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perception
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deafferentation. The current study applies concepts from graph theory to investigate the differences
in lagged phase functional connectivity using the average resting state EEG of 311 tinnitus patients
and 256 healthy controls. The primary finding of the study was a significant increase in connectivity in
beta and gamma oscillations and a significant reduction in connectivity in the lower frequencies for the
tinnitus group. There also seems to be parallel processing of long-distance information between delta,
theta, alphal and gamma frequency bands that is significantly stronger in the tinnitus group. While the
network reorganizes into a more regular topology in the low frequency carrier oscillations, development
of a more random topology is witnessed in the high frequency oscillations. In summary, tinnitus can
be regarded as a maladaptive ‘disconnection’ syndrome, which tries to both stabilize into a regular
topology and broadcast the presence of a deafferentation-based bottom-up prediction error as a result
of a top-down prediction.

The brain can be considered as a complex adaptive system, analogous to the economy, an ant society, or the
internet. Under general conditions, complex dynamics can be generated by systems fulfilling the following two
requirements: (1) the presence of noise (e.g. 1/f dynamics) and (2) a small-world topology'. Complex adaptive
systems are dynamic systems that are able to adapt to and evolve with a changing environment. The changes
brought about in the system helps it to either maintain or improve its function in order to sustain and survive
in the particular environment (i.e. persist as an organized system). Complex adaptive systems are characterized
by emergence®?, and it has been proposed that tinnitus is an emergent property of interacting tinnitus-related
networks*.

Complex adaptive systems are characterized by the presence of noise. The phenomenon of 1/f structure also
known as pink noise or inverse-power-law spectra from the brain dynamics is widely recognized™®. It was demon-
strated that both MEG and EEG recordings of spontaneous neural activity in humans display 1/f-like power
spectra, suggesting that the power-law scaling arises from self-organized neural oscillatory networks in the brain’.
This is a result of internal interactions between parts of the brain and is probably required for optimal process-
ing of information®. Studies have shown in several brain disorders, such as schizophrenia’, anxiety'?, autism'?,
Alzheimer® and epilepsy?, this 1/f-like power spectra shift towards white (1/f°) or Brownian (1/f?) noise. This
shift to more randomness in the case of 1/f* may imply less coordinated signal organization or more random
processing of information.

It is widely agreed upon that the organization of the human brain connectome is characterized by a
small-world topology'*-%, with high efficiency of information transfer amongst neighboring and long-distant
nodes!”?!. Small worldness is a characteristic given to a type of mathematical graph in which most nodes are
not neighbors of one another, but most nodes can be reached from every other node by a small number of con-
nections. Imaging studies applying network science to the analysis of the functional connectivity of brain net-
works in different pathologies have reported consistent evidence of changes in network properties and deviation
from small-worldness?. Increased path length due to reduced long-distance connectivity and decreased clus-
tering respectively leading to decreased global and local efficiency of information transfer have been reported
in Parkinson’s disease, traumatic brain injury, fronto-temporal dementia and Alzheimer’s disease??. Bassett and
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Ear
Unilateral 114
Bilateral 197
Tone
Pure tone 118
Noise Like 193
TQ
Mean 39.37
Sd 17.59
Tinnitus Frequency (Hz)
Mean 5143
Sd 3183
Hearing loss at the Tinnitus Frequency (dB SL)
Mean 7.85
Sd 8.78

Table 1. Tinnitus characteristics.

colleagues (2008) report low clustering and disruption of long-distance connections in schizophrenia patients
relative to the controls.

In this study, we investigate whether tinnitus patients and controls show distinct topological patterns. Tinnitus
is the perception of a sound in the absence of a corresponding auditory input from the environment and therefore
is also considered as a phantom sound***. The most common etiology of tinnitus is deafferentiation accompanied
with or without hearing loss. It has been suggested that the unified percept of tinnitus could be considered an
emergent property of dynamically changing networks, each representing a specific characteristic of the tinnitus
(sidedness, loudness, distress, mood, tonality, etc.) with a specific spontaneous oscillatory pattern and functional
connectivity signature*. These subnetworks could hypothetically integrate in a rich club, which connects the dom-
inant hubs of each subnetwork?*?. It is known that tinnitus is characterized by spontaneous changes in auditory
and non-auditory brain areas®. A recent study of resting-state source localized EEG with tinnitus subjects has
pointed to the existence of multiple distributed sub-networks with partially overlapping brain areas?. In parallel
with other brain-related disorders mentioned above, we hypothesize that tinnitus patients show diminished neu-
ral flexibility, i.e. a loss of small worldness, characterized by significant changes in the power scale and network
topology. The identification of specific oscillatory patterns and connectivity signatures for tinnitus might further
explain the underlying neurophysiological mechanism and, as a result, help in the identification of a treatment,
since no treatment exists for this auditory phantom phenomenon to date?.

Materials and Methods
Patients with an auditory phantom percept. The patient sample consisted of 311 patients (M = 50.63
years; SD = 13.67; 210 males and 101 females) with continuous tinnitus. If the onset of the tinnitus dated back a
year or more, the patient’s condition was considered chronic. In order to increase the homogeneity of the sample,
individuals with pulsatile tinnitus, Méniére’s disease, otosclerosis, chronic headache, neurological disorders, such
as brain tumors, and individuals being treated for mental disorders were excluded from the study. All patients
reported the perceived location of their tinnitus as well as the type of tinnitus. The pure tone audiometric thresh-
olds at 0.125kHz, 0.25kHz, 0.5kHz, 1 kHz, 2kHz, 3kHz, 4kHz, 6 kHz and 8 kHz were obtained using the British
Society of Audiology procedures®. In addition, the pitch and loudness of the perceived tinnitus were measured by
performing a simple tinnitus analysis contralateral to the tinnitus ear in patients with unilateral tinnitus and con-
tralateral to the worst tinnitus ear in patients with bilateral tinnitus. A 1 kHz pure tone was presented contralateral
to the (worst) tinnitus ear at 10 dB above the patient’s hearing threshold in that ear. The frequency of the tone was
adjusted until the pitch of the tone matched the perceived pitch of the patient’s tinnitus. The intensity of this tone
was then adjusted in a similar way until it corresponded to the perceived loudness of the patient’s tinnitus. The
tinnitus loudness (dB SL) was computed by subtracting the absolute tinnitus loudness (dB HL) from the audio-
metric threshold at that frequency®*3!. See Table 1 for an overview of the tinnitus characteristics.

This study was approved by the local ethical committee (Antwerp University Hospital) and was in accordance
with the declaration of Helsinki.

Healthy control group. A healthy control group (N =256; M= 49.514 years; SD = 14.82; 154 males and 102
females) was included in the study. None of these subjects were known to suffer from tinnitus. Subjects with psy-
chiatric or neurological illness, history of psychiatric or drug/alcohol abuse, history of head injury (with loss of
consciousness) or seizures, headache, or physical disability were excluded from the study. No hearing assessment
was performed for these healthy controls.

Data collection. Collection of the data was under approval of IRB UZA OGAS85. All patients gave an
informed consent. Continuous resting state EEG data was obtained from both subject groups in an eyes closed
condition for five minutes (sampling rate = 500 Hz, band passed 0.15-200 Hz). Recordings were obtained in a
fully lighted room with each participant sitting upright on a small, but comfortable, chair. The EEG was sampled
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using Mitsar-201 amplifiers (NovaTech http://www.novatecheeg.com/) with 19 electrodes placed according to
the standard 10-20 International placement (Fp1, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8,
01, 02) referenced to digitally linked ears. Impedances were maintained below 5k{2. Off-line analysis of the data
included re-sampling at 128 Hz and band-pass filtering in the range 2-44 Hz. The data was subsequently trans-
posed into Eureka! software®, where it was carefully plotted and manually inspected for artifacts. All episodic
artifacts including eye blinks, eye movements, teeth clenching, body movement, or ECG artifact were removed
from the EEG. Average Fourier cross-spectral matrices were computed for frequency bands delta (2-3.5Hz),
theta (4-7.5Hz), alphal (8-10Hz), alpha2 (10-12 Hz), betal (13-18 Hz), beta2 (18.5-21 Hz), beta3 (21.5-30 Hz)
and gamma (30.5-44 Hz). These frequency bands are based on previous research in tinnitus®**-*. In addition, we
calculated the average Fourier cross-spectral matrices for all frequency separately from 2 to 44 Hz.

Source localization. Standardized low-resolution brain electromagnetic tomography (sSLORETA;
Pascual-Marqui, 2002) was used to estimate the intracerebral electrical sources. As a standard procedure, a com-
mon average reference transformation® was performed before applying the sSLORETA algorithm. sSLORETA com-
putes neuronal activity in current density (A/m?) without assuming a predefined number of active sources. The
solution space used in this study and associated lead field matrix are those implemented in the LORETA-Key
software (freely available at http://www.uzh.ch/keyinst/loreta.htm). This software implements revisited realistic
electrode coordinates and the lead field by applying the boundary element method on the MNI-152 (Montreal
neurological institute, Canada) template. The SLORETA-key anatomical template divides and labels the neocor-
tical (including hippocampus and anterior cingulate cortex) MNI-152 volume in 6,239 voxels each of size 5mm’,
based on probabilities returned by the Daemon Atlas.

The analyses procedures, henceforth, were performed for both the groups on the average EEG data at sensor
level (19 electrodes) and on average EEG data that was source-localized to a specific set of regions of interest (84
Brodmann areas).

1/f dynamics. The power spectrum (PS) of biological time series (an electroencephalogram recording, for
instance) often shows a relationship of decreasing power as a function of frequency (f) according to the general
equation: PS(f) =1 * f>*. The exponent q, therefore, represents the rate at which the power spectrum decreases
as a function of frequency, and gives an estimate about the length (or “distance”) of the linear correlations within
the time series in question. In other words, the slope of the power spectrum provides an index of “temporal mem-
ory effects” in the time series*!. White noise, for instance, has no correlation over time (its autocorrelation is rep-
resented by a Dirac function) and there is no relationship between frequency bands. As a consequence, the power
spectrum of white noise is flat. Brownian noise (or random walk noise), on the other hand, presents correlations
over (short) time—in a “random walk” pattern, the position of a particle at time ¢ + I will depend of its position at
time t. Correlations in the time domain, then, have their counterparts in the frequency domain: the power spectra
of white noise and Brownian noise are proportional to ¢, with o = 0 and 2, respectively. What is called “pink
noise” falls between white noise and Brownian noise with o = 1. It is noteworthy that it has been suggested that
the power spectrum of spontaneous neural signals follow the general rule f, with « close to 1*!. The exponent
o was obtained from a linear regression between the PS and frequency (f), as follows: log(PS) =« *log(f) + 5.
The exponent a was calculated for each artifact-free epoch of silence, for values in the range between f=1 and
f=43 Hz. The mean average on all individual 3, epochs (i.e. steepness of the slope) was calculated for the tinnitus
group and the healthy controls. We compared the steepness of the slope for the two groups for all regions of inter-
est (i.e. 19 sensors and 84 Brodmann areas (see Fig. 1)) using a regression (http://www.ats.ucla.edu/stat/spss/faq/
compreg2.htm) and looking at the interaction between the steepness of the slope and group (i.e. t-test).
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Lagged phase coherence. Lagged phase coherence between two sources can be interpreted as the amount
of cross-talk between the regions contributing to the source activity*?. Since the two sources oscillate coherently
with a phase lag, the cross-talk can be interpreted as information sharing by axonal transmission. More precisely,
the discrete Fourier transform decomposes the signal in a finite series of cosine and sine waves (in-phase and
out-of-phase carrier waves, forming the real and imaginary part of the Fourier decomposition) at the Fourier
frequencies. The lag of the cosine waves with respect to their sine counterparts is inversely proportional to their
frequency and amounts to a quarter of the period; for example, the period of a sinusoidal wave at 10 Hz is 100 ms.
The sine is shifted a quarter of a cycle (25ms) with the respect to the cosine. Then, the lagged phase coherence at
10 Hz indicates coherent oscillations with a 25 ms delay, while at 20 Hz the delay is 12.5 ms, etc. The threshold of
significance for a given lagged phase coherence value according to asymptotic results can be found as described
by Pascual-Marqui ef al.**, where the definition of lagged phase coherence can be found, as well. This analysis was
corrected for the amount of pair wise comparisons using a Bonferroni correction. Time-series of current den-
sity were extracted for all regions of interest using SLORETA for all the frequency bands delta (2-3.5Hz), theta
(4-7.5Hz), alphal (8-10Hz), alpha2 (10-12 Hz), betal (13-18 Hz), beta2 (18.5-21 Hz), beta3 (21.5-30 Hz) and
gamma (30.5-44 Hz). Power in all 6,239 voxels was normalized to a power of 1 and log transformed at each time
point. Region of interest values reflect the log transformed fraction of total power across all voxels separately for
specific frequencies.

The lagged phase coherence was determined between pairwise sensors and Brodmann areas independently.
This value of the lagged phase coherence signifies the functional connectivity strength between the pairs of
sensors or Brodmann areas. Further analyses were performed on the 19 x 19 and 84 x 84 weighted functional
connectivity matrices in each of the frequency bands in the two groups. The 19 x 19 matrices consist of 171 undi-
rected edges and the 84 x 84 matrices consist of 3486 undirected edges.

The values of the connectivity strength between each pair-wise combination of sensors or Brodmann areas was
then correlated (Pearson’s correlation) with the physical distance between them. The physical distance between
nodes (sensors/ Brodmann areas) is calculated by taking the square root of the sum of the square of the difference
of the x, y and z coordinates of each of the nodes in MNI space. A linear regression was drawn between the two
variables. The significant differences between the steepness of the slopes of regression between the two groups
were calculated using the IBM SPSS 22 software.

From the each of the functional connectivity matrices (based on sensors/ Brodmann areas), the following
measures were calculated for both the tinnitus and control group at each of the eight frequency bands using the
Brain Connectivity Tool Box (BCT) for Matlab™ developed by Rubinov and Sporns in 2010 and updated in
2014*,

Node strength. The strength of a node or node strength is defined as the sum of the weights of all the con-
nections between itself and the remaining nodes in the network. The average node strength of the network is the
overall arithmetic average of the strength of all the individual nodes in the network®:.

Functional distance and characteristic path length. The functional distance is the length of the
shortest path between a pair of nodes. As a first step, the functional connectivity matrix was converted to a
connection-length matrix. The functional distance matrix was then computed from the connection-length matrix
using Dijkstra’s algorithm*. The average shortest path length of the network, termed as the characteristic path
length, is the mean of the functional distance matrix where the distance between two nodes is not equal to infin-
ity. The characteristic path length is the measure of global connectivity. Significant differences between the func-
tional distance matrices in the two groups were calculated using Fischer Transformation analysis (Fischer, 1915;
Fischer, 1921). A Pearson’s correlation was drawn between the functional distance and the physical distance
between all pair-wise nodes (sensors/ Brodmann areas) in the two groups. A linear regression was computed
between the two variables and the significant differences in the steepness of the slopes between the two groups
were compared using SPSS.

Clustering coefficient.  The clustering coefficient is a node specific measure, which identifies the neighbors
of each node and determines the degree of local connectivity of the node with its neighbors. This was calcu-
lated by estimating the number of triangles around a node. Clustering coefficients serves as a measure of local
connectivity*,

Local efficiency. The local efficiency is also a nodal parameter which characterizes the efficiency of infor-
mation transfer amongst the neighbors of a particular node. The local efficiency is directly proportional to the
clustering coefficient of a node and was calculated from the functional distance matrix. The local efficiency is
calculated using the formula given in*.

Cross-Frequency correlations. The shortest path length between pair-wise combination of sensors or
Brodmann areas in the lower frequencies (delta, theta, alphal, alpha2) were correlated with the same measures in
the higher frequencies (betal, beta2, beta3, gamma). The significance of the correlation was tested using Fischer’s
Z transformation.

Statistical Analysis. A repeated-measures ANOVA was performed to analyze the main effect of groups (tin-
nitus and control) and group x frequency band interaction effect for each of the network connectivity measures
mentioned above. Further, simple contrasts were performed to compare the mean network connectivity measures
between the two groups in the individual frequency bands. The simple contrasts were analyzed at a significance
level of 0.05 (one-tailed). All tests were subject to correction for multiple comparison.

SCIENTIFICREPORTS | 6:19683 | DOI: 10.1038/srep19683 4



www.nature.com/scientificreports/

t=2.44,p=.009 (a)

Control

Tinnitus

—— Linear (Control) —— Linear (Tinnitus)

Sensor-level

Power (logyo WV?)
&

2 6 10 14 18 22 26 30 34 38 a2
Frequency (Hz)

——Controls ——Tinnitus
—— Linear (Controls)  —— Linear (Tinnitus)

Brodmann Areas

Averaged log-transformed current source density (log A/m2)

Frequency (Hz)

Figure 2. Log-dynamics for the tinnitus group (red) and healthy controls (black) in the (a) Sensor-level and
(b) 84 Brodmann area-based analyses.

Results

1/f dynamics. Comparison between the healthy controls and the tinnitus patients revealed a significant
difference in the steepness of the slope at both the sensor level (t=2.44, p=0.009) and source-level (t =2.91,
p =0.005). Our data show that the slope of the healthy controls is steeper than the slope of tinnitus patients, indi-
cating a shift to more-randomness, i.e. a whitening of the pink noise structure (see Fig. 2).

A small-world network. Network connectivity analysis on sensor-level data. Connectivity
strength-network, node and node pairs. We observe a significant main effect of groups (F=6.72, p=0.010)
showing that the mean connectivity strength of the tinnitus group is significantly different from the control group.
This was moderated by the different frequency bands (F=20.29, p < 0.001). Performing a simple contrast we
observe that the mean connectivity strength of the tinnitus network is significantly lower than that of the control
at the delta (F=7.43, p =0.007) and alphal (F=73.50, p < 0.001) frequency bands. In the alpha2 (F=12.75,
Pp<0.001), betal (F=4.46, p=0.035) and gamma (F=17.67, p < 0.001) frequency bands tinnitus patients have a
significantly higher connectivity strength than that of the controls (Fig. 3). No significant difference in the average
connectivity strength was found between the tinnitus and the control groups in the theta (F=0.27, p=0.605),
beta2 (F=1.35, p=0.247) and beta3 (F=0.50, p = 0.481) bands (Fig. 3).

At the nodal level the mean strength of a node in the tinnitus network is significantly different from the same
in the control group (F=4.33, p =0.045). Again, this was moderated by the frequency (F=13.32, p < 0.001).
Simple contrasts reveal a pattern similar to the network connectivity strength. The mean strength of a node is
significantly greater in the control than in the tinnitus network in the delta (F=7.24, p=0.011) and alphal
(F=51.85, p < 0.001) frequency bands and significantly weaker than the tinnitus group at alpha2 (F=5.89,
p=0.020), betal (F=4.89, p=0.033), and gamma (F= 9.47, p =0.004) frequency bands. No significant effect
could be obtained for the theta (F=0.27, p < 0.604), beta2 (F=1.34, p=0.255) and beta3 (F= 0.40, p=0.533)
frequency bands (Fig. 3).

Clustering Coeflicient. The mean clustering coefficient of a node in the tinnitus network is significantly dif-
ferent from the same in the control group (F= 13.79, p=0.001). This effect was moderated by the different fre-
quency bands (F= 30.60, p < 0.001). The mean clustering coefficient is significantly greater in the control than
in the tinnitus network in the delta (F=16.51, p < 0.001) and alphal (F= 88.86, p < 0.001) frequency bands and
significantly weaker than the tinnitus group at alpha2 (F=10.45, p=0.003) and gamma (F=17.62, p < 0.001)
frequency bands. No significant effect could be obtained for the theta (F= 0.42, p = 0.523), betal (F= 2.50,
p=0.122), beta2 (F=0.83, p=0.367) and beta3 (F=0.00, p = 0.994) frequency bands (Fig. 3).

Local Efficiency. The mean efficiency of a node in the tinnitus network is significantly different from the same
in the control group (F= 8.41, p =0.006). This effect was moderated by the different frequency bands (F = 24.40,
p <0.001). The difference between the mean local efficiency of the network between the tinnitus and control
group closely follows the pattern with the clustering coeflicient. The mean local efficiency is significantly greater
in the control than in the tinnitus network in the delta (F=13.95, p=0.001) and alphal (F=70.27, p < 0.001)
frequency bands and significantly weaker than the tinnitus group at alpha2 (F =10.45, p = 0.003), betal (F=5.30,
p=10.027) and gamma (F= 18.22, p < 0.001) frequency bands. No significant effect could be obtained for the
theta (F=0.39, p=0.536), beta2 (F=1.78, p=0.190) and beta3 (F = 0.35, p=0.558) frequency bands (Fig. 3).
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Figure 3. Network connectivity parameters for both (a-e) sensor-level and (f-j) Brodmann Areas-based
connectivity analyses in the tinnitus (red) and control (black) groups in the eight frequency bands. The
graphs show the mean values of (a) Connectivity strength, (b) Node strength, (c) Clustering coefficient,
(d) Local efficiency and (e) Path length in the sensor-level analysis. (f-j) correspond to the same measures in
the Brodmann Areas-based analysis. The error bars represent standard error.

Functional distance and characteristic path length. The mean functional distance in the tinnitus network is
significantly different from the same in the control group (F= 52.09, p < 0.001). This effect was moderated by
the different frequency bands (F= 66.67, p < 0.001). The mean functional distance or the characteristic path
length of the network is significantly lesser in the control than in the tinnitus network in the delta (F= 33.22,
p <0.001), theta (F=5.43, p=0.020), alphal (F=352.21, p < 0.001), beta2 (F= 26.85, p < 0.001) and beta3
(F=14.67, p < 0.001) frequency bands and significantly greater than the tinnitus group in the alpha2 (F =97.77,
p<0.001), betal (F=86.00, p < 0.001) and gamma (F= 67.71, p < 0.001) frequency bands. We also observe that
the functional distance between pair-wise combination of sensors is significantly longer in the tinnitus in the
delta, theta, alphal, beta2 and beta3 frequency bands. The functional distance between pair-wise combination of
sensors is significantly longer in the controls in the alpha2, betal and gamma frequency bands. In the alpha2 fre-
quency band, there are also some areas between which there is no significant difference in the functional distance
across the two groups (Fig. 4). There exists a direct relationship between the shortest functional distance and the
anatomical distance between pairs of sensors in the different frequency bands also moderated by the frequency
bands. The functional distance between anatomically closer areas in the tinnitus network are significantly longer
than the controls in only the delta and theta frequency bands and no significant difference exists in the other
frequency bands (see Fig. 5).
Connectivity analysis on a source-level data. Connectivity strength-network, node and node pairs. We observe
a significant main effect of groups (F=83.13, p < 0.001) indicating that the mean connectivity strength of the tin-
nitus group is significantly different from the control group. This effect was moderated by the different frequency
bands (F=276.26, p < 0.001). A simple contrast shows that the mean connectivity strength of the tinnitus net-
work is significantly lower than that of the control at delta (F=500.27, p < 0.001), theta (F=2947.17, p < 0.001),
alphal (F=19.39, p < 0.001) and alpha2 (F=99.12, p < 0.001) frequency bands. For the betal (F=241.19,
p<0.001), beta2 (F=113.66, p < 0.001), beta3 (F=533.22, p < 0.001) and gamma (F= 6.98, p = 0.008) fre-
quency bands tinnitus patients have a significantly higher connectivity strength than that of the controls (Fig. 3).
At the nodal level the mean strength of a node in the tinnitus network is significantly different from the same
in the control group (F=15.10, p < 0.001). Again, this was moderated by the frequency (F= 325.43, p < 0.001).
Simple contrasts reveal a pattern similar to the network connectivity strength. The mean strength of a node in
the tinnitus network is significantly weaker than the controls in delta (F=124.62, p < 0.001), theta (F= 863.65,
p<0.001) and alpha2 (F=12.83, p < 0.001) frequency band and significantly stronger than the controls at betal
(F=47.80, p <0.001), beta2 (F=36.36, p < 0.001) and beta3 (F=110.97, p < 0.001). No significant effect could
be obtained for the alphal (F=2.51, p=0.115) and gamma (F= 1.15, p=0.285) frequency bands (Fig. 3).

Clustering Coefficient. We observe that the mean clustering coefficient of the tinnitus network is significantly
different from the control network (F=54.12, p < 0.001) and that this effect is moderated by the different fre-
quency bands (F= 84.81, p < 0.001). Simple contrasts at individual frequency bands reveal that the clustering
coefficient of the tinnitus network is significantly lower than that of the control at delta (F= 322.17, p < 0.001),
theta (F=2062.80, p < 0.001), alphal (F=13.36, p < 0.001) and alpha2 (F = 42.04, p < 0.001) frequency bands
and is significantly greater than the control network at betal (F=80.18, p < 0.001), beta2 (F= 83.23, p < 0.001),
beta3 (F=324.96, p < 0.001) and gamma (F=8.18, p=0.005) frequency bands (Fig. 3).

Local Efficiency. The mean local efficiency of a node closely follows the clustering coefficient of the network
because of its direct relationship. The mean local efficiency of a node in the tinnitus network is significantly
different from that of the controls (F= 25.28, p < 0.001) and is moderated by the frequency bands (F=75.73,
P <0.001). A simple contrast reveals that the mean local efficiency of a node in the tinnitus network is signif-
icantly lower than that of the controls at delta (F=292.43, p < 0.001), theta (F=2070.11, p < 0.001), alphal
(F=10.81, p=0.001) and alpha2 (F=4.03, p=0.046) frequency bands and is significantly higher than that of the
controls at betal (F=115.08, p < 0.001), beta2 (F=90.23, p < 0.001), beta3 (F=336.25, p < 0.001) and gamma
(F=6.08, p=0.015) frequency bands (Fig. 3).
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Figure 4. (a-h) Correlation matrices of functional distances between pairwise combination of recording
electrodes in left: Controls and middle: Tinnitus, and the right: significant differences between these measures in
tinnitus and controls calculated by Fischer transformation analysis in (a) delta, (b) theta, (c) alphal, (d) alpha2,
(e) betal, (f) beta2, (g) beta3 and (h) gamma frequency bands. In the right panel, the areas in red correspond

to those pairs of areas between which the functional distance in the tinnitus is significantly longer than the
controls, the areas in black correspond to those pairs of areas between which the functional distance in controls
is significantly longer than tinnitus and the areas in white are those pairs of areas between which there is no
significant difference in functional distance between tinnitus and controls.
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Figure 5. Correlation of physical distances and functional distances between pair-wise (a-h) sensors and
(i-p) Brodmann areas in controls (black) and tinnitus (red) in delta, theta, alphal, alpha2, betal, beta2,
beta3 and gamma frequency bands. Comparison of the slopes of regression of the physical distance over
functional distance between pairwise combination of (q) sensors and (r) Brodmann areas in controls (black)
and tinnitus (red) subjects in the eight frequency bands.

Functional distance and characteristic path length. A significant main effect of groups (F=42.97, p < 0.001)
moderated by frequency (F= 3546.18, p < 0.001) was observed for the characteristic path length indicating that
the characteristic path length of the tinnitus network is significantly different from the controls and this difference
varies by frequency bands. Simple contrasts reveal that the characteristic path length of the tinnitus network is
significantly longer than that of the controls in the lower frequency bands, such as delta (F=1991.67, p < 0.001),
theta (F= 9868.59, p < 0.001), alphal (F=219.75, p < 0.001) and alpha2 (F= 960.08, p < 0.001) and is signifi-
cantly shorter than that of the controls in the higher frequency bands, such as betal (F=1806.39, p < 0.001),
beta2 (F=644.50, p < 0.001), beta3 (F=4168.49, p < 0.001) and gamma (F=294.21, p < 0.001) bands (Fig. 3).
We also observe that the shortest distance between selective pairs of Brodmann areas in the tinnitus network are
significantly longer in the lower frequency bands (delta, theta, alphal, alpha2) and significantly shorter in the
higher frequency bands (betal, beta2, beta3, gamma) (Fig. 6). There exists a direct relationship between the short-
est functional distance and the anatomical distance between pairs of Brodmann areas in the different frequency
bands, which is also moderated by the oscillatory frequencies. The functional distance between anatomically
closer areas in the tinnitus network are significantly longer in most of the frequency bands (delta, theta, alphal,
alpha2, betal) and significantly shorter in beta3 and gamma compared to the controls (see Fig. 5).

Cross-Frequency correlations.  No significant change in the cross-frequency Pearson correlation of the short-
est path length was observed between the tinnitus and control groups in the sensor-level connectivity analysis
(Table 2). However, we observe a significant change in the Pearson correlation between the shortest path length
amongst pairs of Brodmann areas in the low frequency bands with the same in high frequency bands in the tin-
nitus group. The individual correlations of each of the low frequency bands (delta, theta, alphal and alpha2) with
each of the high frequency bands (Betal, Beta2 and Beta3) are significantly lower in the tinnitus group. However,
the correlations of delta, theta and alphal with gamma are significantly greater in the tinnitus group. No signifi-
cant change in correlation between alpha2 and gamma bands was observed (Table 3).

Discussion

The brain has been considered a Bayesian prediction machine that updates its memory-based predictions through
active sensory exploration of the environment*®*’. This concept has been translated to tinnitus, as well*®. The
oscillatory activity related to auditory predictions has been recently identified*: delta-beta coupled oscillations
underpin prediction accuracy®’, and (Bayesian) updating of the predictions is processed by the alpha-band
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Figure 6. (a-h) Correlation matrices of functional distances between pairwise combination of Brodmann
areas in left: Controls and middle: Tinnitus, and the right: significant differences between these measures in
tinnitus and controls calculated by Fischer transformation analysis in (a) delta, (b) theta, (c) alphal, (d) alpha2,
(e) betal, (f) beta2, (g) beta3 and (h) gamma frequency bands. In the right panel, the areas in red correspond

to those pairs of areas between which the functional distance in the tinnitus is significantly longer than the
controls, the areas in black correspond to those pairs of areas between which the functional distance in controls
is significantly longer than tinnitus and the areas in white are those pairs of areas between which there is no
significant difference in functional distance between tinnitus and controls. (i-p). The network containing the
actual connections whose functional distance between Brodmann areas are left: significantly longer in controls,
middle: significantly longer in tinnitus subjects and right: not significantly different between the two groups in
(i) delta, (j) theta, (k) alphal, (1) alpha2, (m) betal, (n) beta2, (o) beta3 and (p) gamma frequency bands.
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Betal —0.09 0.21 —-1.19 —0.07 0.19 —1.05 0.07 0.11 —0.16 —0.02 0.32 —1.38
Beta2 0.12 0.04 0.30 —0.11 0.08 —0.75 0.11 —0.05 0.65 —0.10 0.03 —0.52
Beta3 0.19 0.17 0.07 —0.29 0.09 —1.56 0.03 0.10 —0.29 0.17 —0.02 0.75
Gamma —0.04 —0.08 0.18 —0.08 —0.24 0.67 0.03 —0.18 0.84 —0.09 0.22 —1.23

Table 2. Pearson correlations of functional distance of pair-wise sensors at lower frequencies (delta, theta,
alphal and alpha2) with the same pair-wise brain areas at higher frequencies (betal, beta2, beta3 and

gamma).

Betal 034 | —007 769 | 0.50 | 0.06 887 | 064 | —013 1611 | 047 | —020 12.92
Beta2 045 | —012 1097 | 059 | 016 9.36 | 039 | —0.09 9.10 | 043 | —0.10 10.15
Beta3 046 | —0.11 11.01 | 040 | 0.03 713 | 032 | —0.24 1045 | 036 | —0.25 11.46
Gamma | 0.27 038 | -223 | 031 | 047 | -343 | 007 024 | —317 | 026 032 | —1.19

Table 3. Pearson correlations of functional distance of pair-wise brain areas at lower frequencies (delta,
theta, alphal and alpha2) with the same pair-wise brain areas at higher frequencies (betal, beta2, beta3 and
gamma). C: healthy controls; T: Tinnitus patients; A comparison between C and T.

(10-14 Hz)*. Predicting ‘when’ an auditory stimulus arrives predominantly involves low-frequency delta and
theta oscillations, predicting ‘what’ is processed by gamma and beta oscillations™. Beta oscillations likely underlie
a top-down flow of information, whereas gamma oscillations could be generated bottom-up*. As predictions are
transmitted in a top-down ‘backward’ manner, using mainly the beta band, prediction errors could be propagated
in the gamma band in a bottom-up feed-forward manner®. Updating of the predictions via attention-based
scanning of the environment®?, on the other hand, is linked to alpha oscillations*>5!. Thus, by transferring these
findings to tinnitus, one could speculate that increased gamma activity in tinnitus would be related to a deaffer-
entation related (thalamocortical column specific spatial mismatch) prediction error, and the nesting on theta or
delta related to its temporal prediction. In other words, gamma activity could reflect any change in the auditory
environment, as this induces a prediction error.

Complex adaptive systems are by definition complex, i.e. made up of many components, connected in a spe-
cific way, typically composed of networks that are able to process and withstand a broad range of stresses and
typically generate complex output signals that have a 1/f decay of the power spectra®’. Their main characteristics
is adaptiveness, i.e. the capacity to change and learn from experience, giving them resilience in the face of per-
turbation (homeostasis)*>*. They typically have a small world topology and are noisy, i.e. have some randomness
embedded in the system!, which permits the system to learn, i.e. adapt.

The brain has such a small world topology, which is an intermediate topology between a lattice (=regular)
structure and a completely random structure®®. Small world topologies have a small average shortest path length,
and a large clustering coefficient?">2. The large clustering coeflicient results in the formation of subnetworks,
typical of small world networks. The small path length is due to the presence of many hubs, i.e. densely connected
nodes. Lattice or large world networks are completely determined, in that they always generate the same response
to a stimulus, making this structure very efficient, but also very predictable and thus not very good for survival®.
The other extreme, a random topology, is inefficient in that it generates a different response to identical stimuli,
due to its inherent memory-less randomness. Random graphs exhibit a small average shortest path length along
with a small clustering coefficient?'. The brain, with its small world topology has the capacity to adjust to a chang-
ing environment by adding long range connections to the predominant short range connections present in lattice
structures'*?%. Losing long range connections results in the transition of small worldness to a more regular or
lattice topology. Adding long range connections to a small world topology, so that all nodes have a similar amount
of connections results in a transition from small worldness to a more random topology. The brain has been
described as a hierarchical scale-free network!>16:18:19.54-56 3 q scale-free networks are small world networks®’,
more specifically, ultra-small world networks®®.

Deviations from the 1/f pattern and related network changes have been associated with disease. The aim of
current research was to identify whether tinnitus is an emergent property of an altered network topology, which
could be recognized by a specific oscillatory pattern and connectivity signature differing from healthy subjects.
Our results are noteworthy for various reasons. First, they demonstrate a clear shift from a typical 1/f pink noise
pattern in healthy controls toward a more white noise pattern in tinnitus patients. This shift can be observed at
both the sensor and source level. Second, we identified differences in the connectivity networks of the brain in
individuals with and without tinnitus. Although the differences in network connectivity measures between the
two groups in the different frequency bands do not follow the exact same trend at senor and source level, the
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current study reports an overall change in the network parameters in the tinnitus group compared to the control
group for connectivity strength, node strength, clustering coefficient and local efficiency. The differences in the
trend can be attributed to the fact that EEG is a scalp potential and the signal collected from one sensor may be
the sum of the signal from different sources. Also, the source-localization is a statistical estimation of the sources
and hence is subject to technical limitations in accurate estimation.

At both the sensor and source level, we see a shift from pink towards a more white noise (=more random sig-
nal) in tinnitus patients. This suggests more randomness in the network and relatively more high frequency oscil-
latory activity. A similar shift is seen in schizophrenia’, anxiety'® and Alzheimer®. The 1/f pink noise behavior of
spontaneous oscillations has been interpreted within the theory of self-organized criticality*'. Pink noise seems to
be the optimal transition between order and randomness®, a state of supple regulation which permits a system to
efficiently respond to stimuli, but then return to baseline®. In contrast, in tinnitus patients a shift-to-randomness
may imply less coordinated signal organization at the local level of possibly neural circuits.

Previous research already suggested that brain dynamics are strongly influenced by the mean number of long
range connections®"%, characteristic of small world networks. Both our sensor and source-level results show an
increase in the characteristic path length, decrease in long distance connectivity and an increase in connectivity
strength between anatomically closer areas, suggesting a shift of the tinnitus network towards a more lattice
(i.e., regular) topology in the lower oscillatory frequencies®"%. This creates a high local efficiency at a low cost,
i.e. is energy efficient. However, the system loses flexibility or adaptiveness, which is clinically expressed as the
persistence of the tinnitus sound. It is known that when cognitive demand is lower, brain networks ‘relax’ into a
more clustered and less costly lattice-like configuration®. So, it is possible that the tinnitus brain is getting more
efficiently organized to focus only on the tinnitus sound, possibly due to a paradoxical salience attached to the
sound®. Our data support this idea, as we see for the theta band specific connections between the right tempo-
ral cortex and bilateral parietal areas and also the fronto-limbic connections that are still intact in the tinnitus
patients. Indeed in chronic tinnitus, functional connectivity is increased between the parahippocampal area (i.e.,
auditory memory), the auditory cortex and the cingulate and insula even though general connectivity decreases™,
and this insula and cingulate activity is associated with the loudness perception®. Increased connectivity in the
network of connections between the parahippocampus and the auditory cortex was reported in resting state func-
tional connectivity as well®’. Further studies also showed an increased connectivity with subcortical areas such
as the brainstem, cerebellum, right basal ganglia and nucleus accumbens for the tinnitus group in contrast to the
control group®. The relationship with sub-cortical structures cannot be explored in the current study due to the
limitations of the modeling technique for estimating sources of the EEG generators. For the higher frequencies,
we see a decrease in absolute path length, increase in long distance connectivity and decrease in shortest distance
between pairs of brain areas that are anatomically further away in both sensor level and source level analysis. This
could allude to the shift in the tinnitus network to a more random topology for the higher frequencies. It is known
that network efficiency for integrative processing is being maximized by a random topology?*. This suggests that
the brain randomly connects to other parts of the brain, hypothetically in an attempt to retrieve the deafferen-
tation related missing information from wherever it can. Indeed, it has been suggested that synchronization of
distributed focal gamma band activity might bind different aspects of brain processing into one coherent unified
percept, both in the visual® and auditory systems as it pertains to tinnitus?.

The higher frequencies usually convey information at short distances and lower frequencies at long dis-
tances’®”1. It is further known that frequency coupling between high and low frequencies provides a mechanism
for the control of localized neural processing by distributed brain networks’"”2. Our source-level analysis further
suggests that the long distance connectivity in the gamma frequency band seems to be in parallel with the long
distance connectivity in the delta, theta, alphal and apha2 frequency bands for the tinnitus group. This is evi-
denced by a significantly stronger correlation of functional distance between delta and gamma, theta and gamma
and alphal and gamma in tinnitus patients in comparison to healthy controls. This might indicate that there
could be a common path in the transfer of information with the lower frequencies that is exclusive to the tinni-
tus network. This pattern is however not seen at the sensor-level. Cross-frequency coupling within the auditory
cortex has been documented in tinnitus*”3, as well as between tinnitus related areas®®’*. In addition, the role of
low-frequency modulation of gamma power in sustained auditory attention (i.e., sustained focus on the tinnitus)
has been shown, as demonstrated by the strength of gamma-theta coupling across frontal and posterior areas”"°.
Sustained attention in the tinnitus population was also reported by resting state functional MRI studies’””’%. An
increased connectivity between the auditory cortex and the dorsal attention network (intraprietal sulci, ventral
precentral gyrus, middle frontal gyrus, and frontal eye fields)”” also confirm the idea of sustained attention to the
tinnitus percept in order to suppress the phantom sound’.

The intriguing results of this study demonstrate that low frequency communication via delta and theta carrier
waves shows a transition from a small world topology to a more regular i.e. less flexible topology, whereas the
information carrying high frequencies (beta and gamma) transitions from a small world topology to a more ran-
dom topology. This apparent topological dissociation between low and high oscillatory connectivity could hypo-
thetically represent different adaptive strategies to the auditory deprivation. On the one hand theta carrier waves
lose their long range connectivity, resulting in a less flexible brain topology. One can hypothesize the brain limits
its filling-in mechanisms to a quasi-stable state in which the missing information is pulled from auditory mem-
ory”®®,_On the other hand, gamma activity has been linked to a bottom-up prediction error resulting from omit-
ted information*% and has been linked to representing the tinnitus sound, and even its loudness perception®. The
gamma random connectivity could represent a distribution of a bottom-up auditory prediction error in the brain.
These random connections increase the likelihood that the tinnitus-related gamma band activity connects to the
consciousness supporting networks?!, also known as the global workspace®?%, an essential requirement for the
gamma band activity to be pushed to awareness. But, one can also hypothesize that by randomly broadcasting the
prediction error to wider brain areas, other solutions could be found for the prediction error, e.g. by multisensory
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congruence, looking for example for visual or other sensory stimuli that could help solve the prediction error.
This could explain why in many tinnitus studies the functional connectivity with the visual cortex is altered®-%.

In spite of the superior temporal resolution of EEG and statistical power due to the large sample sizes of the
two groups, a major drawback of the study is that the control population is not matched for hearing loss. Another
drawback of the study is that the functional connectivity is calculated between Brodmann areas estimated from
resting state EEG recorded using 19 electrodes. Thus the spatial resolution is not as precise as observed in resting
state or block-design fMRI studies. This combined with the limitations of the modeling technique also restricts
us to only examining cortical structures and not subcortical structures which are also reported to play an impor-
tant role in tinnitus. However, the current study paves way for further research which uses graph theory with
source-localized resting state EEG for studying tinnitus wherein much stricter conditions could be placed on the
selection of the patient and control population.

Conclusion

The brain seems to reorganize its topology in two ways in tinnitus patients. The low frequency carrier wave oscil-
lations reorganize in to a more regular or lattice structure, whereas the higher information carrying oscillations
seem to restructure more into a random topology. We hypothesize these topological changes represent two oppo-
site attempts to reduce the uncertainty linked to the auditory deafferentation, usually associated with tinnitus.
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