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New observations on maternal age effect on
germline de novo mutations
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Germline mutations are the source of evolution and contribute substantially to many

health-related processes. Here we use whole-genome deep sequencing data from 693

parents–offspring trios to examine the de novo point mutations (DNMs) in the offspring. Our

estimate for the mutation rate per base pair per generation is 1.05� 10�8, well within the

range of previous studies. We show that maternal age has a small but significant correlation

with the total number of DNMs in the offspring after controlling for paternal age

(0.51 additional mutations per year, 95% CI: 0.29, 0.73), which was not detectable in the

smaller and younger parental cohorts of earlier studies. Furthermore, while the total number

of DNMs increases at a constant rate for paternal age, the contribution from the mother

increases at an accelerated rate with age.These observations have implications related to the

incidence of de novo mutations relating to maternal age.
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T
here have been a number of scientific reports supporting
a positive correlation between paternal age and the
frequency of germline de novo point mutations (DNMs)

in the offspring. This correlation is especially evident in sporadic
diseases that have been shown to be more frequent in the children
of fathers of advanced paternal age1. The increase in the number
of mutations has been hypothesized to be due to the accumulated
number of cell divisions during spermatogenesis as the male
ages. Several recent whole-genome (WGS) and whole-exome
sequencing (WES) studies have used directly observed sequence
data to confirm the effect of paternal age; for example, Kong et al.
studied deeply sequenced whole-genome trio data obtained from
78 Icelandic families and showed a very strong correlation
between the number of DNMs in the offspring and paternal age2.
A trio-based WGS study of 250 Dutch families found a similar
trend3.

To study the patterns of DNMs in a larger cohort of
family trios, we developed a rigorous data analysis pipeline for
identifying germline de novo single nucleotide mutations. The
results reported here used both sequencing information (base and
mapping qualities) and population genetic variation information
obtained from public and our own cohorts. The deeply sequenced
(B60X) WGS data generated using the Complete Genomics Inc.,
(Mountain View, CA, (CGI)) platform was obtained from a large
ethnically and racially diverse family-based case–control study on
the genomic and clinical causes of preterm birth.
Sixty-one of these trios were also sent to Illumina Inc.,
(La Jolla, CA) for whole-genome deep sequencing, assembly
and variant calling.

In this study, we show that maternal age has a small but
significant correlation with the total number of DNMs in the
offspring, after accounting for paternal age. Interestingly, there is
evidence that the mutation rate of the mothers increases at an
accelerated rate with age, while the mutation rate of the fathers
increases at a constant rate. The maternal age is also shown to be
positively correlated with the number of DNMs of determined
maternal origin using the Illumina sequencing data on 61 trios in
the same cohort, providing further evidence for the potential
maternal age effect on an orthogonal platform.

Results
Parents’ ages and number of de novo mutations. Using a
specifically developed analysis pipeline, we identified 28,230
DNMs from 719 mother–father–newborn trios (Supplementary
Fig. 1 and Supplementary Table 1). We first fit a multiple linear
regression (MLR) model to the data, regressing the number of
DNMs on both the father’s and mother’s ages at conception,
mode of pregnancy (whether involving assisted reproductive
techniques (ART)), and the newborn’s preterm status (gestational
age o37 or otherwise). By the Bonferroni Outlier Test4, one
sample with Bonferroni corrected P values o0.05 was removed
before the model was refit. Both parental ages were shown to be
significant determinants of the number of DNMs in the newborn
(Po2.0� 10� 16 for father’s age and P¼ 4.28� 10� 6 for
mother’s age). The newborn’s preterm status did not have a
significant correlation with the number of DNMs (P¼ 0.55) when
controlling for other variables. The usage of ART was moderately
significant (P¼ 3.86� 10� 3), with 4.25 more DNMs on average
compared with natural conception when controlling for other
variables.

To focus on the effect of parental age, we removed the 25 trios
with conceptions involving ART from our analysis. In the final set
of 693 trios, the ages of the fathers at conception ranged from
17 to 63 years, with a mean of 33.4 years. Twenty-four (3.5%) of
the fathers were older than 45 years, extending by 18 years the

age range for the statistical model from previously reported
whole-genome studies2,3. The ages of the mothers ranged from 17
to 43 years with a mean of 31.2 years. The gestational age of the
newborns ranged from 23 to 42 weeks with a mean of 37.2 weeks
(Fig. 1). The resulting data include a total of 26,939 DNMs, which
is on average 38.87 DNMs per proband (s.d.¼ 8.77, range¼ 15–69
DNMs, Supplementary Data 1). Note that all the estimates given
in this section are raw estimates without accounting for
sensitivity, specificity and the callable genome sizes.

As expected, the total number of DNMs in the offspring is
significantly correlated with the father’s age (Po2.00� 10� 16,
MLR) after controlling for mother’s age, with the estimated rate
of increase 0.64 DNMs per year of age (95% confidence interval
(CI): 0.52, 0.77). R2 of the linear model is 0.35. The mother’s age
is also significantly correlated with the number of DNMs
(P¼ 7.61� 10� 6), with the estimated rate of increase of 0.35
DNMs per year of age (95% CI: 0.21,0.51), after controlling for
father’s age (Table 1a). The Bootstrap 95% CI with 1,000
replications for the two regression slopes are: (0.51, 0.78) and
(0.19, 0.50) for father’s and mother’s age, respectively. Because the
father’s and mother’s ages are highly correlated with each other
(Pearson’s r¼ 0.70), we performed permutation analysis to test
whether the parental ages are independently correlated with the
number of DNMs (Supplementary Fig. 6). The results showed
that the maternal age effect on the DNM rate was not likely to be
random. Furthermore, we investigated the parental age effects of
DNMs at CpG sites and non-CpG sites. The maternal age effect is
almost as strong at the non-CpG sites (P¼ 8.39� 10� 6),
but is not significant at the CpG sites. On the other hand,
father’s age is significantly correlated with number of DNMs at
both CpG and non-CpG sites (P¼ 1.33� 10� 5 for CpG sites and
Po2.00� 10� 16 for non-CpG sites). This is consistent with the
hypothesis that there is a lower rate in deamination in CpG sites
in females than males, or that mutations are better repaired in
females in CpG sites5. However, with only 3,894 DNMs in CpG
positions in 693 families (B5.62 per trio), assuming that the
majority of the mutations came from the father, we may not have
enough statistical power to observe a significant maternal effect.
In the future, a larger and phased data set may provide a more
definite answer. In addition, we regressed the number of
DNMs in each chromosome on father’s age and the difference
between the parents’ ages. Both parents’ ages are significant at
chromosome 5, 7 and 16; father’s age is the only significant factor
in 14 chromosomes, and neither parents’ ages are significant in
5 of the 22 chromosomes (the smaller ones), at 0.05 level (Fig. 2).

To test whether the observed maternal age effect was caused by
just a subset of the chromosomes, we performed multiple linear
regression on the total number of DNMs by omitting
chromosomes 5, 7 and 16. Both parents’ age are significant in
this case (Po2� 10� 16 for father’s age and P¼ 6.8� 10� 4 for
mother’s age), indicating that the maternal age effect is not
limited to these three chromosomes only.

Parental origin of de novo mutations. To disambiguously test
for maternal age effect on germline de novo mutations, we used
DNMs found in male newborns in the X chromosome and
phased DNMs in the autosome. The germline de novo mutations
in the X chromosome in the male probands are, in theory,
of maternal origin. We generated the 153 putative DNMs in
359 male probands conceived without ART (mean¼ 0.43, where
239 probands have no DNMs detected, Supplementary Data 1).
We then fit multiple linear regression on the number of DNMs
versus both parents’ ages; neither parents’ ages are significant at
0.05 level. Mother’s age has a nominal P value of 0.04 when it is
entered alone into the linear regression.
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We determined the parental origin of autosomal DNMs
detected using Illumina sequences in the 61 trios. We were able
to determine the parent-of-origin in 30% of the DNMs (776 out
of the 2,573 DNMs called by both Genome Analysis Toolkit
(GATK) and Strelka pipelines) using our custom scripts in
addition to modules PhaseByTransmission and ReadBackedPhas-
ing in GATK. On average, the father transmits 3.44 times more
DNMs than the mother does (that is, on average, 78% of the total
number DNMs came from the father and 22% of those came
from the mother, although the proportion of DNMs of paternal

origin varies between 0.5 and 1; Supplementary Fig. 2). This ratio
is consistent with previous studies, 3.9 reported by Kong et al. and
3.1 by Francioli et al. Following this, we fit simple linear
regression models to the normalized number of DNMs (observed
number divided by the proportion of DNMs phased for the
proband) from the father and the mother with their respective
ages (Fig. 3). The father’s age is significantly correlated with
the number of DNMs passed on from the father (estimated
increase in rate per year¼ 0.31, P¼ 5.15� 10� 4, simple linear
regression). Furthermore, our analysis indicated that the mother’s
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Figure 1 | Parents’ age distribution with number of de novo mutations in their offsprings. (a) The distribution of father’s ages at conception (in years).

(b) The distribution of mother’s ages at conception (in years). (c) The distribution of gestational age for the newborns (in weeks). The colours in each bar

in the histograms indicate the proportion of newborns with each number of DNMs in each of the five equally sized bins.
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age also shows a correlation with the number of DNMs passed on
from the mother (estimated increase in rate per year¼ 0.12,
P¼ 0.02).

To validate our pipeline, we compared the DNMs with parent-
of-origin in NA12878 determined using our pipeline with
Supplementary Table 1 in a study by Conrad et al.6, where 44
of the 49 germline DNMs were determined for their parent-of-
origin. One of these 44 DNMs could not be lifted over from hg18
to hg19. We were able to phase 12 of these DNMs in our pipeline,
of which 11/12 sites were concordant. One site was determined to
have a maternal origin in the original paper6, but was assigned a
paternal origin in our pipeline. Supplementary Figure 5 shows the
DNM site with discrepancy with Conrad et al. We estimate that
the specificity of our parent-of-origin caller based on GATK’s
ReadBackedPhasing is around 11/12¼ 91.7%.

Our observation on the impact of maternal age on number of
maternally derived DNMs contradicts the observations in
Francioli et al.3 (P¼ 0.94 between number of DNMs with
maternal origin and mother’s age); we suspect that these different
results could be due to the difference in the age distributions in
the two cohorts. The Francioli et al. study stated that the average
age for the fathers at conception was 29.4 years, which in our
cohort was 33.4 years. While the average age of the mothers was
not mentioned in the former manuscript, we estimate based on

the paternal age that it is on average 4 years younger than the
mothers in our cohort. We will examine the differences in
younger versus older parents in the next section.

Mutation rate per year change with parents’ ages. Interestingly,
while Kong et al. indicated that an exponential model was favoured
for the paternal age effect on the number of DNMs2; Francioli et al.
showed that a linear model fit the data better by estimating l in the
Box–Cox transformation3. We also fit an exponential model to our
data (Table 1b). While we cannot compare the linear and
exponential models directly, we note that the R2 for the
exponential model (0.34) is slightly smaller than that of the
linear model (0.35). Interestingly, the P value for the mother’s age
in the exponential model is more significant than that in the linear
model. We further investigated the non-linear effects on parental
ages by a Generalized Additive Model (GAM)7, where the number
of DNMs depends on the smooth functions of both father’s and
mother’s ages, optimized by the Generalized Cross Validation
criterion. While both of the smoothing parameters for parental
ages are significant (Table 2), the estimated effective degrees of
freedom for the smoothing parameter for father’s age is 1.00 and
for the mother’s age is 1.19. Indeed, the residual deviance of fitting
a GAM with a linear and a smoothing term for father’s age, while
keeping the smoothing term for the mother’s age is 0.01, indicating
little difference in the two models. In contrast, the residual
deviance of fitting a GAM with a smoothing term for mother’s age,
while keeping the smoothing term for the mother’s age is 21.15
lower than fitting a linear term to mother’s age, and has a higher
Bayesian Information Criterion (4,706.45 vs 4,705.62), indicating a
small non-linear relationship between the number of DNMs and
the mother’s age. The partial residual plots from MLR and GAM
are shown in Fig. 4.

We next sought to identify if there is any difference in the
increase in mutation rate per year in younger and older parents
by splitting the data in half using either the median father’s age
(32.9 years) or the median mother’s age (31.3 years) and fit
MLRs on both parents ages on the total number of DNMs
(Supplementary Table 2). Interestingly, estimates of the slope for
father’s age are quite similar in older (4median father’s age) and
younger (omedian father’s age) fathers (0.67 vs 0.71, 95% CI:
0.47, 0.87 vs 0.43, 0.99). On the other hand, the estimate of the
slope in older mothers is almost double of that in the younger
mothers (0.61 vs 0.31, 95% CI: 0.28, 0.94 vs 0.04, 0.58), after
accounting for the father’s age. This observation suggests that
while the germline mutation rate increases linearly with father’s
age, it accelerates in older mothers.

Batch effect. The genomes used in this study were sequenced
by CGI between October 2011 and August 2013 with pipeline
software versions 2.0.0–2.0.4. Different experimental procedures
and software versions may affect the number of bases being
mapped to the reference genome (‘Gross mapping yield’) and
fraction of bases that are called with high confidence (‘Fully called
genome fraction VQHIGH’) and, in turn, change the effective
number of bases being called for each trio. That is, the more
called bases with high confidence may lead to higher number of
DNMs called and vice versa. We, therefore, investigated whether
there is significant batch effect in the de novo mutations calling by
linear regression. Indeed, in the unfiltered data, software version
2.0.3, and fully called genome fraction are both significant
(P¼ 2.34� 10� 5 for software version 2.0.3 and P¼ 0.03 for
‘fullyCalledFractionHIGH’, Supplementary Tables 3 and 4). The
‘GenomeCoverageGrossMappingYield’ is not significant (P¼ 0.17
and P¼ 0.47) before or after filtering (Supplementary Table 5).
Furthermore, we see that the estimated number of DNMs is

Table 1 | Regressions on the effect of parental ages on the
number of DNMs.

(a) Multiple linear regression of the total number of DNMs on the
father’s and mother’s ages (R2¼0.35)

Model b s.e. t Pr(4t) VIF

(constant) 6.61 1.79 3.69 2.39� 10�4

Father’s age 0.64 0.06 10.03 o2.00� 10� 16 1.99
Mother’s age 0.35 0.08 4.51 7.61� 10� 6 1.99

(b) Multiple linear regression of the natural log of number of DNMs on
father’s and mother’s ages (R2¼0.34)

Model b s.e. t Pr(4t)

(constant) 2.79 0.05 59.46 o2.00� 10� 16

Father’s age 0.02 1.67� 10� 3 9.88 o2.00� 10� 16

Mother’s age 9.3� 10� 3 2.04� 10� 3 4.58 5.64� 10� 6

(c) Multiple linear regression of the number of DNMs in CpG sites on
father’s and mother’s ages (R2¼0.08)

Model b s.e. t Pr(4t) VIF

(constant) 1.44 0.59 2.45 1.47� 10� 2

Father’s age 0.09 0.02 4.39 1.33� 10� 5 1.99
Mother’s age 0.04 0.03 1.39 0.16 1.99

(d) Multiple linear regression of the number of DNMs in non-CpG
sites on father’s and mother’s ages (R2¼0.33)

Model b s.e. t Pr(4t) VIF

(constant) 5.17 1.61 3.20 1.44� 10� 3

Father’s age 0.55 0.06 9.51 o2.00� 10� 16 1.99
Mother’s age 0.32 0.07 4.49 8.39� 10� 6 1.99

(e) Linear regression model of mother’s age on the number of DNMs
in chromosome X in male probands (R2¼0.01)

Model b s.e. t Pr(4t)

(constant) �0.01 0.22 �0.06 0.95
Mother’s age 0.01 6.95� 10� 3 2.03 0.04

DNM, de novo point mutation; VIF, variance inflation factor.
693 trios were used in the analysis in (a)-(d); 359 mother and son pairs were used in the
analysis in (e).
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higher in software version 2.0.3 in the unfiltered data
(Supplementary Fig. 3a). On the other hand, such effects are
not apparent with the filtered data (Supplementary Fig. 3b),
indicating that our filtering steps may satisfactorily remove the
batch effect. To completely eliminate the possibility that Software
versions 2.0.0 and 2.0.3 are responsible for the maternal age effect
we are observing, we fit the MLR model excluding
software versions 2.0.0 and 2.0.3, and found that both parents’
ages are still significant (Po2.00� 10� 16 for father’s age and
P¼ 1.97� 10� 5 for mother’s age).

Validation of the de novo mutations. To validate the DNMs we
detected with the CGI platform, we performed three separate
analyses. First, 61 of the 693 trios underwent WGS at B40X
through Illumina Services. Second, one additional family (parents
and their monozygotic newborn twins) underwent sequencing by
both Illumina and CGI platforms. Third, Sanger sequencing was
performed on a selected set of variants detected by either the CGI
or Illumina Platform.

We estimated the sensitivity and specificity of our DNM
analysis pipeline using the 61 trios in our cohort that were also
sequenced by Illumina. That is, we validated close to 9% of our
data using an orthogonal and reliable technology. We developed
two analysis pipelines for discovering DNMs using GATK8

and Strelka9, respectively, with the Illumina sequences and
alignments.

Using variant calls from our custom pipelines with Strelka and
GATK from Illumina data, as well as the variant calls from the
custom CGI analysis pipeline, we define our truth set to be those
DNMs that were called by at least two custom pipelines (Fig. 5).
We then estimated the sensitivity for our CGI custom pipeline to
be 75% and the specificity to be 87%.

The resulting list contains 2,918 DNMs from Strelka and 2,679
from GATK PhaseByTransmission from the 61 trios. The
comparison between the three pipelines is summarized in the
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Venn diagram (Fig. 5a). However, since CGI and Illumina data
have their own characteristics in terms of context-dependent
error rate, GC bias and genome coverage, the total number of
DNMs detected may not truly reflect the accuracy of each of the
custom pipelines. We, therefore, created the lists of commonly
called bases for each trio on each platform and compared the
sensitivity and specificity of each of the pipelines in each trio only
in the regions of bases called by all three custom pipelines in all
three members of the trio (Fig. 5b).

For the family with the monozygotic twins, we summarize the
results in Supplementary Fig. 4. Since they are monozygotic, we
hypothesize that they share all the germline de novo mutations.
Supplementary Figure 4b,c and 4d show the concordance between
the two twins in the custom CGI, Strelka and GATK pipeline,
respectively. Supplementary Figure 4a shows the comparison of
the shared variants called within each pipeline. 93% (43 out of 46)
of the DNMs found in both twins are also detected by one of the
Illumina pipelines. While this is only one family, it further
confirms that our CGI pipeline is accurate.

Furthermore, we validated two set of variants using Sanger
sequencing. The first set contains a randomly selected set detected
with the CGI custom pipeline only (which were considered as

false positives in estimation of specificity of the CGI pipeline),
39 of these sites were successfully run on all members of the trios.
Of these 39 sites, 27 of the 39 (69%) are true positives, which
indicates that we have underestimated our specificity. The second
set contains the DNM sites that were called by both the Strelka
and GATK pipelines only (not in CGI) in the monozygotic twins.
Of the 12 that we were able to successfully sequence, 11 sites were
validated, while 1 variant was not confirmed in the proband
(false positive). This suggests that our measure of sensitivity
(by assuming sites that are called by both Strelka and GATK
pipelines are true positives) is largely correct (Supplementary
Table 6).

Mutation rate estimation. We estimated the mutation rate by
accounting for the sensitivity and specificity of the CGI pipeline
and the effective number of base pairs in the study. We estimated
there were on average 1.05� 10� 8 mutations per nucleotide per
generation, well within the range of mutation rates described in
previous studies2,6,10,11. Furthermore, as previously shown, the
transition rate at CpG sites is more than 10 fold more frequent
than that in the non-CpG sites (Supplementary Table 7). We
estimated the true slope for father’s age on number of DNMs in
autosomes to be 0.92 DNMs per year (95% CI: 0.74, 1.10) and
that for the mother’s age to be 0.51 DNMs per year (95% CI: 0.29,
0.73). The true slope for father’s age for the phased DNMs is
estimated to be 1.67 DNMs per year (95% CI: 0.76, 2.59) and that
for the mother’s age to be 0.66 DNMs per year (95% CI: 0.09,
1.22). The variability on the proportion of DNMs phased in each
family has increased the s.e. of our estimates substantially.

We would like to emphasize that while we attempted to
account for all possible sources of biases when estimating the
mutation rates, and while our estimated numbers concordant
with previous studies using next-generation sequencing
technology, there remain many uncertainties in the reference
genome as well as in the sequencing technologies that cause
challenges in yielding precise and highly accurate numbers.

Table 2 | Approximate hypothesis tests on the smoothing
parameters estimates in the generalized additive model of
the effect of parental ages on the number of DNMs.

Effective degrees of freedom F value Pr (4F)

father’s age 1.00 100.18 o2.00� 10� 16

mother’s age 1.19 14.28 3.02� 10� 5

DNM, de novo point mutation.
693 trios were used in the analysis. The smoothing parameter estimates for both P values for
father’s and mother’s ages are significant. The effective degrees of freedom of the estimated
smoothing parameter on the father’s age is 1.00 and the estimate is 1.19 for the mother’s age,
indicating non-linearity in the relationship between maternal age and number of DNMs.
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Figure 4 | Partial residual plots on parental ages and number of de novo mutations. (a) The residuals derived from regressing the number of

DNMs on the mother’s age are plotted against father’s age. The blue line shows the linear fit, the grey band represents the 95% confidence interval.
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Discussion
Although the correlation we found between the mother’s age and
the number of DNMs is statistically significant, there are several
potential technical and biological explanations that could have led
to a falsely significant result. We showed that if not handled
carefully, sequencing batch effect can either cause spurious
correlation or reduce the power of detecting real ones. As the
sample size of the genomic studies grows and often cross
institutions, checking and minimizing batch effects may be one of
the most important quality control steps before any further
analysis.

Mosaicism in one or both parents could also lead to false
correlation. If the mosaic parent has a large deletion, or
underwent a copy neutral loss of heterozygosity event in most
of the cells, it would appear that the parent is homozygous in the
region. As a consequence, germline single-nucleotide variants
(SNVs) in the newborn inherited from that parent would appear
as DNMs. Since the prevalence of mosaicism is known to be
correlated with age12, this type of error would introduce an
apparent positive correlation between parental ages and the
number of DNMs passed on to the child. To test whether
mosaicism occurred in our cohort, we removed clusters of nearby
putative DNMs in the same newborn from 10 bp, 102 bp, ..., up to
108 bp, and analysed the linear fit of the number of DNMs versus
father’s age and mother’s age for each set. We found that both
parents’ ages remained significantly correlated with total number
of filtered DNMs even when we removed SNPs that are within 1
million bp from each other (Po0.05, Supplementary Table 8).
Neither parent’s age is significant when the cluster size is 100
million bp or larger, which is longer than 7 of the autosomes in
the human genome. Furthermore, from our orthogonal validation
with Sanger sequencing, we realized that most of our false-
positive DNMs are due to the variant not being present in the
proband, instead of the variant being present in one of the parents
(Supplementary Table 6). Another possible source of a falsely
significant result is the possibility that advanced maternal age
increases the rate of postzygotic somatic mutations in the

offspring. Therefore, there would be decreased genomic
integrity in the offsprings of older mothers. Somatic mutations
that happen after the multi-cell embryo stage would often exhibit
smaller allele frequencies in the blood (frequencies oo0.5). We,
therefore, filtered out variants that significantly violated the
heterozygous diploid assumption in the analysis pipeline.
However, we note that in our data set it is not possible to
distinguish germline DNMs in the parents from very early
somatic mutations in the newborns (that is, when the somatic
mutation allele has a similar allele frequency to the reference
allele). False negatives could also introduce the apparent relation
between maternal age and number of DNMs if the false-negative
rate is correlated with maternal age, as most false negatives were
likely introduced by excluding sites with a large proportion of
no-calls (41% in the cohort) or by eliminating variants in the
probands that have no-calls in a parent. However, this would be
expected to yield a negative correlation of the number of DNMs
with both parents’ ages, which is not observed in our data. We
also investigated the effect of various filtering steps on the
association with maternal age effect (Supplementary Tables 1, 8, 9
and 10). The results indicate that the maternal age effect is indeed
robust with the filtering we applied.

In this study, we confirmed in a racially and ethnically diverse
population that the DNM rate is dominated by the father’s age;
we also showed evidence that the mother’s age plays a small but
significant role. Previous studies of WGS data did not find a
statistically significant correlation with maternal age. This
discrepancy is most likely due to the lack of sufficient statistical
power from a smaller sample size, as well as a greater number of
older mothers at conception in our cohort. However, Kong et al.
did show that there was some over-dispersion in the number of
maternal DMNs in the five families in which they were able to
phase the proband’s genome2. While human maternal age
has previously only been correlated with large chromosomal
anomalies, previous studies in the mouse have used microsatellite
data to show an increase in cell divisions in the oocyte with
increasing age13. We also showed that the rate of increase in
germline mutations accelerates with maternal age while being
constant with paternal age. The increase in the number of DNMs
in the proband with increasing paternal age is thought to result
from an accumulation of mutations with increasing number of
cell replications. The germ cells of women are thought to be
relatively quiescent, though a possibility of maternal age effect has
been suggested14. The results presented here suggest three
possibilities: the female germ cells are more prone to
accumulate spontaneous mutations over time than currently
thought; or that the zygotes from older mothers’ germ cells have
higher mutation rate; or oocytes from older mothers undergo
more cell divisions. These observations provide greater insights in
our understanding of reproductive biology.

Methods
Data. The 774 complete family trios and quads, where applicable from twin births,
(father, mother and newborn(s)) with validated pedigrees are from an Institutional
Review Board-approved WGS-based study on the causes of preterm birth (Vockley
et al., 2015, Manuscript in preparation). Informed consent was obtained for all
subjects in this study, which includes cases (preterm births) and controls (fullterm
births). Sample batches were sent to CGI (Mountain View, CA) for WGS (see
Bodian et al., 2014 on sample collection15). Complete Genomics’ Assembly (CGA)
Pipeline versions 2.0.0–2.0.4 with the NCBI build 37 human genome reference16

were used for genome assembly and variant calling. The small variants (SNVs and
Insertions/Deletions) were merged into a single VCF file using mkvcf beta version
from CGA tools version 1.6.0 (refs 15,17).

Of the 774 families in the preterm birth study, we excluded 55 families having
multiple births, 25 families with conception involving ART, and 1 outlier by
Bonferroni Outlier Test (Supplementary Fig. 1). Six hundred and ninety-three
families with singleton births were used in this study, of which 208 of the newborns
were born preterm (gestational age o37 weeks).
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Figure 5 | Comparison of the three DNM discovery pipelines with Venn

diagrams. (a) The overlap between the list of DNMs called in the 61 trios

by CGI custom pipeline (blue circle), Strelka custom pipeline (green circle)

and GATK PhaseByTransmission custom pipeline (yellow circle). 1,839

DNMs were called in all 3 custom pipelines and 2,583 DNMs were called in

at least 2 custom pipelines. There are 333 (13% of total called by CGI)

DNMs uniquely called by the CGI custom pipeline, 103 DNMs (4%)

uniquely called by the Strelka custom pipeline and 35 DNMs (1%) uniquely

called by the GATK PhaseByTransmission custom pipeline. (b) The overlap

between the list of DNMs called in the 61 trios in sites that are considered

callable by all 3 custom pipelines, with the same colour scheme as in a.

There are 306 (3% of total called by CGI) DNMs uniquely called by the CGI

custom pipeline in commonly called bases, 95 DNMs (5%) uniquely called

by the Strelka custom pipeline and 29 DNMs (1%) uniquely called by the

GATK PhaseByTransmission custom pipeline.
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Sixty-one of the trios and a quartet were sent to Illumina Inc., (San Diego, CA)
for WGS and assembly (pipeline version 2.0.3).

Generating the list of de novo mutations in CGI data. The list of putative DNMs
in the autosomes from the 719 singleton births (including those that were
conceived with natural and assisted methods and the outlier) were generated as
follows:

The initial putative DNMs list consists of SNV sites in the autosomes that are
biallelic across the cohort, with call rate Z0.99, and where the variant is observed
in one of the probands only in the entire cohort (2,434 individuals), with variant
classified as GQHIGH at the proband, CGI refScore 40 in both parents and with
variant read count frequency Z0.3;

To remove potential false positives caused by mapping error, those putative
DNM sites with alignability (36 mers, Guigo—CGR, Barcelona, obtained from
UCSC Table Browser) o1 are removed18;

Putative DNMs within 1,000 bp in the same proband are removed because they
might be caused by miscalling or a different mutation mechanism (for example,
somatic hemizygous deletion in one of the parents);

To remove those false-positive sites that are more likely to be common
polymorphisms in the population, variants that are present in dbSNP 131 (ref. 19),
the Exome Sequencing Project20 or the 1000 Genomes Project Phase 1 (ref. 21) are
removed;

Variants that are annotated by CGA tools as in Segmental Duplication are
removed;

Putative variant sites are annotated using Gemini22 and custom scripts. Those
sites that are in a RepeatMasker23 tandem repeats region predicted by Tandem
repeats finder24 are removed to avoid mapping errors;

Finally, those sites with less than five reads covering either allele or 45% reads
representing a third allele are removed.

The list of putative DNMs in chromosome X from the 368 male singleton births
(of which 9 were conceived with ART) were generated similarly to the
autosomes, except for the last step, where we require the total number of reads
covering the site to be at least five and the read count frequency for the reference
allele o5%.

Generating the list of de novo mutations in Illumina data. To obtain a
list of DNMs from the Illumina WGS data, we developed two independent
customized pipelines using Strelka9 and GATK7 (HaplotypeCaller and
PhaseByTransmission).

Strelka was originally developed to detect small somatic variants in tumour
samples by jointly modelling the tumour samples with the normal samples. One of
the advantages of Strelka is that it performs local realignments on both tumour and
normal reads at the same time, greatly reducing the number of false positives
caused by misalignments. Most of the metrics associated with each variant are
based on either tier 1 or tier 2 filtering. While tier 1 is more stringent, tier 2 allows
users to detect low-quality reads that show discrepancies from the assumptions. We
obtained the list of putative DNMs in each proband in the Illumina data using
Strelka Version 1.0.14 by subtracting each proband from each of the parents
separately (that is, treating the proband as the ‘tumour’ and the parents as the
‘normal’ genome), and taking the intersection of the two sets. We then further filter
the variants by requiring that:

All members of the trio have at least 10 reads covering the site;
The number of basecalls filtered is o20% of the original read depth for tier 1;
There is r1 read with deletions spanning this site at tier 1;
For either parent, the number of reference reads is Z90% of the total

number of reads covering the site; with no reads with the putative DNM found
in the parents. Also, the number of reads with reference bases at tier 1 is at least
80% of that at tier 2;

For the proband, the number of reads with the genotype called is at least 90%
of the total number of reads covering the site. Also, the number of reads with
reference bases at tier 1 is Z80% of that in tier 2; the same applies to the alternative
bases;

For the proband, the number of reads with the minor allele is Z30% of the total
number of reads covering the site;

Sites within 1,000 bp in the same proband are removed;
Those putative DNM sites with alignability (36mers, Guigo—CGR) o1 or in a

RepeatMasker tandem repeats region predicted by Tandem repeats finder are
removed23;

Finally, to remove those false-positive sites that are more likely to be common
polymorphisms in the population, variants found in dbSNP 131 (ref. 19), the
Exome Sequencing Project20 or the 1000 Genomes Project21 are removed;

We ran the HaployperCaller module in GATK Version 3.2.2 on each family
followed by the PhaseByTransmission module in GATK with default setting. The
HaplotypeCaller module performs local realignments on each family member,
hence reducing the false positive rate introduced by misalignment, and ensures that
calls are consistent within each family. The PhaseByTransmission module phases
the variant calls by familial transmission as well as identifies any calls that violate
Mendelian inheritance. We then filter the variants in the Mendelian Violations File
from the PhaseByTransmission module by requiring that:

TP (Transmission Probability) has to be greater or equal to 30;

All members of the trio have at least 10 and at most 100 reads covering the site;
The PL (likelihood of the genotype) of the homozygous reference genotype for

both parents should be equal to 0; and the PL of the heterozygous genotype for the
proband should be equal to 0;

For the parents, the number of reads with the alternative allele should be
equal to 0;

For the proband, the number of reads with the reference allele and with the
alternative allele have to be greater than or equal to 5, respectively;

For the proband, the number of reads with the minor allele is Z30% of the total
number of reads covering the site;

Sites within 1,000 bp in the same proband are removed;
Those putative DNM sites with alignability (36 mers, Guigo—CGR) o1 or in a

RepeatMasker tandem repeats region predicted by Tandem repeats finder are
removed23;

Finally, to remove those false-positive sites that are more likely to be common
polymorphisms in the population, variants found in dbSNP 131 (ref. 19), the
Exome Sequencing Project20 or the 1000 Genomes Project21 are removed.

Determination of parental origin of the DNMs. Parental origin of a DNM can be
determined if a haplotype block from haplotype assembly (haplotype phase from
sequencing data) covers both the DNM and a phase informative site. Haplotype
blocks 20 kb up- and downstream of the true DNM sites were generated with the
ReadBackedPhasing module in GATK, using the BAM files mapped by Illumina
Services and the variant calls from the PhaseByTransmission module in GATK.
A DNM is considered of maternal origin if the DNM allele is on the same phase as
a maternally inherited haplotype determined by transmission, and vice versa. If
there is conflict between the haplotype phase from analysing the sequencing data
versus analysing the familial transmission information, or if the haplotype block
containing the DNM does not include a phase informative site, the parent-of-origin
of the DNM cannot be determined. Overall, we were able to determine the parent-
of-origin of 31% of the putative DNMs detected by both GATK and Strelka
(963 out of 3,128 sites). We confirmed the accuracy of our parent-of-origin pipeline
by running it on the NA12878 sample from Illumina Platinum Genomes25

(Supplementary Fig. 5).
To validate our de novo mutations pipeline for genomes sequenced by Illumina,

we tested it on the NA12878 trio (NA12878 and parents NA12891 and NA12892)
in the CEPH pedigree 1463, which are part of the Illumina Platinum Genomes
project26. The aligned BAM files are downloaded from European Nucleotide
Archive with accession number ERP001960. We ran the same GATK phasing
pipeline as described in the Methods section and generated 2,139 de novo single-
nucleotide mutations and were able to phase 686 of them (33%), of which 363 are
from the father (53%) and 323 are from the mother (47%). Note that this list
includes somatic mutations in the cell line of NA12878, which is not possible to
distinguish from germline mutations without extra information such as whether
the variant is inherited in her 11 offsprings. Thus, we do not see a biased
proportion of variants of paternal origin. Tweleve of these phased DNMs were
confirmed as germline DNMs with determined parent-of-origin6. We, therefore,
compare our findings with the results in Conrad et al.

Statistical methods for parental age effect. All statistical analysis were per-
formed using R 3.0.2 (‘Frisbee Sailing’). We use a linear model to test the parental
age effects and adjust for natural conception (versus conceived using ART) and
preterm status. The model used is:

yi ¼b0 þ b1�fathersAgei þ b2�MothersAgeiþ b3�is:NaturalConceptioni

þb4�is:pretermi

ð1Þ

where yi is the number of DNMs observed in ith proband, b0 denotes the intercept,
fathersAgei is the age of the father of the ith proband, mothersAgei is the age of the
mother of the ith proband, is.NaturalConceptioni is an indicator variable on
whether the ith proband was conceived naturally, and is.pretermi is an indicator
variable on whether the ith proband was born preterm. bj,j¼ 1–5, are coefficients
of those variables.

After removing those probands that are conceived with ART, we refit the model
as follows:

yi ¼ b0 þ b1�fathersAgei þb2�MothersAgei ð2Þ
The variables and coefficients are defined the same as above.

The exponential model was fitted as follows:

log yið Þ ¼ b0 þ b1�fathersAgei þb2�MothersAgei ð3Þ
The variables and coefficients are defined the same as above.

The linear model for per chromosome analysis was fitted as follows:

ychr;i ¼ b0 þb1�fathersAgei þ b2�differenceInParentsAgesi ð4Þ
where ychr,iis the number of DNMs observed in chromosome chr in ith proband
and differenceInParentsAgesi¼mothers Agei� fathers Agei.

Batch effect. We obtained ‘SOFTWARE VERSION’, ‘Fully called Genome
Fraction VQHIGH’ and ‘Gross mapping yield (Gb)’ from the summary files

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10486

8 NATURE COMMUNICATIONS | 7:10486 | DOI: 10.1038/ncomms10486 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


provided by CGI for each genome. We then look for the effect of ‘SOFTWARE
VERSION’, ‘Fully called Genome Fraction VQHIGH’ and ‘Gross mapping yield
(Gb)’ by including them in the linear models of number of DNMs versus parental
ages. The models are specified as follows:

yi ¼ b0 þb1�fathersAgei þ b2�MothersAgei þb3�softwareVersioni ð5Þ

yi ¼b0 þ b1�fathersAgei þb2�MothersAgeiþ b3�softwareVersioni

þ b4�FullyCalledGenomeFractioni

ð6Þ

yi ¼b0 þ b1�fathersAgei þb2�MothersAgeiþ b3�softwareVersioni

þ b4�GrossMappingYieldi

ð7Þ

Maternal age. Because the father’s and mother’s ages are highly correlated with
each other (Pearson’s r¼ 0.71), we calculated the variance inflation factor. The
variance inflation factor for both father’s and mother’s ages is 1.99 (o5), indicating
that the multicollinearity issue is minimal for this ordinary least squares regression
analysis.

To further test whether the correlation of mother’s age with the number of
DNMs in the proband is due to chance, a permutation test was performed. If
mother’s age has no effect on the total number of DNMs, we should be able to
shuffle mother’s ages within the data set, while keeping the correlation between the
paternal and maternal ages high, and obtain the same significance for the maternal
age effect. We, therefore, generated 10,000 sets of simulated maternal ages by
randomly shuffling the differences in age between the father and mother in each
family, and calculated the new t value for maternal age in each set (Supplementary
Fig. 6). None of the randomized set has a t value as high as that in the original data
set (4.58); that is, the chance of observing this value or higher is o0.0001,
indicating that it is highly unlikely that the maternal age effect we observed is due
to chance.

Mutation rate estimation. For CGI data, we randomly selected 500 individuals
from our cohort and generated a list of sites that have no-calls in at least 1% of the
individuals. We used subtractBed in BEDTools27 to obtain the commonly callable
region from the autosomes in UCSC hg19, estimated to be 2.21 billion base pairs.
We also calculated the average number of bases with no-calls in these individuals
(91.18 million base pairs). On average 1/4 of the no-call sites in an individual are
shared in over 90% of the same selected individuals (22.99 million base pairs),
indicating that there is high degree of variation in the sequencing coverage along
the genome in the individuals. The estimated number of commonly callable base
pairs is an upper bound due to the variability in coverage between individuals.
During our filtering step we also remove those sites that are in the predicted
tandem repeats regions, those that are in segmental duplication regions, and those
with alignability smaller than 1; we subtract those sites from the commonly callable
regions using subtractBed to generate the effective bases called. We estimate that
the effective number of bases in the autosomes to be 1.62� 109. For the 61 families
sequenced by both technologies, we obtained the callable bases per trio based in
CGI data by intersecting the callable bases in all three family members, again using
BEDTools. For Illumina data, we used the ‘get_called_regions’ module in
gvcftools28 to obtain the callable region for each genome used in this analysis.
The callable base pairs per trio are obtained in the same way using the callable
regions in the CGI data. Furthermore, we obtained the genome positions of callable
bases in the three custom pipelines in both technologies by intersecting the callable
bases in CGI and Illumina for each trio; these positions are used as the common
callable bases when estimating the sensitivity and specificity of the CGI pipeline,
and for Fig. 5b.

The mutation rate per nucleotide per generation is calculated as:

Average number of DNMs per generation�specificity�sensitivity
number of effective bases�2

¼ 26; 939 DNMs=693families�0:75�0:87
1:62�109�2

¼ 1:05�108per nucleotide per generation

ð8Þ

Similarly, the estimated increase in the number of DNMs per year of parents’
age is calculated by adjusting for sensitivity and specificity, and normalized by
proportion of effective bases called in the genome:

Estimated slope x specificity�sensitivity�genome proportion of effective bases called; ð9Þ
where genome proportion of effective bases called is defined as number of effective
bases divided by number of bases in the reference genome hg19 without assembly
gaps.

Finally, the estimated increase in the number of DNMs per year of parents’ age
in the phased data is calculated similarly to Equation (9), except that we further
normalize the slopes by proportion of the DNMs that were phased.

Genomic context and mutational rates. Single-nucleotide substitution rate is
known to vary for different types (transition versus transversion) and in different
genomic contexts (CpG sites versus non-CpG sites). In our set of 26,939 DNMs,

the transition mutation rate per base per generation is 13.1 times higher at CpG
sites than at non-CpG sites, and the transversion mutation rate is 2.4 times higher
in this study (Supplementary Table 7). The overall rate of mutation going from a
strong (G:C) base pair to a weak (A:T) base pair is 1.69 times higher than going in
the opposite direction. This ratio drops slightly to 1.44 if only non-CpG sites are
considered, indicating that the general trend is still true for the non-CpG sites.
These observations are largely consistent with previous reported studies2,25.

The list of CpG sites was generated using a custom script on the autosomes in
UCSC hg19. The effective numbers of base pairs for CpG and non-CpG positions
are calculated by intersecting CpG and non-CpG positions by the callable bases
in the CGI pipeline, which gives 29.04 million and 1.59 billion bp for CpG and
non-CpG sites, respectively.
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