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Abstract 

Modern agriculture has created a demand for plant biotechnology products that provide durable resistance to insect 
pests, tolerance of herbicide applications for weed control, and agronomic traits tailored for specific geographies. 
These transgenic trait products require a modular and sequential multigene stacking platform that is supported by 
precise genome engineering technology. Designed nucleases have emerged as potent tools for creating targeted 
DNA double strand breaks (DSBs). Exogenously supplied donor DNA can repair the targeted DSB by a process known 
as gene targeting (GT), resulting in a desired modification of the target genome. The potential of GT technology has 
not been fully realized for trait deployment in agriculture, mainly because of inefficient transformation and plant 
regeneration systems in a majority of crop plants and genotypes. This challenge of transgene stacking in plants 
could be overcome by Intra-Genomic Homologous Recombination (IGHR) that converts independently segregat-
ing unlinked donor and target transgenic loci into a genetically linked molecular stack. The method requires stable 
integration of the donor DNA into the plant genome followed by intra-genomic mobilization. IGHR complements 
conventional breeding with genetic transformation and designed nucleases to provide a flexible transgene stacking 
and trait deployment platform.
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Background
The Green Revolution in the 1960s combined advances 
in breeding and agricultural practice, and provided food 
security to millions of people [1]. Given an increasing 
global population, there is a projected need to increase 
world food production by 40 % in the next 20 years [2]. 
In addition to a growing population, climate change, 
degrading natural resources and changing food prefer-
ences have raised food and nutritional security to the 
level of the biggest challenge of the twenty-first century 
[3].

Genetically modified (GM) trait technology in the 
mid-1990s made a major impact in meeting the world 
food demand and there has been a rapid adoption of the 
technology. These first generation trait products involved 

simple herbicide and insect traits that required introduc-
tion of a single gene. Control of the broad range of insect 
pests and weeds desired today requires multiple insect 
and herbicide tolerance genes [4]. In addition, mod-
ern genomics and gene networking tools have revealed 
that many agronomic traits depend on different genes 
and complex interactions of proteins reacting to various 
external stimuli [1]. The next generation trait products, 
therefore, require integration of multiple transgenes 
and would also benefit from a flexible and modular trait 
stacking platform that would accommodate develop-
ment of increasingly complex future products. Con-
ventional breeding has been successfully employed for 
trait stacking, but this method requires substantial time 
and resources for sorting and deregulation of multiple 
unlinked transgenes [4, 5], and a limited number of inde-
pendent loci can practically be stacked.
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Designed nucleases have become a powerful gene tar-
geting (GT) tool to create targeted DNA double strand 
breaks (DSBs) at specified genomic locations, which 
stimulate the cell’s DNA repair machinery leading to inte-
gration of exogenously supplied transgenes into a speci-
fied genomic site. While designed nuclease-mediated 
targeted mutagenesis is becoming routine in plants [6–
9], site-directed transgene integration remains elusive, 
mainly due to low transformation and regeneration effi-
ciencies in the majority of plant species and genotypes. 
A GT method that requires minimal transformation 
effort would be very attractive to address this challenge. 
This review focuses on conventional Intra-chromosomal 
somatic homologous recombination work in plants and 
its recent application using designed nucleases that can 
provide solutions to some of the challenges associated 
with the deployment of GT technology for transgene 
stacking in crop plants.

Gene targeting: a byproduct of genomic 
double‑strand break
DSBs can arise spontaneously, may be induced by ion-
izing radiation and chemicals, or recently by designed 
nucleases (For review, see references [10–15]). Genomic 
DSBs could be negatively mutagenic or lethal to cells if 
not repaired efficiently. In plants, DSBs are repaired 
by homologous recombination (HR) or non-homolo-
gous end joining (NHEJ). HR and NHEJ mechanisms 
are conserved in eukaryotes; however, the efficiency 
of these pathways differs not only between species but 
also between cell types [16]. HR is a precise DSB repair 
pathway that requires sequences homologous (almost 
identical) to those flanking the DSB site [12, 13]. HR is 
the predominant DNA recombination pathway dur-
ing meiosis in higher eukaryotes including plants [17]. 
NHEJ mainly involves ligation to unrelated sequences or 
to sequences with micro-homologies, resulting mostly in 
non-precise repair with small insertions or deletions at 
the DSB site. NHEJ is the primary DNA repair pathway 
in the somatic cells, while HR mainly occurs during S and 
G2 phases of the cell cycle [18].

Targeted DSB-induced NHEJ has been previously 
described for mutagenesis, deletions or imprecise inser-
tions [6–9, 13, 19, 20]. In contrast, HR, a more precise 
mode of DNA repair, is preferred for GT [12, 13]. Gene 
targeting through HR requires simultaneous introduction 
of the nuclease to create targeted DSB at desired genomic 
location, and donor DNA containing flanking homolo-
gies, acting as a template for repair of the DSB [21].

Gene targeting challenges in plants
Targeted DSBs stimulate the cell’s DNA repair machin-
ery making the DSB site accessible to a donor transgene 

for site-specific integration. The DSBs however do not 
preclude the ectopic integration of a donor transgene 
elsewhere in the genome. In addition, the GT process 
requires efficient delivery of the donor molecule to the 
DSB site and the ability to regenerate whole plants from 
the cells with a precisely repaired targeted genomic 
site. Random integration of the donor transgene and an 
inefficient transformation method for the donor deliv-
ery therefore are two major challenges for the routine 
deployment of GT technology in crop plants. Positive 
selection for GT such that precise insertion of the donor 
complements the non-functional selectable marker in 
the target locus has been used to avoid random integra-
tion of the donor [22, 23, 24] genes in the target locus. A 
positive–negative selection approach has also been used 
very successfully for GT in rice [25, 26]. A sequential 
GT method providing flexibility of incremental modi-
fications of the target locus with new trait genes was 
recently developed [27]. That method exploited posi-
tive GT selection using an intron sequence homology 
between the donor and target that allowed sequential 
swapping of selection markers, providing a multi-gener-
ational GT method (Fig. 1) for trait product deployment 
[28].

The accessibility of the donor transgene to the DSB 
site is another key bottleneck for efficient GT process. 
Donor DNA is exogenously supplied either via direct 
DNA delivery [29], mostly using the microparticle bom-
bardment, or via indirect DNA delivery, mainly mediated 
by Agrobacterium [30]. The production of a transgenic 
plant is the result of a sequence of events: a) transfer of 
exogenous DNA into the plant cell nucleus, b) integra-
tion of the foreign DNA in a transcriptionally active 
region of the host genome, and c) regeneration into a 
fully developed plant, either via organogenesis or somatic 
embryogenesis, of the original cell where the transgene 
integrated. Regardless of the gene transfer method used 
(direct or indirect) cell competence for foreign DNA inte-
gration and regeneration varies with cell type and devel-
opmental stage making the recovery of transgenic events 
a challenging task in most crop plants.

The nuclear targeting of the exogenous DNA is hin-
dered by physical (e.g. cell wall), cellular (e.g. proteases, 
nucleases) and biological barriers (e.g. plant defense) and 
our understanding of how to best overcome these bar-
riers is still limited [31, 32]. Actively dividing cells are 
the most amenable targets for DNA insertion and it has 
been shown that higher transformation is obtained in 
cells with nuclei at the S and G2 phases [33, 34] where 
chromatin remodeling takes place. A localized and tem-
porary decondensation of the chromatin is believed to be 
necessary for efficient transgene integration in gene-rich 
euchromatic regions [35, 36].
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Plant biology parameters associated with species, geno-
type, and explant type play an important role in the effi-
ciency of transformation and regeneration. In rice, for 
example, between the two subspecies indica and japon-
ica, indica is generally more recalcitrant to tissue culture 
and transformation [37]. Similarly for maize transfor-
mation and regeneration, the most responsive type of 
explant is the immature embryo where scutellum cells are 
induced to proliferate and undergo somatic embryogen-
esis [38], but this process is highly genotype-dependent 
and still limited mainly to crosses and derivatives of the 
maize inbred lines A188 [37]. Also in soybean, the ability 
to regenerate transgenic plants has been limited to a few 
soybean model genotypes (Jack and Williams 82) with 
some successful examples of competence for somatic 
embryogenesis transferred and combined in other culti-
vars via introgression [39].

Gene targeting via intra genomic homologous 
recombination
The challenges of inefficient transformation systems 
in crop plants could be overcome by intra-genomic 
homologous recombination (IGHR), which utilizes a 
cell’s recombinational machinery to replicate and sup-
ply donor DNA for IGHR mediated insertion of a donor 
within the target site. Intra-chromosomal HR in somatic 
cells of the whole plant was reported more than two dec-
ades ago (Reviewed in [40, 41, 42]). Two overlapping, 

non-functional pieces of a chimeric beta-glucuronidase 
(uidA) gene were used as recombination substrates, 
which upon HR led to a restoration of the functional 
uidA gene that was detected by histochemical staining of 
the encoded functional uidA protein. HR was reported in 
different organs and tissues during different stages of the 
plant development, including meristematic recombina-
tion events that revealed cell lineage patterns. The system 
was later used to demonstrate that an induced DSB in the 
target site resulted in twofold increase the HR frequency 
[22, 43]. The germline in plants is formed during later 
developmental stages, and any HR occurring during the 
life cycle of the plant could be germinally transmitted to 
the next generation. The demonstration of HR between 
linked overlapping DNA sequences within somatic cells 
of the whole plant was an important milestone in the GT 
field. The work paved the way for HR between unlinked 
DNA sequences in the genome of somatic cells, and 
regeneration of whole plants from these cells (see below).

The next significant development in the field was the 
application of designed nucleases for excision of the 
stably integrated transgene. In tobacco, a transgenic 
line containing a single copy of the codA gene flanked 
by cleavage sites specific to I-SceI nuclease was created. 
After induction of DSBs by transient expression of I-SceI, 
the codA gene was successfully removed from the calli, 
and plants lacking the codA gene were regenerated [44]. 
Similarly, tobacco plants containing a stably integrated 
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Fig. 1  Basic design of constructs used for gene targeting via intra genomic homologous recombination. a Target construct contains a generation 1 
(Gen 1) stack and a selection marker A flanked by unique homology sequences (HR1 and 2). A designed nuclease 1 binding site is inserted between 
selection marker A and HR2 sequence. b The donor construct contains selection marker B, downstream HR3 sequence, generation 2 (Gen 2) stack, 
and HR1 and 2 homology sequences matching the target. A designed nuclease 2 binding site is inserted between the selection marker and HR3 
sequence for future targeting. The donor is flanked by a designed nuclease 1 binding site on each end. c The designed nuclease construct contains 
designed nuclease 1 coding sequence driven by appropriate promoter. d Target locus containing functional selection marker B gene and genera-
tion 2 (Gen 2) stack precisely inserted after gene targeting
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uidA gene cassette flanked by designed nuclease sites 
were crossed with plants expressing the corresponding 
nuclease. The complete deletion of a 4.3  kb sequence 
comprising the uidA gene cassette was obtained in F1 
progenies [45]. These reports were later followed by dele-
tions of large endogenous genomic sequences in different 
plant species using designed nucleases [46–48].

Researchers in mammalian GT field were first to exploit 
cells’ recombination machinery to catalyze HR between a 
target locus and an in  vivo-liberated donor [49]. In this 
system, the donor transgene is first inserted stably into 
the genome. The randomly inserted donor molecule is 
later released intragenomically within the genome of 
intact tissue. The IGHR based method was demonstrated 
using a site-specific recombinase (FLP) and a site-specific 
endonuclease (I-SceI) for the modification of the yellow 
locus in the Drosophila genome [49–51]. The method has 
been successfully applied for the modification of more 
than 20 loci in Drosophila [52].

A similar IGHR approach was also proposed for plant 
GT [53]; the first proof-of-principle in plants came sev-
eral years later in Arabidopsis [54] using a single site-spe-
cific endonuclease (I-SceI). The GT system was designed 
using a non-functional truncated uidA target transgene 
containing cleavage sites for I-SceI nuclease, a donor 
transgene containing a complementary uidA GT cassette 
flanked by I-SceI sites, and a transgene containing a I-SceI 
expressing cassette that upon expression would gener-
ate in vivo release of linear donor after I-SceI expression. 
Single copy target and donor lines were crossed and lines 
homozygous for both the transgenes were obtained. The 
homozygous target/donor lines were then crossed with 
an I-SceI line and F1 progenies were screened for IGHR-
mediated GT using uidA histochemical staining. Some F1 
progenies revealed chimeric blue spots indicating GT in 
somatic cells during the plant development. The F1 lines 
were self-pollinated and F2 progenies were scored for the 
blue seedlings indicating germinal transmittance of GT. 
Targeted events were obtained up to one per 100 seeds. A 
similar approach was later attempted with some success 
in a native genomic target site in Arabidopsis using the 
CRISPR/Cas system [55].

After initial work on IGHR-mediated GT in a model 
system, the method was successfully demonstrated in 
maize by somatic ectopic recombination and tissue cul-
ture selection [56]. Similar to a previous effort in Arabi-
dopsis, the target construct contained a non-functional 
partial neomycin phophotransferase II (nptII) gene and 
a cleavage site for I-SceI nuclease. The donor construct 
contained dexamethasone-inducible I-SceI, and an excis-
able nptII sequence complementing the partial sequence 
at the target locus such that GT would constitute the 
functional nptII gene. The target and donor plants were 

crossed and F1 progenies were selfed. No fully kanamy-
cin-resistant plants were obtained from the dexametha-
sone-induced F2 progeny for target and donor. However 
kanamycin-resistant leaf sectors were observed indicat-
ing IGHR occurred in some somatic cells during plant 
development. The embryos isolated from immature ker-
nels of F2 plants were subjected to callus induction on 
medium with and without dexamethasone. Kanamycin 
resistant GT events were recovered and the repair of 
the nptII gene was confirmed by molecular analyses. GT 
frequencies ranging from 0.13 to 0.55  % (per immature 
embryo treated) were obtained. The authors also made 
an interesting observation of GT at a cleaved target locus 
without excision of the donor molecule.

The demonstration of GT via IGHR in Arabidopsis and 
maize has created potential for the application of GT tech-
nology in transformation-inefficient crop plant species. 
Unlike direct transformation methods that limit donor 
molecules to a small number of treated cells, IGHR uti-
lizes the plant system to replicate donor DNA in every 
cell throughout the life cycle. The extra-chromosomal 
donor molecule could be liberated and used by the target 
site as a template in plant tissues or stages that favor HR 
over NHEJ. The previous GT approaches relied on effi-
cient transformation systems to produce a large number of 
events to obtain a few targeted plants. Since most econom-
ically important crop plants remain recalcitrant to trans-
formation, GT technology has so far been practical in only 
a small number of crop plants. Additionally, IGHR releases 
only one to two copies of the donor, leading to high quality 
targeted events, in contrast to previous GT methods that 
require additional segregation work to remove randomly 
integrated undesired truncated donor molecules.

The IGHR method reviewed here generates tremen-
dous opportunity for biotechnological application of GT 
in commercial transgenic trait deployment. This approach 
when combined with a sequential GT method (Fig. 1) [27] 
would provide the modular and flexible transgenic trait 
stacking platform (Fig.  2) currently needed for complex 
product needs in the agriculture industry. The strategy 
provides flexibility to stably integrate 1st generation or 
geography-specific traits in the target plant, while new 
traits are placed in the donor plant. Donor and target 
plants are crossed to create a breeding stack, which is then 
crossed with appropriate designed nuclease expressing 
plants. The F1 progenies are then subjected to tissue cul-
ture selection and targeted plant regeneration. Multiple 
donor lines containing different traits could strategically 
be made to keep modularity required for creating on-
demand stacked transgenic traits. The additional tissue 
culture selection step restricts the use of this method to 
crop plants that are amenable to tissue culture techniques. 
Precise tissue-specific expression of designed nuclease in 
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reproductive cells [57–59] can circumvent the need for 
a tissue culture regeneration process, providing broader 
application of this approach across different crops.

Conclusions
Future biotech crops are projected to require multiple 
transgenes to confer resistance to a broad spectrum of 
insect pests and provide herbicide tolerance with differ-
ent modes of action. Insects and weeds will eventually 
develop resistance, new target pests will emerge and new 
traits will inevitably be needed and desired, so designing 
those future products to be further modified and devel-
oping capabilities to accomplish the modifications are 
wise investments. It is clear that producing and modify-
ing transgenic events through GT has many advantages 
over random integration, and technology continues 
to develop to make GT increasingly efficient and flex-
ible. Intra genomic homologous recombination using 
designed nucleases has good potential to overcome limi-
tations in plant transformation and breeding to achieve 
targeted and highly complex stacked trait crops.
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