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Abstract
Diffuse intrinsic pontine glioma (DIPG) is a rare and incurable brain tumor that arises predominately in children and
involves the pons, a structure that along with the midbrain and medulla makes up the brainstem. We have
previously developed genetically engineered mouse models of brainstem glioma using the RCAS/Tv-a system by
targeting PDGF-B overexpression, p53 loss, and H3.3K27M mutation to Nestin-expressing brainstem progenitor
cells of the neonatal mouse. Here we describe a novel mouse model targeting these same genetic alterations to
Pax3-expressing cells, which in the neonatal mouse pons consist of a Pax3+/Nestin+/Sox2+ population lining
the fourth ventricle and a Pax3+/NeuN+ parenchymal population. Injection of RCAS-PDGF-B into the brainstem of
Pax3-Tv-a mice at postnatal day 3 results in 40% of mice developing asymptomatic low-grade glioma. A mixture of
low- and high-grade glioma results from injection of Pax3-Tv-a;p53fl/fl mice with RCAS-PDGF-B and RCAS-Cre, with
or without RCAS-H3.3K27M. These tumors are Ki67+, Nestin+, Olig2+, and largely GFAP− and can arise
anywhere within the brainstem, including the classic DIPG location of the ventral pons. Expression of the
H3.3K27M mutation reduces overall H3K27me3 as compared with tumors without the mutation, similar to what
has been previously shown in human and mouse tumors. Thus, we have generated a novel genetically engineered
mouse model of DIPG, which faithfully recapitulates the human disease and represents a novel platform with
which to study the biology and treatment of this deadly disease.
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Introduction
Brainstem glioma (BSG) is a rare type of brain tumor that arises in the
brainstem of predominately children. The brainstem consists of the
midbrain, the pons, and the medulla, and whereas low-grade BSG can
occur anywhere in the brainstem, high-grade BSG, also known as
diffuse intrinsic pontine glioma (DIPG), accounting for 85% of all
BSGs, occurs primarily in the pons [1,2]. These tumors are incredibly
aggressive, are not amenable to surgery, and have an overall median
survival of less than 1 year, with less than 20% of patients alive 2 years
after diagnosis [1,2]. The standard treatment regimen of radiation
therapy provides only temporary relief from symptoms, and no
chemotherapy has shown efficacy over radiation alone for these
children [1,2].

Based on large-scale analyses of patient samples in recent years, the
genetic alterations characterizing DIPG are being elucidated. These
alterations include most notably a K27M mutation in the majority of
patients occurring in the gene encoding either histone H3.1 or H3.3,
with the latter being more common and associating with a worse
prognosis [3–7]. In addition, alterations have been documented in the
PDGFRA gene (36%), other genes involved in the receptor tyrosine
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kinase PI3K pathway (including MET and PIK3CA), and genes that
regulate RB phosphorylation and the cell cycle [8–13]. Mutations
have been discovered in ACVR1 in roughly 20% of patients [14–17],
as well as in ATRX, PPMID, and TP53, the last of which occurs in
upwards of 77% of patients [3,17].
Although much work has been accomplished characterizing the

genetic basis of DIPG, less research has focused on determining the
cell of origin for this disease. Monje et al. [18] has suggested a
Nestin+/Vimentin+/Olig2+ cell in the ventral pons during early
childhood as a candidate cell of origin based on its peak incidence
coinciding with that of DIPG in patients, which would be consistent
with the predominantly ventral pontine location of human DIPG
[19]. In addition, a recent analysis of the postnatal human pons
observed two distinct Nestin+/Vimentin+ populations, one in the
dorsal ventricular surface, which persists throughout childhood, and
one in the brainstem parenchyma, which disappears by 7 months of
age [20]. This same study revealed that a large percentage of the
proliferating cells during early childhood in the pons are Olig2+,
which could suggest an oligodendroglial origin for DIPG [20],
although the possibility remains that DIPG could originate from a
nonproliferative cell or a cell during fetal development.
Transgenic mouse modeling using the RCAS/Tv-a system has

shown that Nestin-expressing progenitor cells in the P3-P5 mouse
brainstem are capable of serving as a cell of origin for BSG when
exposed to ectopic PDGF-B ligand and p53-deficiency [21,22] as well
as overexpression of H3.3K27M [23]. This model most likely targets
Nestin-expressing cells located on the floor of the fourth ventricle
[22], although Nestin cells exist throughout the brainstem
parenchyma in the P3 mouse brainstem as well [24]. It remains to
be seen whether other types of progenitor cells in the neonatal mouse
brainstem can support the growth of glioma in mouse models. We
have recently identified several regions of Pax3 expression, marking
novel populations of cells [24]. We find here that there are at least two
distinct types of Pax3 cells in the neonatal mouse brainstem,
including an immature Pax3+/Nestin+/Sox2+ progenitor and a more
differentiated Pax3+/NeuN+ neuron. To investigate the potential for
these cells to be transformed into glioma, we used the Pax3-Tv-a
transgenic mouse line [25] to target PDGF-B, H3.3K27M, and p53
loss to Pax3-expressing cells. This combination of genetic alterations
leads to BSG of variable grades and latencies, arising anywhere within
the brainstem, including the classic DIPG location of the ventral
pons. This work describes a novel model of DIPG, which
phenotypically resembles the human disease and can be used to
further investigate the biological basis of brainstem gliomagenesis and
as a preclinical tool to evaluate potential therapeutics.

Materials and Methods

Mice
Nestin-Tv-a mice have been previously described [26]. Pax3-Tv-a

mice and their genotyping have been described [25]. Pax3-Tv-a
(Ptv-a) mice were bred with p53fl/fl mice (Jackson Labs) to
generate Ptv-a;p53fl/fl mice. Nestin-CFPnuc mice have been
previously described and express the cyan fluorescent protein
(CFP) fused to a nuclear localization signal under the control of
the regulatory elements of the Nestin gene [27]. All work with
mice was done in accordance with the Duke University Animal Care
and Use Committee and the Guide for the Care and Use of
Laboratory Animals.
RCAS/Tv-a Glioma Mouse Modeling
The generation of glioma using the RCAS/Tv-a system has been

previously described [24]. Pax3-Tv-a mice were injected with DF1
cells producing RCAS viruses at postnatal days 3 and 4 (P3-4) as
described, and injected mice were monitored daily and euthanized
with CO2 upon the appearance of signs of brain tumors (enlarged
head, ataxia, weight loss up to 25%) or at 12 weeks postinjection in
the absence of symptoms. Brains of sacrificed mice were fixed in 10%
formalin for at least 24 hours and embedded in paraffin for
histological analysis.

Immunofluorescence
Wildtype Nestin-Tv-a or Nestin-CFPnuc mice were sacrificed at

P3, and their whole brains were fixed in 4% paraformaldehyde (PFA)
in phosphate-buffered saline (PBS) for 24 hours, cryopreserved in
30% sucrose in PBS for 24 to 48 hours, and embedded in ornithine
carbamoyltransferase on dry ice/ethanol. Blocks were sectioned using
either a Shandon or Leica Cryostat into 12-μm–thick sections in a
sagittal orientation. Sections were rehydrated in PBS-T (0.1%
Triton-X100) and blocked in PBS-T with 10% normal goat serum.
Primary antibodies were diluted in PBS-T with 1% BSA and
incubated overnight at 4°C, and secondary antibodies were diluted in
PBS-T and incubated for 1 hour at room temperature. Antibodies
used were anti-PAX3 (DSHB, mouse IgG2a, concentrated form,
1:200), anti-Ki67 (BD Pharmingen, mouse IgG1, #556003, 1:100),
anti-Olig2 (Millipore, anti-rabbit IgG, #AB9610, 1:500), anti-NeuN
(Millipore, mouse IgG1, #MAB377, 1:100), anti-Sox2 (Millipore,
rabbit, #AB5603, 1:100), anti-Nkx2.2 (DSHB, mouse IgG2b,
#74.5A5, concentrated form, 5 μg/ml), and anti-GFP (Invitrogen,
1:200). AlexaFluor goat anti-mouse IgG2a-594, goat anti-mouse
IgG1-488, goat anti-mouse IgG2b-488, and goat anti-rabbit-488
secondary antibodies (Invitrogen) were used at 1:500. Slides were
mounted with Vectashield with 4',6-diamidino-2-phenylindole
(DAPI) (Vector Laboratories) and imaged using a Zeiss Axio Imager.
Quantification of the percentage of Pax3+ cells that are Nestin+ was
done as previously described using Nestin-CFPnuc mice [24].

Tumor Grading and Immunohistochemistry
Tumor samples fixed in 10% formalin were embedded in paraffin

by the Duke Pathology Core and cut into 5-μm–thick sections using
a Leica RM2235 microtome. Hematoxylin and eosin (H&E) staining
was performed using standard protocols. Tumor grading was done
using the following criteria: low-grade glioma (grade II) was indicated
by an increased cellular density and the presence of Ki67+ cells;
high-grade glioma (grades III and IV) was indicated by the presence of
microvascular proliferation and/or the presence of pseudopalisading
necrosis. Immunohistochemistry (IHC) was performed using an
automated processor (Discovery XT, Ventana Medical Systems, Inc.).
Antibodies used were anti-Olig2 (Millipore, #AB9610, 1:500),
anti-GFAP (Dako, #Z0334, 1:2,000), anti-Nestin (BD Pharmingen,
#556309, 1:200), anti-Ki67 (Abcam #ab16667, 1:200), anti-HA
(Santa Cruz Biotechnology, #SC-805, 1:250), and anti–Tri-Methyl-
Histone H3 Lys27 (Cell Signaling, #C36B11, 1:200). For rabbit
antibodies, 10% normal goat serum in 2% BSA was used for the
option/blocking step, and biotinylated goat anti-rabbit IgG (Vector
Laboratories, #BA-1000, 1:300) was used for detection. For mouse
antibodies, the Mouse on Mouse Basic Kit (Mouse on Mouse, Vector
Laboratories, #BMK-2202) was used as directed for the option/blocking
and detection steps.
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Quantification of H3K27me3 Levels
For each tumor sample analyzed, staining for H3K27me3 was

performed on the Discovery (Ventana Medical Systems, Inc.) in the
same run. At least 10 40× pictures were taken of random fields within
each tumor. The H3K27me3-positive nuclear area (homogenously
staining brown) and total nuclear area per field were quantified using
MetaMorph Premier software. A threshold was established to include
the H3K27me3-positive nuclei, and then Integrated Morphometry
Analysis (with a minimum size of 1000) was used to quantify the
positive nuclear area. A threshold was then established for total
nuclear area, and then Region Statistics was used to quantify the
thresholded area. H3K27me3-positive nuclear area was normalized to
total nuclear area for each field, and the mean for each tumor was
calculated. The comparison between PDGF-B + Cre and PDGF-B +
H3.3K27M + Cre groups was conducted using GraphPad Prism
software and the unpaired t test.

Results

Characterization of Pax3-Expressing Cells in the Neonatal
Mouse Brainstem

We have previously reported the existence of Pax3-expressing cells
in the neonatal mouse brainstem, with populations located in the
ventral, mid, and dorsal pons, as well as the midbrain and floor of the
fourth ventricle [24]. In addition, Pax3-expressing cells are found in
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Figure 1. Pax3-expressing progenitor cells in the neonatalmousebrains
antibody) was conducted in P3 sections of Nestin-CFPnuc brainstem, a
regions that were also Nestin+ was calculated as described in the
of wild-type P3 mouse brainstem for Pax3 and Sox2 (B and C) or Ki67 (D
20× magnification (B and D), scale bar is 50 μm; 40× magnification
double-positive cells.
the dorsal-most region of the murine thalamus and the internal
granule layer of the cerebellum (Figures S1 and S2). Whereas all of the
Pax3-expressing cells in the fourth ventricle lining coexpress the
neural stem and progenitor cell marker Nestin [24], the majority of
Pax3 cells in the midbrain, pons, and thalamus are Nestin negative
(Figures 1A and S1), suggesting the existence of at least two distinct
types of Pax3 cells (Nestin+ and Nestin−). We find here that, in
addition to Nestin, the Pax3+ cells lining the fourth ventricle
also express Sox2, another early neural stem/progenitor cell marker,
and are occasionally found proliferating based on Ki67 staining
(Figure 1, B–E). This is similar to the Pax3+ cells found in the
internal granule layer of the cerebellum, a subset of which also
coexpresses Nestin, Sox2, or Ki67 (Figure S2).

In contrast to the immature Pax3 progenitor cells found lining
the fourth ventricle, those in the pons parenchyma are largely Nestin
negative, with the exception of less than 5% of Pax3 cells in the dorsal
pons (Figure 1A); Sox2 negative (Figure 2, A and E); and Ki67
negative (Figure 2, B and F). Pax3-expressing cells in the pons are not
of the oligodendrocyte lineage based on Olig2 and Nkx2.2 staining
(Figure 2, C–D and G–H; positive Nkx2.2 staining in the midbrain
is shown in Figure S3A). We do, however, find that a subset of the
Pax3-expressing cells in the pons expresses the neuronal lineage-specific
marker NeuN (Figure 3). Those residing in the ventral pons express
relatively high levels of NeuN (Figure 3, A–F), whereas those in the
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and E). DAPI counterstain is shown in (B’–E’) to indicate total nuclei.
(C and E), scale bar is 25 μm. White arrows point to examples of
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Figure 2. Pax3-expressing cells in the neonatal mouse pons. Coimmunofluorescence of wild-type P3mouse dorsal pons (A–D) and ventral
pons (E–H) for Pax3 and Sox2 (A and E), Ki67 (B and F), Olig2 (C and G), and Nkx2.2 (D and H). DAPI counterstain is shown to indicate total
nuclei. 20× magnification, scale bar is 50 μm.
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dorsal pons express lower levels of NeuN (Figure 3, G–L), suggesting
that these cells belong to the neuronal linage. This is similar to the
Pax3 cells in the dorsal thalamus, a subset of which expresses NeuN
(Figure S1), but is in contrast to the Pax3 cells in the cerebellum, which
do not express NeuN (Figure S3B).

PDGF-Driven Brainstem Glioma Initiated in Pax3-
Expressing Cells
We have previously shown that targeting Nestin progenitor cells in

the neonatal mouse brainstem with PDGF-B overexpression induces
high-grade glioma formation in conjunction with Ink4aARF-loss or
p53-loss and H3.3K27M overexpression [21–24]. Although a small
percentage of the Nestin progenitors in the neonatal brainstem also
express Pax3 and we may be infecting some of these double-positive
cells in the Nestin-derived mouse model [24], we were interested in
determining whether Pax3-expresing cells could serve as a cell of
origin for BSG regardless of their Nestin expression.

To test this, we used a Pax3-Tv-a (Ptv-a) transgenic mouse, which
expresses the Tv-a receptor under the control of the Pax3 promoter
[25]. Ptv-a mice were injected with RCAS-PDGF-B–producing cells
at P3-4 and were monitored for signs and symptoms of brain tumors.
These mice did not develop any symptoms of brain tumors and were
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Figure 3. Pax3-expressing progenitors in the neonatal mouse pons express NeuN. Coimmunofluorescence of wild-type P3mouse ventral
pons (A–F) and dorsal pons (G–L) for Pax3 (red) and NeuN (green). DAPI counterstain (blue) is shown in some panels to indicate total
nuclei. 20× magnification (A–C and G–I), scale bar is 50 μm. 40× magnification (D–F and J–L), scale bar is 25 μm. (J–L) The NeuN signal
(green) is enhanced relative to other panels to highlight the double-positive cells. White arrows point to double-positive cells.
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sacrificed at 12 weeks postinjection to investigate the occurrence
of low-grade gliomas (Figure 4A). Four out of seven mice
(42.9%) showed evidence of low-grade lesions in the brainstem
based on the presence of small clusters of proliferating Ki67+ cells
(Figure 4, B and C).

We next crossed the Ptv-a mice with p53-floxed mice and injected
the resulting Ptv-a;p53fl/fl mice with either RCAS-PDGF-B +
RCAS-Cre or RCAS-PDGF-B + RCAS-Cre + RCAS-H3.3K27M
at P3-4. Roughly 50% of the injected mice developed symptoms of
brain tumor formation between 34 and 83 days postinjection
(Figure 4A), with the remaining mice sacrificed at 12 weeks. All mice
were processed for immunohistochemical analysis. Based on H&E and
Ki67 staining, 10 of 12 mice (83.3%) injected with PDGF-B and Cre
developed BSG of variable grades (25% low grade and 58.3% high
grade; Figures 4, B andD, and 5A), whereas 11 out of 15 mice (73.3%)
injected with PDGF-B, Cre, and H3.3K27M developed glioma (20%
low grade and 53.3% high grade; Figures 4, B and E, and 5, B and C).
Staining for HA (a tag that marks both the RCAS-PDGF-B and
RCAS-H3.3K27M constructs) shows primarily cytoplasmic expression
in the PDGF-B; p53-deficient tumors (Figure 4D) and predominately
nuclear expression in the PDGF-B; H3.3K27M; p53-deficient tumors
(Figure 4E), indicating successful expression of the H3.3K27M
oncoprotein in the latter tumors. The gliomas arose in variable
locations throughout the brainstem, including the ventral pons, dorsal
pons, midbrain, and lining of the fourth ventricle, and occasionally
invaded into the cerebellum (Figure 5). Tumor cells were also
sometimes found within the fourth ventricle, spreading to other
ventricular spaces throughout the brain and consequently invading into
the parenchyma elsewhere in the brain, evidence of leptomeningeal
disease (Figure S4).
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The high-grade gliomas induced in thismodel harbor a high proliferative
index (Figure 4, D and E) and microvascular proliferation and/or
pseudopalisading necrosis (Figure 5). These tumors express the glioma
markersNestin andOlig2 in themajority of tumor cells (Figure 6,A–B and
D–E). The glioma marker GFAP is less prominently expressed in these
tumors, seemingly characterizing cells in the perivascular niche only andnot
marking the majority of tumor cells (Figure 6, C and F).

Leptomeningeal Lesions Induced by Injections into the Cerebral
Cortex of Pax3-Tv-a Mice
As a control, Ptv-a;p53fl/fl mice were injected into the cerebral cortex at P3

with RCAS-PDGF-B andRCAS-Cre to ascertainwhether thismodel can be
used to study gliomas of the cerebral cortex as well. As there is no Pax3
expression in the parenchyma of the cerebral cortex at this developmental
stage [24], we did not expect thesemice to develop glioma. Surprisingly, 3 of
9mice (33%) developed symptoms of brain tumors before the 12-week end
point including lethargy, enlarged head, and paralysis in one case, which
necessitated sacrificing (Figure S5A). The remaining 6mice were sacrificed at
12weeks postinjection. All brainswere cut in the coronal orientation, fixed in
formalin, and embedded in paraffin for histological examination. Based on
H&E and Ki67 staining, no brains displayed any evidence of glioma
formation within the cerebral cortex parenchyma; however, four of nine
brains harbored enlarged ventricles as a consequence of hydrocephalus
(Figure S5,B andC), and three of nine brains harbored small leptomeningeal
lesions within the lateral ventricles of the cerebral cortex (Figure S5, D–I).
These lesions were presumably responsible for the hydrocephalus and
symptoms that developed in these mice.

Reduction in Global H3K27me3 Induced by the Ectopic
Expression of H3.3K27M in Pax3-Expressing Cells

The ectopic expression of H3.3K27M does not alter the latency or
penetrance of tumor formation driven by PDGF-B overexpression
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Figure 5. Gliomas initiated in Pax3-Tv-a mice can arise throughout the brainstem. Representative H&E staining of high-grade BSG initiated
in Pax3-Tv-a mice by PDGF-B and Cre (A) or by PDGF-B, Cre, and H3.3K27M (B-C), occurring in the ventral pons (A), midbrain (B), and
dorsal pons, involving the fourth ventricle and cerebellum (C). Magnification in left panels is 2.5×, scale bar is 400 μm; magnification in
middle panels is 10×, scale bar is 100 μm; magnification in right panels is 40×, scale bar is 25 μm. Arrows in (A) indicate
pseudopalisading necrosis in the middle panel and microvascular proliferation in the right panel. Arrow in (C) indicates microvascular
proliferation in the right panel.
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and p53 loss in Pax3-expressing cells (Figure 4, A and B), nor does it
alter the tumors’ phenotypic profiles (Figure 6). Immunohistochemical
staining for the H3K27me3 mark in PDGF-B + p53-loss tumors
showed variable staining within individual tumors, with areas of high
levels of H3K27me3 (Figure 7A) and areas of low or no H3K27me3
(data not shown). Ectopic expression of H3.3K27M, however,
significantly reduced the presence of this trimethyl mark in the tumors
(Figure 7B). Quantification of the overall levels of H3K27me3 nuclear
area relative to total nuclear area per high-powered field in these two
groups of tumors showed a significant reduction in H3K27me3-
positive nuclear area in H3.3K27M-expressing tumors (PDGF-B+Cre
mean = 1.3 ± 0.2% [SE], n = 7; PDGF-B+H3.3K27M+Cre, mean =
0.4 ± 0.15% [SE], n = 7; P = .0056 by unpaired t test; Figure 7C).

Discussion
With the increased availability of DIPG biopsy and autopsy material
in recent years, our understanding of the biological basis of this rare
disease is beginning to catch up to that of other types of glioma. In
addition, these human samples are now being used to develop
patient-derived orthotopic xenograft models [28] for the study of
DIPG (reviewed in [29]), models that accurately represent the human
disease and harbor human cells growing in the appropriate location.
However, studies of DIPG using patient-derived orthotopic xenograft
models must be complemented by studies using genetically
engineered mouse models (GEMMs), as GEMMs represent primary
tumors growing in their native microenvironment with defined
genetic alterations and in the presence of an intact immune system.
Despite this, there remains a paucity of GEMMs with which to study
the initiation, progression, and treatment of DIPG. Here we describe
a novel GEMM of DIPG that is initiated in Pax3-expressing cells.
Pax3 is a transcription factor that shows a regional expression pattern
throughout central nervous system development, beginning with the
embryonic neural tube in which it characterizes the dorsal half of the
neural tube and inhibits p53-dependent apoptosis [30–33]. Later in
postnatal development, its expression marks dorsal regions of the
brain including the brainstem and cerebellum, whereas it is absent
from ventral regions such as the cerebral cortex [24,34]. Becasue of
this regional expression pattern during development, Pax3 uniquely
characterizes gliomas arising in the brainstem of mice and humans,
and Pax3 functionally enhances PDGF-B–driven gliomagenesis in
mice initiated in Nestin-progenitor cells by inhibiting apoptosis and
promoting cell survival and proliferation [24].

Further characterization of Pax3-expressing cells in the developing
mouse brainstem shown here revealed that there are at least two
distinct populations of Pax3 cells. Dorsal regions of the brainstem,
such as the lining of the fourth ventricle, harbor Pax3 expression that
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Figure 6. BSGs initiated in Pax3-Tv-a mice. Immunohistochemistry for Nestin (A and D), Olig2 (B and E), and GFAP (C and F) in BSG driven
by PDGF-B and Cre (A–C) and PDGF-B, Cre, and H3.3K27M (D–F). Upper panels are 2.5×magnification, scale bar is 400 μm; lower panels
are 40×, scale bar is 25 μm.
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overlaps partially with Nestin, Sox2, and the proliferation marker
Ki67. This suggests that these cells are relatively immature neural
progenitor cells. Pax3 cells located in the parenchyma of the pons
seem to have a distinct phenotypic profile, being more differentiated
in a dorsal to ventral direction. A very small subset of the dorsal
pontine Pax3-expressing cells coexpresses Nestin; however, all of these
cells lack expression of Sox2 and Ki67, and a subset expresses low
levels of the neuronal lineage marker NeuN. These data suggest that a
subset of these cells is beginning to differentiate down the neuronal
lineage. The ventral pontine Pax3-expressing cells do not express
Nestin, Sox2, or Ki67, and a subset expresses higher levels of NeuN.
These observations suggest that, in contrast to the relatively immature
Pax3 progenitors of the fourth ventricle lining, the Pax3 cells in the
pons parenchyma are more differentiated and committed to the
neuronal lineage.
When Pax3-expressing cells are targeted for gliomagenesis in
Pax3-Tv-a (Ptv-a) mice using PDGF-B and H3.3K27M overexpres-
sion along with p53 loss, gliomas arise anywhere in the brainstem,
including the ventral and dorsal pons, midbrain, and fourth
ventricular space beginning 35 days postinjection. This is an
important observation, as the majority of high-grade BSGs, or
DIPGs, are located within the ventral pons [19], and so the
generation of a model that anatomically resembles DIPG in its
location within the brainstem is of extreme value to the field. The
varied locations of the tumors in this model are most likely reflective
of the variability in injection location inherent in a free-hand
injection-based model. Given that there are populations of
Pax3-expressing cells lining the fourth ventricle, in the midbrain,
and in the pons at P3 and we are able to generate tumors in each of
these locations, all of these distinct populations of Pax3 cells may be
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P = .0056 by unpaired t test.
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capable of serving as a cell of origin for BSG. However, we cannot rule
out alternative explanations. For example, the ventral pontine gliomas
presumably arise from infection of the ventral pontine Pax3+
neurons; however, it is possible that they arise from infection of
fourth ventricular Pax3+ progenitors that migrate into the pons after
infection or from Pax3+/NeuN− cells in the pons. We will require
additional lineage tracing tools to understand whether there are
differences either in the susceptibility to tumorigenesis between these
different populations or in the end-stage tumors arising from them.

The tumors in the murine model characterized here are driven by
enhanced PDGF signaling and express high levels of Olig2, the latter
of which is expressed in more than 90% of DIPGs [35] and both of
which characterize the oligodendroglial/PDGFRA and H3-K27M
subgroups of human DIPG [5,7,12,36]. Although the H3.3K27M
oncoprotein is now considered the hallmark of DIPG, it is interesting
to note that, in our PDGF-B:p53-deficient model, its ectopic
expression globally reduces the H3K27me3 mark but does not further
accelerate the gliomagenesis process. The presence of the H3.3K27M
mutation in human patients predicts a significantly poorer outcome
[3,7], and in vitro and in vivo studies have suggested a functional role
for the mutation in gliomagenesis [23,37]. In contrast, a recent
in vivo study showed that the H3.3K27M mutation did not alter
tumor volume at the onset of symptoms in the Nestin-Tv-a model
[38]. This finding, along with those of the present study, may indicate
that the timing of oncogenic events is important (the H3.3K27M
mutation may be an early event occurring before alterations in PDGF
signaling and p53 mutations in the human disease). Alternatively, it
may be the case that the targeted cells in some experiments thus far
have been incorrect, and thus Pax3-expressing cells may not be the
primary cell of origin for DIPG. K27M-mutant human tumors are
also found in the thalamus and spinal cord in addition to the pons [5],
and as shown here, we have found Pax3-expressing cells in the murine
pons and thalamus (although the spinal cord was not examined),
lending credence to the possibility that Pax3-expressing cells are a
potential cell of origin for K27M-mutant glioma. Further investiga-
tions targeting the H3.3K27M mutation to alternative cells of origin
in the murine brainstem may help to clarify this issue.

It will be important in the future to determine whether there are
similar populations of Pax3 cells in the developing human brainstem
that could represent cells of origin for the human disease. According
to the BrainSpan Database (www.brainspan.org), Pax3 does display a
regional expression pattern in the human brain throughout all stages
of prenatal and postnatal development, similar to what we have found
in the mouse, with its expression in the hindbrain region of the
cerebellum and absence from the frontal cerebral cortex. Unfortu-
nately, brainstem tissues are currently not included in this database,
and it remains to be seen whether Pax3 cells can be identified in the
human pons. As the ventral pontine Pax3+ neurons described here
are Nestin- and Olig2-negative, if there are Pax3+ cells in the human
pons, we presume that they are distinct from the ventral pontine
Nestin+ progenitors previously described and speculated to be
potential cells of origin for DIPG [18,20]. The Pax3+/Nestin+
progenitors of the fourth ventricle floor described here, though, if
found in the human brainstem, may represent an alternative cell of
origin either for dorsally located low-grade BSG (as was suggested for
the Nestin+ cells of the dorsal pons in [20]) or for high-grade DIPG
that may initiate in the dorsal brainstem but upon diagnosis
encompasses primarily the ventral pons due to migration of tumor
cells. In addition, a focus of future investigations will be to compare
genomic, expression, and methylation profiles of the end-stage
tumors from this Pax3-Tv-a model with those of other genetically
engineered mouse models (Nestin-Tv-a and GFAP-Tv-a), along with
human tumors, to determine which model most accurately resembles
the human disease.

Despite the occurrence of leptomeningeal lesions in the Pax3-Tv-a
model after virus injection into the cerebral cortex, which we
speculate is a result of virus-producing cells reaching the lateral
ventricles, traveling to the fourth ventricle, and infecting Pax3-ex-
pressing cells that line the fourth ventricle, we are unable to generate
gliomas in the cerebral cortex parenchyma as is possible with the
Nestin-Tv-a model. This phenomenon makes the Pax3-Tv-a model a
valuable tool for BSG research, as it is specific to the brainstem.
Regional differences in glioma are becoming increasingly apparent
[12,39], in particular with respect to differences between DIPG and
supratentorial glioma [8,12,13,24], and many have hypothesized and
provided preliminary evidence that gliomas in different regions of the
brain arise from distinct cells-of-origin characteristic of their
particular region [5,24,39]. Therefore, it is interesting to hypothesize
that BSG may arise from a distinct type of cell that does not exist
in other regions of the brain, such as the Pax3-expressing cells
described herein.

This Pax3-Tv-a model of BSG displays a longer latency and lower
penetrance as compared with our previously reported Nestin-Tv-a
model with PDGF-B and p53 loss [24]. This observation may be due
to the infection of different types of cells in the Pax3-Tv-a model that
are more differentiated and thus less susceptible to transformation
than those targeted in the Nestin-Tv-a model. The differences in
differentiation and proliferation status between Nestin+ and Pax3+
cells in the pons may explain the differences noted prospectively
between these two models. However, we cannot rule out other factors
such as a lower frequency of Pax3-positive cells in the P3 brainstem as
compared with Nestin-positive cells, or a background difference
between the mouse strains. As with any RCAS-Tv-a model, injection

http://www.brainspan.org
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of the viruses infects multiple cells, and as there are many different
types of Pax3 cells present in the P3 brainstem (some of which overlap
with Nestin-expressing cells), it is likely that several distinct types of
Pax3-expressing cells are infected simultaneously with each injection.
An important difference already noted between the models, however, is
the fact that cerebral cortex injection into Nestin-Tv-a mice leads to
cerebral cortex glioma, whereas similar injection into Pax3-Tv-a mice
does not, indicating that the Pax3-Tv-a model is a specific tool for the
study of DIPG and that Pax3-expressing cells may represent a unique,
regionally distinct cell of origin for DIPG.
In conclusion, we have described here novel populations of

Pax3-expressing cells in the neonatal mouse brainstem and a novel
GEMM of BSG that is initiated in these Pax3 cells. This model accurately
represents the oligodendroglial/PDGFRA andH3-K27M subsets ofDIPG
and will be a valuable tool moving forward for DIPG research.
Supplementary data to this article can be found online at http://dx.

doi.org/10.1016/j.neo.2015.12.002.
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