and junctional adhesion molecules[21]. 
Disruption of the intestinal barrier has been shown to 
be an important pathogenic mechanism contributing 
to the development of intestinal inflammation[22,23]. 
McKenna et al[24] reported that miRNAs are important 
for maintaining the function of intestinal barriers.

miR-21, which is overexpressed in chronic UC, 
induces the degradation of Ras homolog gene family 
member (Rho)B mRNA and leads to an increase in 
intestinal epithelial permeability due to the loss of 
TJ proteins and ultrastructural changes[25]. miR-150 
is significantly elevated in colon tissue in dextran-
sulfate-sodium-induced murine experimental colitis 
and active UC patients. Overexpression of miR-150 
results in intestinal epithelial disruption through 
targeting of c-Myb[26]. Both occludin and claudin-1 
have been demonstrated to be involved in miR-874-
induced intestinal barrier dysfunction by targeting the 
3′-untranslated region of aquaporin 3[27]. miR-9 and 
miR-374 directly target the 3′-untranslated region 
of claudin-14 mRNA, leading to claudin-14 mRNA 
translational repression and decay, in a cooperative 

manner[28]. miR-145 impairs TJ function by repressing 
junctional adhesion molecule-1 expression[29]. 
miR-212 impairs the intestinal epithelial barrier by 
downregulating zonula occludens-1 protein expression, 
which is another major component of TJs[30].

Tumor necrosis factor (TNF)-α is an essential 
mediator of inflammation in the gut. Anti-TNF-α 
therapy induces remission in patients with severe 
active CD[31], UC[32], and refractory celiac disease[33]. 
TNF-α-induced upregulation of miR-122a mediates 
the degradation of occludin mRNA in enterocytes 
and influences their permeability[34]. TNF-α-induced 
miR-155 overexpression inhibits synthesis of zonula 
occludens-1 by downregulating RhoA expression[35].

miRNAs and monocytes/macrophages
Monocyte/macrophage differentiation is an essential 
branch of hematopoiesis, which is under the control 
of a complex network of regulatory factors[36]. 
During monocytopoiesis, the transcription factor 
acute myeloid leukemia (AML)1 is upregulated, 
while miRNAs-17-5p/20a/106a are downregulated. 
Monocytopoiesis is regulated by a circuitry comprising 
sequential miRNAs-17-5p/20a/106a, AML1, and 
monocyte colony-stimulating factor receptor, whereby 
miRNAs-17-5p/20a/106a act as a master gene 
complex that negatively regulates AML1 expression[37]. 
The transcription factor PU.1 upregulates miR-424 
expression, and this induces monocyte differentiation 
via miR-424-dependent translational inhibition 
of nuclear factor (NF)I-A. This result indicates an 
important role of miR-424 and its target NFI-A in 
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Figure 1  miRNAs and the immune system. miRNAs regulate autoimmunity and inflammation by affecting the differentiation, maturation, and function of various 
immune cells. The miRNAs in black letters are positive regulators in maintaining the differentiation and function of immune cells, while those in red letters act as 
negative regulators of these processes.
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controlling monocyte/macrophage differentiation[38]. 
miR-199a-5p targets the activin A receptor type 1B 
gene, leading to decreased expression of CCAAT/
enhancer binding protein α, and eventually, inhibits 
monocyte/macrophage differentiation[36].

miRNAs and DCs
DCs serve as the most potent antigen-presenting 
cells, responsible for primary immune responses. 
Accumulating evidence highlights the importance 
of specific miRNAs in DC development, antigen-
presentation capacity, and cytokine release[39]. miR-
146a[40], miR-155[41], and let-7i[42] are involved in 
the maturation and functional state of DCs, while 
miR-148/152[43] and miR-223[44] are involved in their 
antigen-presentation capacity. miR-150 is required for 
the cross-presentation capacity of Langerhans cells 
(skin-resident DCs)[45]. In addition, miR-29b, miR-
29c[46], miR-126[47], miR-146a[40,48], miR-155, and 
miR-221[49] have been shown to regulate DC apoptosis 
and cytokine production.

miRNAs and NK cells
NK cells are cytotoxic lymphocytes that play a vital 
role in host defense against infection, and they 
mediate antitumor responses. Recent advances have 
demonstrated that miRNAs are crucial in NK cell 
biology[50]. For instance, miR-150 and miR-181 regulate 
NK cell development[51,52]. Mice lacking miR-150 
are defective in generating mature NK cells. On the 
contrary, transgenic mice with a gain-of-function 
miR-150 have enhanced NK cell development[51]. 
miR-181 promotes NK cell development by targeting 
Nemo-like kinase, which is a inhibitor of Notch 
signaling[52].

miRNAs and other kind of innate immune cells
Invariant NK T cells are a separate subset of T 
lymphocytes with innate effector functions. A Dicer-
dependent miRNA pathway is important in the 
regulation of invariant NK T cell differentiation, func­
tion, and homeostasis[53]. The normal granulocytic 
differentiation requires the zinc finger protein growth 
factor independent-1, which is a transcription inhibitor 
that regulates the expression of miR-21 and miR-
196b during myelopoiesis[54]. In addition, miR-223 
plays a crucial role in the regulation of granulocyte 
differentiation and function, and mediates inflammatory 
responses[55,56].

miRNAs and activation of the innate immune system
Pattern recognition receptors are critical for the 
recognition of microorganisms and the induction of 
immune and inflammatory responses[57]. The families 
of these proteins include the membrane-bound Toll-like 
receptors (TLRs), nucleotide-binding oligomerization 
domain (NOD)-like receptors, and retinoic acid-
inducible gene-I-like receptors[58]. Pattern recognition 

receptors promote downstream signaling cascades. 
Emerging evidence indicates that miRNAs regulate 
these processes.

TLRs: miR-146a expression can be induced through 
exposure to TLR ligands, such as lipopolysaccharide, 
peptidoglycan, and flagellin, and this induction is 
controlled by NF-kB. Mice lacking miR-146a are more 
likely to develop autoimmune diseases, tumorigenesis, 
and myeloid cell proliferation. miR-146 targets TNF-
receptor-associated factor 6 and interleukin (IL)-1-
receptor-associated kinase 1, which are key elements 
of the myeloid differentiation factor 88 pathway, 
and form a negative feedback mechanism in TLR 
signaling[59-61]. miR-155 expression is also induced 
by TLR signaling[61,62]. Unlike miR-146a, miR-155 
promotes the immune response. Mice deficient in 
miR-155 are highly resistant to experimental autoim­
mune encephalomyelitis[63].

NOD-like receptors: Of this family of proteins, 
NOD2 functions as an intracellular sensor that con­
tributes to inflammation and immune defense. It 
has been identified as the strongest single genetic 
locus in determining susceptibility in CD[64]. A miRs-
NOD interaction has been implicated in IBD. These 
miRNAs include miR-29[65], miR-122[66], miR-146a[67], 
and miR-192[68]. For example, polymorphisms in 
NOD2 impair miR-29 expression in DCs, and this 
results in exaggerated IL-23-induced inflammation[65]. 
miR-122 targeting of NOD2 has a crucial role in the 
damage of intestinal epithelial cells induced by lipopoly­
saccharide[66].

MIRNAS AND THE ADAPTIVE IMMUNE 
SYSTEM
The adaptive immune system mainly consists of two 
different lymphocytes (T and B cells), and is highly 
pathogen specific. The appropriate development and 
function of these two immune cells are essential when 
distinguishing foreign from resident antigens. Current 
studies have indicated that miRNAs play important 
roles in maintaining the differentiation and function of 
T and B cells[69].

miRNAs and T-cell regulation
Increasing evidence shows that some specific miRNAs 
participate in the regulation of crucial immune 
functions. These immuno-miRs play significant 
roles in T-cell development, maturation, activation, 
differentiation, and aging[70]. For example, miR-150[71] 
and miR-181a[72] are involved in T-cell development, 
while miR-21[73] and miR-17-92 cluster[74,75] participate 
in T-cell activation.

miRNAs and T-helper 1/2 cell differentiation
miRNAs have significant effects on T helper (Th) cell 
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differentiation. Naïve T cells can differentiate into Th1, 
Th2, or Th17 cells after activation[76]. Th1 cells have 
been associated with the pathogenesis of CD, while Th2 
cells have been implicated in UC[19]. miR-155 promotes 
Th1 differentiation by targeting interferon (IFN)-g 
receptor α chain[77]. In contrast, CD4+ T cells deficient 
in miR-155 display a bias towards Th2 differentiation, 
which is partly due to increased expression of the Th2-
associated transcription factor c-Maf[41,78]. miR-17-92 
cluster promotes Th1 differentiation. The function of 
miR-19b is mediated through phosphatase and tensin 
homolog, while miR-17 targets transforming growth 
factor (TGF)-b receptor Ⅱ and cAMP-responsive 
element-binding protein 1[79]. miR-29 regulates Th cell 
differentiation by directly targeting T-box transcription 
factor T-bet and eomesodermin to suppress IFN-g 
production[80]. miR-146a may be a potent inhibitor of 
Th1 differentiation by targeting protein kinase Cε[81]. 
miR-21 promotes Th2 differentiation[82].

miRNAs and Th17 cell differentiation
Th17 cells, a new subset of Th cells capable of 
producing IL-17, play a vital role in the formation of 
several autoimmune-mediated inflammatory diseases, 
including IBD[83,84]. Current studies demonstrate that 
miR-21[85], miR-155[63], miR-301a[86], miR-326[87], 
miR-17-92 cluster[88], and miR-132/212 cluster[89] 
act as positive regulators of Th17 differentiation. 
For example, miR-155 enhances the development 
of inflammatory T cells (Th1 and Th17 cells), and 
facilitates Th17 cell formation through cytokines 
produced by DCs[63]. miR-10a[90], miR-20b[91], and 
miR-210[92] act as negative regulators of Th17 
differentiation. Deletion of miR-210 promotes Th17 
differentiation under hypoxic conditions[92].

miRNAs and regulatory T cells
Regulatory T (Treg) cells are another subset of CD4+ 
T cells that can suppress activity of effector T cells 
and maintain self-tolerance[76,90]. Treg cells can be 
classified into two populations, naturally-occurring Treg 
(nTreg) cells that are generated in the thymus, and 
inducible Treg (iTreg) cells that arise from naïve CD4+ 

precursors in the periphery[90]. miRNAs play pivotal 
roles in the regulation of both Treg cell development 
and function[93,94]. miR-10a is highly expressed in 
nTreg cells and can be induced by retinoic acid and 
TGF-b in iTreg cells[90]. Repression of miR-10a in vitro 
results in reduced forkhead box (Fox)p3 expression 
levels, while ablation of miR-10a does not affect the 
phenotype or number of nTreg cells[93]. miR-155-
deficient mice display a marked reduction in the 
number of Treg cells. Additionally, miR-155 maintains 
homeostasis of Treg cells by targeting suppressor of 
cytokine signaling 1 via the IL-2 signaling pathway[95]. 
miR-146a is important for maintaining suppressive 
function of Treg cells. Treg cells deficient in miR-146a 
lead to immunologic intolerance by targeting signal 

transducer and activator of transcription-1[96]. Silencing 
of miR-126 can influence the expression of Foxp3 on 
Treg cells and impair their suppressive function via 
the PI3K/Akt pathway[97]. miR-17-92 cluster is also 
involved in Treg cell function. Mice with Treg-specific 
loss of miR-17-92 cluster develop an exacerbated form 
of experimental autoimmune encephalomyelitis and 
fail to achieve clinical remission[74]. However, there are 
conflicting results. For instance, the study from Jiang 
et al[79] showed that miR-17-92 cluster prevents Treg 
cell differentiation and promotes Th1 responses.

miRNAs and follicular helper T cells
Follicular helper T (Tfh) cells are a novel subset of CD4+ 
T cells that can provide help to B cells, and they are 
important for germinal center formation[98]. Several 
studies have demonstrated that miRNAs are crucial 
for Tfh cell differentiation and function[99,100]. Mice 
with T-cell-specific loss of miR-17-92 cluster exhibit 
severely compromised Tfh cell differentiation, germinal 
center formation, and antibody responses. On the 
contrary, T-cell-specific miR-17-92 cluster transgenic 
mice spontaneously accumulate Tfh cells[99]. miR-10a 
attenuates phenotypic conversion of iTreg cells to Tfh 
cells by simultaneously targeting Bcl-6, a transcription 
factor critical for Tfh cell differentiation[101], along with 
the corepressor Ncor2[90]. Moreover, miR-155 has been 
reported to promote Tfh cell development[102].

miRNAs and CD8+ T cells
CD8+ T cells or cytotoxic T lymphocytes can devastate 
various intracellular pathogens and malignancies[103]. 
Dicer is required for CD8+ T-cell survival and 
accumulation, but not required for the early steps in 
CD8+ T-cell activation[104,105]. Dicer and miRNAs such as 
miR-139 and miR-150 also participate in controlling 
the cytolytic program, as well as other programs of 
effector cytotoxic T lymphocyte differentiation[106]. 
miR-155 is demanded for effector CD8+ T-cell 
responses to viral and intracellular bacterial infection 
and cancer. miR-155 has the potential to be a target 
for immunotherapy for infectious diseases and 
cancer[103,107,108]. miR-17-92 cluster has dynamic regu­
lation of CD8+ T cells differentiating from naïve to 
effector and memory states[75,109].

miRNAs and B cells
Ablation of Dicer in early B-cell progenitors leads to a 
formative block from the pro-B to pre-B transition[110]. 
miRNAs are also involved in B-cell development and 
function[110,111], including miR-34a[112], miR-150[113,114], 
and miR-17-92 cluster[115]. miR-125b inhibits B-cell 
differentiation in germinal centers[116]. In addition 
to regulating B-cell differentiation, miR-150[113], 
miR-155[78], and miR-217[111] regulate B-cell function, 
including the establishment of B-cell tolerance, as 
well as antigen-dependent and -independent antibody 
repertoire diversification.
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MIRNAS AND IBD
Abnormal miRNA expressions exist in some diseases, 
including IBD (Table 1). This offers a new way to 
improve our comprehension of the mechanism of this 
disease. Moreover, some specific miRNAs in IBD may 
serve as potential biomarkers for diagnosis, evaluation 
indicators of disease activity, or targets for treatment.

miRNAs in UC
miRNAs in mucosal tissues: In 2008, the first 
profiling study of altered expression of miRNAs in IBD 
patients was published[117]. Wu and colleagues[117] 
found a specific miRNA expression pattern: three 
miRNAs (miR-192, miR-375, and miR-422b) were 
markedly downregulated, whereas eight miRNAs 
(miR-16, miR-21, miR-23a, miR-24, miR-29a, miR-126, 
miR-195, and let-7f) were observably upregulated 
in active UC tissues. Furthermore, they found that 
miR-192 participated in the regulation of chemokine 
production in colonic epithelial cells. Since 2008, 
some new research in active UC and healthy controls 
has confirmed the upregulation of miR-21[25,118], miR-
29a[119], and miR-126[120], and identified additional 
upregulated miRNAs, including miR-7, miR-29b, 
miR-126*, miR-127-3p, miR-135b, miR-223 and miR-
324-3p[119], miR-31[119,121], miR-150[26], miR-155[118], 
miR-146a, miR-206, and miR-424[121], and miR-
20b and miR-125b-1*[122]. In contrast, miR-188-5p, 
miR-215, miR-320a, miR-346[119], and miR-200b[123] 
were downregulated in colon tissues from active UC 
patients compared with healthy controls. miR-124 was 
markedly decreased in pediatric but not in adult UC 
tissues. Reduced levels of miR-124 in colon tissues 
appear to increase the expression and activity of signal 
transducer and activator of transcription-3, and this 
mediates the pathogenesis of UC in children[124].

miRNAs in peripheral blood: Paraskevi and 
colleagues[125] found that six miRNAs (miR-16, miR-21, 
miR-28-5p, miR-151-5p, miR-155, and miR-199a-
5p) were remarkably upregulated in blood from UC 
patients compared with healthy controls. miR-155 
had the highest expression level of these six UC-
associated miRNAs in peripheral blood. Wu and 
colleagues[126] found that compared with healthy 
controls, 12 miRNAs were significantly upregulated, 
and miRNA-505* was downregulated in blood from 
active UC patients. Peripheral blood miRNAs may 
distinguish active UC patients from healthy controls. 
As compared to active CD patients, ten miRNAs 
were markedly upregulated, and one miRNA was 
downregulated in blood from active UC patients[126]. 
Duttagupta et al[127] completed analyses of miRNA 
expressions from different hematologic fractions as 
noninvasive predictors for incidence of UC. They found 
that seven miRNAs derived from platelets (miR-188-
5p, miR-378, miR-422a, miR-500, miR-501-5p, miR-
769-5p, and miR-874) were upregulated. This study 
provides new platelet-derived miRNA biomarkers for 
clinical application and perception of the potential roles 
of these miRNAs in the pathogenesis of UC.

miRNAs in CD
miRNAs in mucosal tissues: Most studies of 
miRNA expression profiles in CD have concentrated 
on Crohn’s colitis. Fasseu et al[119] found that 23 
miRNAs (miR-9, miR-21, miR-22, miR-26a, miR-29b, 
miR-29c, miR-30b, miR-31, miR-34c-5p, miR-106a, 
miR-126, miR-126*, miR-127-3p, miR-130a, miR-
133b, miR-146a, miR-146b-5p, miR-150, miR-155, 
miR-181c, miR-196a, miR-324-3p, and miR-375) 
were remarkably upregulated in colonic tissues 
from CD patients compared with healthy controls. 
Five of these miRNAs were specific for patients in 

Sample type Expression miRNAs Ref.

Ulcerative colitis vs healthy controls
      Mucosal tissues Upregulated miR-7, miR-16, miR-20b, miR-21, miR-23a, miR-24, miR-29a, miR-29b, miR-31, miR-125b-1*, 

miR-126, miR-126*, miR-127-3p, miR-135b, miR-146a, miR-150, miR-155, miR-195, miR-206, 
miR-223, miR-324-3p, miR-424, and let-7f

[25,26,117-122]

Downregulated miR-188-5p, miR-192, miR-200b, miR-215, miR-320a, miR-346, miR-375, and miR-422b; 
miR-124 (pediatric cases)

[117,119,123,124]

      Peripheral blood Upregulated miR-16, miR-21, miR-28-5p, miR-103-2*, miR-151-5p, miR-155, miR-188-5p, miR-199a-5p, 
miR-340*, miR-362-3p, miR-378, miR-422a, miR-500, miR-501-5p, miR-532-3p, miR-769-5p, 

miR-874, and miRplus-E1271

[125-127]

Downregulated miR-505* [126]
Crohn’s disease vs healthy controls
      Mucosal tissues Upregulated miR-9, miR-21, miR-22, miR-26a, miR-29b, miR-29c, miR-30b, miR-31, miR-34c-5p, miR-106a, 

miR-106b, miR-126, miR-126*, miR-127-3p, miR-130a, miR-133b, miR-146a, miR-146b-5p, 
miR-150, miR-155, miR-181c, miR-196a, miR-196, miR-206, miR-324-3p, miR-375, and  miR-424

[119,121,130,131]

Downregulated miR-7 and miR-141 [128,129]
      Peripheral blood Upregulated miR-16, miR-23a, miR-29a, miR-106a, miR-107, miR-126, miR-191, miR-199a-5p, miR-200c, 

miR-362-3p and miR-532-3p;
[125,133]

miR-16, miR-20a, miR-21, miR-30e, miR-93, miR-106a, miR-140, miR-192, miR-195, miR-484, 
and let-7b (pediatric cases)
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an active stage of CD (miR-9, miR-126, miR-130a, 
miR-181c, and miR-375), whereas the remaining 18 
were also upregulated in colonic tissues from inactive 
CD patients. Huang and colleagues[128] identified 
that miR-141 was downregulated in inflamed colon 
tissues from active CD patients. miR-141 inhibited 
colonic chemokine CXC ligand 12β expression by 
directly targeting it and blocked colonic immune cell 
recruitment. Nguyen and colleagues[129] found that only 
miR-7 was downregulated in eight active colonic CD 
patients compared to six healthy controls. In addition, 
miR-206, miR-424[121], miR-106b[130] and miR-196[131] 
are also upregulated in active colonic CD.

However, is there any tissue-specific miRNA 
expression profile in the gastrointestinal tract? Wu 
and colleagues[132] examined miRNA expression 
patterns in tissues from different intestinal segments 
in active CD patients. Ten intestine-specific miRNAs 
(miR-19b, miR-22, miR-23a, miR-26a, miR-31, 
miR-126, miR-215, miR-320, miR-422b, and let-7d) 
were identified. Specifically, three of these (miR-22, 
miR-31, and miR-215) were markedly upregulated in 
the terminal ileum compared with colon tissue, while 
miR-19b was downregulated in the terminal ileum. 
Moreover, miR-23a, miR-26a, miR-126, miR-320, miR-
422b, and let-7d showed colon-specific expression. 
In active colonic CD patients, three miRNAs (miR-
23b, miR-106, and miR-191) were upregulated and 
two (miR-19b and miR-629) were downregulated 
compared to healthy controls. In active terminal ileal 
CD patients, four miRNAs (miR-16, miR-21, miR-223, 
and miR-594) were upregulated in terminal ileal 
tissues.

miRNAs in peripheral blood: Apart from assessing 
miRNA expressions in peripheral blood in UC, Paraskevi 
et al[125] examined miRNA expression patterns in 
peripheral blood samples from 128 patients with 
active CD and 162 healthy individuals. Eleven miRNAs 
(miR-16, miR-23a, miR-29a, miR-106a, miR-107, 
miR-126, miR-191, miR-199a-5p, miR-200c, miR-
362-3p, and miR-532-3p) were markedly upregulated 
in peripheral blood from CD patients as compared 
with healthy individuals. There were no significant 
differences in miRNA expressions in accordance with 
disease location and phenotype.

Zahm et al[133] examined serum samples from 
46 pediatric CD patients and 32 healthy controls by 
means of a low-density microarray and quantitative 
reverse transcriptase (qRT) PCR. They found 11 
miRNAs (miR-16, miR-20a, miR-21, miR-30e, miR-93, 
miR-106a, miR-140, miR-192, miR-195, miR-484, and 
let-7b) that were CD-associated circulating miRNAs. 
Receiver operating characteristic analyses indicated 
that these CD-associated miRNAs had promising 
diagnostic value, with sensitivities of 70%-83% and 
specificities of 75%-100%. These results demonstrate 
that circulating miRNAs may be used as novel nonin­

vasive biomarkers in CD.

miRNAs in IBD at different stages
Iborra and colleagues[134] assessed miRNA expression 
patterns in serum and tissue samples from nine 
patients with active UC, nine with inactive UC, nine 
with active CD, and nine with inactive CD, and serum 
from 33 healthy subjects. They found that two miRNAs 
(miR-548a-3p and miR-650) were higher, and three 
(miR-196b, miR-489, and miR-630) were lower in the 
mucosa of active UC patients compared with inactive 
UC patients. There were no differences in serum 
miRNA expression profiles in patients with active UC 
compared with inactive UC. However, there were 
differences in serum miRNA expressions between 
active and inactive CD patients; two serum miRNAs 
(miR-188-5p and miR-877) were increased, and four 
serum miRNAs (miR-18a, miR-128, miR-140-5p, and 
miR-145) were decreased in patients with active CD. 
Furthermore, four miRNAs (miR-18a*, miR-140-3p, 
miR-629*, and let-7b) were higher, and three miRNAs 
(miR-328, miR-422a, and miR-855-5p) were lower 
in the mucosa of active CD patients compared with 
inactive CD patients. These results indicate that there 
are specific miRNA expression patterns associated with 
different stages of IBD. Further prospective cohort 
studies in large samples are necessary to validate 
these findings.

miRNAs as therapy in IBD
miRNA-related therapeutic applications may represent 
a new and fascinating field in IBD treatment. miRNA-
related therapy is based on antisense technology 
and gene therapy; thus, it involves either miRNA 
antagonists or miRNA mimics.

miRNA antagonists: miRNA antagonists include anti-
miRNA oligonucleotides (AMOs), miRNA sponges, and 
miRNA masks.

AMOs: AMOs are synthetic anti-miRNA oligonucleotides 
with reverse complementary sequences to their 
target miRNAs, which suppress miRNA functions. 
It is believed that AMOs have a promising future in 
therapeutic applications. Chemical modifications of 
AMOs can improve their stability and binding affinity. 
Common modifications include addition of different 
2′-ribose modifications to AMOs (2′-O-methyl and 
2′-O-methoxyethyl) and 2′,4′-methylene bridge-
locked nucleic acid (LNA). LNA-modified AMOs create 
high-affinity binding to target mRNAs[135,136]. A study 
by Janssen et al[137] demonstrated that miravirsen, an 
LNA-anti-miR-122, is designed to target and inhibit 
miR-122, and this can reduce viral RNA levels in 
patients with chronic hepatitis C virus infection. This 
result proves the possibility of miRNA agents in clinical 
practice.
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miRNA sponges: miRNA sponge technology 
utilizes plasmid or viral vectors to achieve loss-of-
function of miRNAs. The strong promoters can be 
applied in miRNA sponge vectors for generating 
high-level expression of the competitive inhibitor 
transcripts for either transient or long-term inhibition 
of miRNA function. Considering the merit of sharing 
a common seed sequence by members of a miRNA 
family, this technology provides a strong approach 
for coinstantaneous inhibition of multiple miRNAs of 
interest with a single inhibitor[138].

miRNA mimicry/replacement therapy: In order 
to restore miRNA activity, miRNA mimics (synthetic 
oligonucleotides) and miRNA expression gene vectors 
are used. MRX34 is a double-stranded miRNA mimic 
of the naturally occurring miR-34a loaded in liposomal 
nanoparticles to reestablish its tumor suppressor 
function. MRX34 was the first miRNA mimic introduced 
into clinical study for primary as well as metastatic 
liver cancer in 2013[139,140]. Many miRNAs are down­
regulated in UC and CD. For example, miR-192, 
miR-375, miR-422b[117], miR-188-5p, miR-215, miR-
320a, miR-346[119], and miR-200b[123] are decreased 
in UC, and miR-19b and miR-629[132] are decreased in 
Crohn’s colitis tissues. Theoretically, replenishing these 
decreased miRNAs by miRNA mimics may provide 
therapeutic restoration of physiologic functions lost in 
IBD.

CONCLUSION
In this review, we described the roles of miRNAs 
as crucial regulators of inflammatory responses 
and autoimmune disorders, particularly focusing on 
miRNAs affecting the differentiation, maturation, and 
function of various immune cells. We also summarized 
some studies on the current understanding of the 
connection between miRNAs and IBD. Accumulating 
evidence suggests that specific miRNA expression 
profiles exist in IBD, and these miRNAs contribute 
to the development of inflammation. The definite 
functions of most miRNAs in IBD have not yet been 
clarified. Further studies are necessary to validate 
whether miRNAs could be used to diagnose IBD, 
distinguish IBD subtypes, and determine the disease 
activity or location.
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