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Introduction

Over the last twenty years, important progress in molecular
biology and recombinant technologies has led to new applica-

tions and areas of research in the field of protein NMR. The
ability to produce, by recombinant technologies, pure, highly

concentrated, and isotopically labeled samples has allowed

both solution- and solid-state protein NMR to gain insight into
the structural dynamics of many biomolecular systems with an

atomic resolution. On the other hand, the very use of recombi-
nant technology has led the field largely to neglect the impor-

tance of post-translational modifications (PTMs), an indispensa-

ble step in the maturation of proteins towards their functional
forms that regulate the activity, localization, stability, and phys-

icochemical properties of proteins. PTMs have become espe-
cially relevant in the study of intrinsically disordered proteins

(IDPs), which are attracting considerable interest among the

biomolecular NMR community. Indeed, IDPs are more suscepti-
ble to undergoing PTMs than folded proteins.[1] Because of the

inherent flexibility of these proteins, PTMs will have an impor-
tant impact on their activity, cellular localization, and interac-

tion properties, by modulating their structural dynamics.[2–8]

For example, N-terminal acetylation of a-synuclein[9] increases
the helical propensity of the N-terminal segment[7] and enhan-

ces the affinity of a-synuclein for calmodulin by a factor of
10.[10] Thus, neglecting the impact of PTMs on the general
properties of proteins will necessarily lead to an inaccurate de-
scription of their biochemical properties and ultimately of their

physiological functions.
N-Myristoylation is the covalent attachment, catalyzed by

the enzyme N-myristoyl transferase (NMT), of a 14-carbon satu-
rated fatty acid to the N-terminal glycine residue through an
amide bond; in eukaryotic systems it usually occurs co-transla-

tionally. N-Myristoylation is a very common PTM. By increasing
the hydrophobicity of the modified protein, myristoylation is

generally involved in membrane binding, targeting, and sub-
cellular trafficking.[11] As such, many myristoylated proteins are

involved in important physiological processes such as signaling

pathways, oncogenesis, or viral replication.[12] Myristoylation
can also be used to tune the activity of a protein through the

effect known as the myristoyl-electrostatic switch. This effect
consists of a conformational change of the protein (usually

triggered by the binding of a ligand) that will expose the
myristoyl group, previously sequestered in a hydrophobic

Incorporation of myristic acid onto the N terminus of a protein
is a crucial modification that promotes membrane binding and

correct localization of important components of signaling
pathways. Recombinant expression of N-myristoylated proteins
in Escherichia coli can be achieved by co-expressing yeast N-
myristoyltransferase and supplementing the growth medium
with myristic acid. However, undesired incorporation of the 12-

carbon fatty acid lauric acid can also occur (leading to hetero-
geneous samples), especially when the available carbon sour-

ces are scarce, as it is the case in minimal medium for the
expression of isotopically enriched samples. By applying this
method to the brain acid soluble protein 1 and the 1–185 N-

terminal region of c-Src, we show the significant, and protein-
specific, differences in the membrane binding properties of

lauroylated and myristoylated forms. We also present a robust
strategy for obtaining lauryl-free samples of myristoylated pro-

teins in both rich and minimal media.
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pocket.[13] This mechanism is at the core of the function of pro-
teins such as the ADP ribosylation factor or recoverin. Finally,

myristoylation appears to play an important role in apoptosis,
because many proteolitic products of caspase 3 are myristoy-

lated and subsequently up- or down-regulate apoptosis.[14]

Myristoylation does not naturally occur in Escherichia coli,
the most commonly used organism for protein expression.
Therefore, to obtain large amounts of isotopically labeled myr-
istoylated proteins suitable for biomolecular NMR studies, two

options are available. The first one is in vitro myristoylation,
which requires, additionally to the protein of interest, purified

NMT, myristoyl-CoA (the co-substrate of NMT), and an addition-
al purification step to separate the myristoylated protein from
the by-products. An alternative approach is based on the co-
expression of the NMT and the substrate protein by use of a bi-

cistronic vector, in order to enable in-cell modification.[15] How-

ever, Liu et al. reported that in minimal medium this procedure
leads to mixtures of myristoylated and lauroylated forms of the

recombinant protein.[16] However, the factors leading to lauroy-
lation remain unclear, and the degree of lauroylation seems to

be highly variable and inconsistent. Indeed, other studies
based on this myristoylation strategy (both in rich and in mini-

mal media) did not report the formation of a lauroylated

form.[15, 17, 18]

Here we confirm the observation of Liu et al. and demon-

strate that myristoylated and lauroylated forms of the same
protein exhibit significantly different lipid-binding properties,

emphasizing the need to ensure the homogeneity of the at-
tached fatty acid chains. Consequently, we also report an opti-

mized strategy for obtaining pure myristoylated proteins. This

strategy has been applied to the production of two myristoy-
lated proteins: brain acid soluble protein 1 (BASP1, also known

as NAP-22 and CAP-23) and the first two domains of c-Src:
namely the Unique and SH3 domains (USH3). BASP1 is a

25 kDa intrinsically disordered protein highly abundant in the
brain during development, involved in growth cone guidance

and actin cytoskeleton organization[19] and interacting with

holo-CaM specifically in its myristoylated form.[20] c-Src is the
leading member of the Src family of non-receptor tyrosine kin-
ases (SFKs), which are involved in many signaling pathways.
Deregulation of these kinases, and in particular of c-Src itself,

affects cell migration, proliferation, and survival, all of which
contributes to its oncogenic potential. The N-terminal (SH4)

region of c-Src is co-translationally myristoylated at the N-ter-
minal glycine unit. SH4 is a basic peptide situated at the begin-
ning of the Unique Domain of Src, an intrinsically disordered

domain not conserved among the Src family. Myristoylated
SH4 is responsible for c-Src membrane anchoring, through

concurrent hydrophobic and electrostatic interactions.

Results and Discussion

Expression of recombinant N-myristoylated protein in
minimal medium leads to a mixture of N-myristoylated and
N-lauroylated protein

We expressed recombinantly myristoylated BASP1 (MyrBASP1)
by using the bicistrionic vector designed by Glìck et al.[15] In
order to measure the extent of myristoylation by mass spec-

trometry, we first performed the expression in minimal
medium supplemented with unlabeled (14N) ammonium chlo-
ride. The LC-MS analysis revealed the presence of two species
differing in mass by 27 Da (Figure 1), thus suggesting that

both N-myristoylated and N-lauroylated forms of BASP1 (differ-
ing in mass by 28 Da) had been produced, as reported previ-
ously in the case of Arf1.[16] NMR analysis of the putative (later
confirmed) myristoylated BASP reveals that the N-terminal acy-

lation leads to a disappearance of the 1H,15N HSQC crosspeaks

corresponding to the N terminus (Figures S1 and S2 in the
Supporting Information), probably due to micelle formation.

Further MS analysis of the two species by means of electron
capture dissociation (ECD) and collisionally activated dissocia-

tion (CAD) confirmed that the difference in mass is 28.0302�
0.0035 Da (CH2CH2, calcd mass 28.0313 Da) and is due to myris-

Figure 1. Expression of BASP1 in minimal medium leads to two different
species. A) RP-HPLC analysis of purified BASP1 co-expressed with NMT in
minimal medium. B) and C) MS analysis of products corresponding to
peaks 1 and 2, respectively.
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toylation and lauroylation at the N terminus of BASP1 (Sup-
porting Information, data 1).

In order to explore the origin of the lauroylated form of

BASP1 (LauBASP1), we measured the proportions of N-myris-
toylated and N-lauroylated forms of BASP1 in samples ex-

pressed under different conditions (Figure 2). When expressed
in rich medium (lysogeny broth, LB), BASP1 is only found in its

N-myristoylated form (Figure 2 B). When expressed in minimal
medium BASP1 is found in both its N-myristoylated and N-laur-

oylated forms, and the proportion of the N-lauroylated form

increases with the length of the expression time (Figure 2 A
and C). This suggests that under scarce conditions (minimal

medium and/or long expression times), myristoyl-CoA is con-
verted into lauroyl-CoA through b-oxidation and then used by
the NMT (which is known to show weak discrimination be-
tween myristoyl-CoA and shorter acyl-CoA) to acylate BASP1.

Expressing BASP1 in the presence of lauric acid only leads to
the lauroylated form of BASP1 both in rich and in minimal
medium (Figure 2 D and E). The same observations were made
for USH3 (with a different expression strain of E. coli), regard-
less of whether it is expressed in rich or minimal medium (see
below), thus suggesting that this problem is not specific to
BASP1 but is instead a general problem that occurs especially

in minimal medium but can also be observed in rich medium.

N-Myristoylated and N-lauroylated forms of the same
protein have different biochemical properties

To test whether the biochemical properties of BASP1 and
USH3 are affected by the length of the N-acyl chain, we per-

Figure 2. Proportion of N-myristoylated and N-lauroylated forms of BASP under different expression conditions. ESI spectra of human BASP co-expressed with
hNMT in A) M9 overnight, supplemented with myristic acid, B) LB for 4 h, supplemented with myristic acid, C) M9 for 4 h, supplemented with myristic acid,
D) and E) LB and M9, respectively, supplemented with lauric acid; red circles in (A) show calculated isotopic profiles for [M++30 H]30 + ions of lauroylated and
myristoylated protein.

Figure 3. SPR analysis of the binding properties of different acylated forms
of BASP and USH3 towards liposomes. A) Real-time SPR response showing
binding of MyrBASP and LauBASP to surface-immobilized DMPC/PS (3:1) lip-
osomes. The protein concentration was 0.2 mm. B) Real-time SPR response
showing binding of MyrUSH3 and LauUSH3 to surface-immobilized DMPC/
DMPG (2:1) liposomes; the protein concentration was 20 mm.
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formed surface plasmon resonance (SPR) experiments with im-
mobilized liposomes. Because this method does not require

isotopic labeling, we obtained fully myristoylated or lauroylat-
ed samples by expression in rich medium supplemented with

the corresponding fatty acid (lauric or myristic acid). In the
case of BASP1 (Figure 3 A), the binding to 1,2-dimyristoyl-sn-

glycero-3-phosphocholine/l-a-phosphatidylserine (DMPC/PS)
liposomes of LauBASP1 (KD = 86 nm) shows an affinity reduced
by a factor of 10 relative to MyrBASP1 (KD = 7.9 nm). Additional-

ly, the length of the acyl chain also seems to affect the dissoci-
ation behavior because MyrBASP1 dissociates from the lipo-
some more slowly than LauBASP1 (Figure 3 A).

In the case of myristoylated USH3 (MyrUSH3), the difference
is even more pronounced. Lauroylated USH3 (LauUSH3) bind-
ing to DMPC/DMPG (2:1; DMPG = 1,2-dimyristoyl-sn-glycero-3-

phospho-rac-(1-glycerol)) liposomes is four times weaker than

for MyrUSH3 (Figure 3 B). Dissociation of the lauroylated form
from the liposomes is also faster than for the myristoylated

form.
Our SPR results clearly show that the length of the N-acyl

chain influences biochemical properties. Therefore the two
species should be separated in order to obtain biochemically

pure samples.

Production of pure N-myristoylated USH3

Our SPR results show that the lengths of the N-acyl chains in-

fluence the properties of N-acylated proteins. Therefore, it is

necessary to obtain a pure N-myristoylated sample for the pur-
suit of subsequent biochemical and NMR studies. As described

above, the lauroylated and myristoylated forms of BASP1 can
be easily separated by RP-HPLC. However, the use of organic

solvent is not generally applicable to proteins containing
folded domains, as in the case of USH3.

After protein expression, the soluble fraction of USH3 elutes
from the size-exclusion column in the form of three different

peaks (Figure 4 A). SDS-PAGE (Figure 4 B) reveals that peak 1

contain both USH3 and NMT, whereas peak 2 only contain
USH3 (peak 3 contains a degraded form of the protein). Fur-

ther MS analysis (Figure 4 C and D) showed that in peak 1
(which contains both USH3 and NMT) USH3 is exclusively myr-

istoylated whereas in peak 2 USH3 (Figure 4 E) is only found in
its unmodified and lauroylated forms. Hence, it appears that

MyrUSH3 co-purifies with NMT whereas LauUSH3 remains free

of NMT due to the lower affinity of the enzyme for the shorter
acyl chain forms.

This co-purification might be exploitable, because the purifi-
cation of the complex could lead to a fully myristoylated

sample. However, we were not able to dissociate the complex
fully, either by chromatographic methods (such as ion ex-

change or hydrophobic separation) or by the use of myristoy-
lated coenzyme A as a competitor as suggested elsewhere.[21]

Consequently, we applied and refined an alternative method

originally proposed by Ha et al.[22] This exploits the strong affin-
ity of the myristoylated protein towards membrane: a signifi-

cant amount of myristoylated protein remains in the cell pellet

Figure 4. A) Size-exclusion chromatography profiles of acylated USH3 purified from the supernatant. B) SDS-PAGE analysis of pooled fractions of the peaks
observed in (A). C) and D) MS analysis of peaks 1. E) MS analysis of the peaks 2.
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upon centrifugation, whereas most of the NMT remains in the

supernatant. This procedure relies on the resuspension and
resolubilization of the membrane-bound protein, with use of

Triton, before further purification. This procedure leads to
a mixture of lauroylated and myristoylated USH3 that can be

separated by size-exclusion chromatography. As can been seen

from the size-exclusion profile (Figure 5 A, red curve), the first
peak corresponds to LauUSH3 (Figure 5 B) whereas the second
corresponds to MyrUSH3 (Figure 5 C). Intriguingly, when large
amounts of LauUSH3 are produced (Figure 5 A, green curve),

a third peak corresponding to a mixture of Myr and LauUSH3
is observed (Figure 5 D). This last peak merges with the

MyrUSH3 peak, compromising its purity. When the expression
conditions are optimized to minimize the production of
LauUSH3 (see below for a detailed explanation), pure MyrUSH3

can easily be obtained (Figure 5 A, blue curve). Thus, in order
to be able to prepare pure myristoylated protein efficiently,

the expression protocols have to be optimized to minimize the
presence of lauroylated forms before the purification. In addi-

tion, size separation of the two acylated forms is a property of

our particular system and might not occur for other proteins,
thus emphasizing the necessity to use conditions that ensure

the presence of pure myristoylated proteins.
We hypothesized that lauroylCoA originates from b-oxida-

tion of added myristic acid. This hypothesis would explain the
observation that lauroylation increases under conditions of lim-

ited availability of carbon sources (minimal medium) or after

extended expression (presumably associated with nutrient
depletion). Thus, one of the strategies that we tested was the

addition of palmitic acid. NMT does not incorporate palmitoyl
groups, but b-oxidation of palmitic acid would contribute to

replenish the myristoylCoA pool.

Table 1 summarizes the effects of different expression factors
on the relative amounts of MyrUSH3 and LauUSH3 obtained

Figure 5. A) Size-exclusion chromatography profiles of acylated USH3 expressed under different conditions. Red curve: in Rosetta cells, in the presence of
both myristic and palmitic acid (20 h, 20 8C), two elution peaks are observed. Green curve: in T7 cells, in the presence only of myristic acid (20 h, 20 8C), three
elution peaks are observed. Blue curve: in T7 cells, in the presence of both myristic and palmitic acid (5 h, 28 8C), one elution peak is observed. B) and C) Mass
spectrometric analysis after separate pooling of the fractions corresponding to peaks 1 and 2, respectively. D) RP-HPLC analysis of peak 3 of the red curve in
(A) after pooling of its fractions. E) and F) RP-HPLC and MS analysis of peak 2 of the blue curve after pooling of its fractions.

Table 1. Effects of expression conditions in LB medium on the relative
amounts of myristoylated and lauroylated USH3.

Cell Acyl chain addition t [h] after Lauroylated Myristoylated
type induction USH3 [%] USH3 [%]

Rosetta myristic acid 5[a] 20 80
T7 myristic acid 5[a] 20 80
Rosetta myristic + palmitic acid 5[a] 5 95
T7 myristic + palmitic acid 5[a] 2 98
Rosetta myristic acid 20[b] 80 20
T7 myristic acid 20[b] 35[c] 65[c]

Rosetta myristic + palmitic acid 20[b] 18 82
T7 myristic + palmitic acid 20[b] 3 97

The relative amounts of myristoylated and lauroylated USH3 were deter-
mined by integrating the elution peaks from size-exclusion chromatogra-
phy performed on the mixtures obtained after the Triton wash purifica-
tion procedure. [a] At 28 8C. [b] At 20 8C. [c] Myristoylated and lauroylated
species are poorly separated.
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after the Triton wash procedure, nickel column purification,
and size-exclusion chromatography. The induction time ap-

pears to be the most important factor, because longer expres-
sion times lead to greater amounts of lauroylated form. Never-

theless, some factors such as the expression strain or the addi-
tion of palmitic acid to the growth medium also have a signifi-

cant impact on the myristoylation level. More specifically,
expression in T7 cells yields lower lauroylation levels than

expression in Rosetta cells. In rich medium, USH3 is found as

a mixture of myristoylated and lauroylated forms even after
short induction times (whereas under the same conditions

BASP1 was fully myristoylated). However, adding palmitic acid
to the growth medium leads to almost pure myristoylated

USH3. To sum up, the set of best conditions consists of a short
induction time in the presence of both palmitic and myristic
acid in the expression medium. Use of these conditions to-

gether with the Triton wash purification procedure leads to
pure and homogeneous natural-abundance MyrUSH3 samples

(Figure 5 A, blue curve, and E/F). However, expression in mini-
mal media, required in order to produce isotopically labeled
proteins, did not provide pure MyrUSH3, presumably due to
limited availability of carbon sources. This limitation was over-

come by using the Marley method, which consists of generat-

ing cell mass in unlabeled rich media and subsequent transfer
into labeled media just before induction.[23] In that case we

were able to obtain sufficient amounts of labeled proteins
(95 %) to enable NMR measurement. Finally, this protocol was

also successfully used for the expression and purification of
MyrBASP1, thus demonstrating the robustness of the method.

Conclusion

Myristoylation is an important post-translation modification
generally involved in subcellular trafficking and membrane as-

sociation. Correct structural characterization of myristoylated

proteins requires the production of their isotopically labeled
forms. Co-expression of yeast NMT with the protein of interest

in E. coli provides an efficient method but is complicated by
the simultaneous formation of lauroylated and myristoylated

proteins. Although they are chemically similar, SPR experiments
showed that the variation in chain length greatly alters the
lipid-binding properties. Therefore, a suitable method to
obtain purely myristoylated proteins in E. coli needs to be de-

veloped. We suggest here that the addition of the shorter acyl
chain appears to be due to the conjunction of two factors:
1) the availability of a shorter acyl-CoA generated through b-
oxidation of the myristic acid that needs to be supplemented
to the growth medium, and 2) the poor discrimination of the
human NMT for the shorter acyl-CoA.[24] On the basis of this
hypothesis, we have shown that addition of palmitic acid,

which is not incorporated into the protein by NMT but can re-

supply the MyrCoA pool, contributes, under some conditions,
to minimize the formation of the lauroylated form.

The capacity to isolate lauroylated and myristoylated pro-
teins from mixtures of the two is dependent upon the physio-

chemical properties of the proteins of interest. In the case of
a fully disordered protein (BASP1), the two forms can be sepa-

rated by RP-HPLC thanks to their different hydrophobicities. In
the case of a partially or fully folded protein (USH3), we had to

develop a more sophisticated procedure based on 1) optimiza-
tion of the expression conditions to minimize the formation of

LauUSH3, 2) use of the Triton wash purification protocol to
obtain NMT-free myristoylated protein with a low proportion

of the lauroylated form, and 3) final purification by affinity and
size-exclusion chromatography. Interestingly, although both

proteins have acyl moieties attached to a disordered segment,

their biochemical properties seem to be affected in different
ways by the length of the acyl chain. It is known that myristoy-

lation by itself is not enough for stable membrane attachment.
A second binding event is usually required.[11] Examples include

electrostatic interactions, a second aliphatic anchor, or addi-
tional contacts with amphipathic regions of the peptide back-

bone. Clearly, the myristoyl chain plays a stronger role in lipid

binding by USH3 than by BASP1. This might be due to the
proximity of the charged residues and the acyl chain in USH3,

coupling the strength of the electrostatic interaction with the
insertion of the acyl chain in the lipid bilayer, or might be the

result of an indirect effect caused by modulation of the SH4
and SH3 interactions by the presence of distinct fatty acid

chains attached to the SH4 domain.[25]

Thus, if pure lauroylated and myristoylated forms of the
same protein can be obtained independently or separated

from mixtures, the comparison of their lipid-binding properties
provides additional insight into the processes involved in fatty-

acid-mediated lipid interactions.
To summarize, we provide evidence as to why the produc-

tion of myristoylated proteins in E. coli by co-expressing NMT

results in a heterogeneously N-acylated sample. We have dem-
onstrated that the different N-acylated forms have different

biochemical properties and we have developed an expression/
purification protocol to generate a homogeneously N-myris-

toylated sample. We expect these observations to be especially
relevant for the conduct of NMR studies in which the homoge-

neity of the sample is essential.

Experimental Section

Protein expression and purification of myristoylated BASP1: Ex-
pression was achieved with E. coli strain T7 Express (New England
BioLabs) and the bicistronic vector pETDuet-1D6His_hNMT_
hBASP1_6His as already described.[15] Expression of BASP1 for the
analysis of the protein by mass spectrometry was done either in
rich medium (LB medium) or in M9 minimal medium with unla-
beled (14N) ammonium chloride (1 g L¢1) and (12C) glucose (4 g L¢1).
In order to produce myristoylated protein, myristic acid was added
to the growth medium at a final concentration of 50 mm 10 min
before induction. Fresh myristic acid stock solution was prepared
as described elsewhere.[15] The cells were grown at 37 8C to an
OD600 of 0.8 and induced by adding isopropyl b-d-thiogalactopyra-
noside (IPTG, 0.8 mm). The expression temperature was 28 8C for
4 h or overnight. The cells were pelleted by centrifugation at
2862 g at 4 8C for 20 min. The pellet was resuspended in lysis
buffer (PBS) with protease inhibitors (cOmplete, Mini Protease
Inhibitor Tablets, EDTA-free, Roche) and sonicated on ice with a
Branson W-450 D sonifier with a microtip (3 min, 50 % amplitude)
before centrifugation at 36 223 g for 20 min at 4 8C. The super-

ChemBioChem 2016, 17, 82 – 89 www.chembiochem.org Ó 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim87

Full Papers

http://www.chembiochem.org


natant was applied to a Ni2 +-loaded HisTrap HP column (5 mL, GE
Healthcare) that was pre-equilibrated with PBS. The column was
washed with PBS and high-salt PBS [NaCl (1.5 m), imidazole
(20 mm)] and five column volumes of PBS before elution with
a linear gradient of PBS/PBS with imidazole (0.5 m).

FT-ICR mass spectrometry : Protein samples were desalted with
Vivaspin 500 centrifugal concentrators (Sartorius, Germany, PES
membrane, MWCO 5000) as described previously[26] Briefly, a protein
solution (�10 mm, 500 mL) was concentrated to 100 mL, and an
aqueous ammonium acetate solution (100 mm, 400 mL) was added.
The process was repeated five times, followed by six cycles of con-
centration and dilution with H2O. For ESI (flow rate 1.5 mL min¢1),
desalted protein was diluted to �2 mm in H2O/CH3OH 1:1 with
acetic acid (1 % vol) as additive. H2O was purified to 18 MW·cm at
room temperature with a Milli-Q system (Millipore, Austria) ; CH3OH
(Acros, Austria) was HPLC-grade. Experiments were performed with
a 7 Tesla Fourier transform ion cyclotron resonance (FT-ICR) mass
spectrometer equipped with an electrospray ionization source,
a collision cell for CAD, and a hollow dispenser cathode for ECD.

Myristoylated USH3 expression : USH3 expression was performed
in E. coli Rosetta (DE3)pLysS cells (Novagen) or T7 Express (New
England BioLabs) cells and using the bicistronic vector pETDuet-
1D6His_hNMT_USH3_6His. The cells were grown at 37 8C to an
OD600 of 0.8, and 10 min before induction with IPTG (final concen-
tration 1 mm, Melford), freshly prepared myristic and/or palmitic
acid (Sigma) were added to the cell culture, at a final concentration
of 200 mm. For the expression of isotopically labeled samples the
protocol developed by Marley et al. was used:[23] cells were first
grown in LB to an OD600 of 0.4 and were then centrifuged at
1000 g and 4 8C for 20 min. The pellet was resuspended in half the
volume of minimal medium containing ammonium chloride and
glucose. After 20 min at 37 8C, myristic and palmitic acid were
added as described above. The expression temperature was either
28 8C (for 5 h) or 20 8C (for 20 h). The cells were pelleted by centri-
fugation at 3993 g at 4 8C for 30 min. The pellet was resuspended
in lysis buffer [Tris·HCl (20 mm), NaCl (300 mm), imidazole (5 mm),
pH 8], to which protease inhibitors (protein inhibitor cocktail and
phenylmethanesulfonyl fluoride (PMSF); 1 mm), both from Sigma)
were added.

MyrUSH3 purification : The resuspended pellet was sonicated on
ice before centrifugation at 25 000 rpm for 45 min at 4 8C. The pro-
tein appeared to be distributed between the supernatant and the
pellet, so two different purification methods were used. For the
soluble fraction, the supernatant was applied to a Ni-NTA column
(Qiagen) followed by size-exclusion chromatography in a Super-
dex 75 column in sodium phosphate buffer (Na3PO4) [NaP (50 mm),
NaCl (150 mm), EDTA (0.2 mm), pH 7.5]. For the insoluble fraction,
the pellet was resuspended in lysis buffer containing Triton X-100
(1 %). The resuspended pellet was centrifuged again for 30 min at
75 600 g, and the procedure was repeated twice or three times.
The supernatant from the Triton washes was purified by immobi-
lized metal affinity chromatography as described above. If lauroy-
lated species were present, they eluted from the size-exclusion
chromatographic column at an apparent higher molecular weight
than the myristoylated ones. This method enabled the two differ-
ent acylated species to be separated and their respective amounts
quantified. A comparison of various expression and purification
protocols is presented in the Results section.

LC-MS : The purities and identities of the products were established
by UPLC coupled to MS [Acquity chromatograph with a BioSuite

pPhenyl column (1000RPC 2.0 Õ 75 mm)] coupled to a LCT-Premier
spectrometer (Waters corporation).

Liposome preparation : DMPC, DMPG, and PS were purchased
from Avanti Polar Lipids, Inc. The lipids were dissolved in chloro-
form or, in the case of DMPG, in chloroform/methanol/H2O
(65:35:8). Liposomes were prepared by mixing the appropriate
amount of lipids in the solvent. The solvent was removed in
a rotary evaporator, followed by rehydration and vortexing at 40 8C
with the buffer used for SPR analysis, with a final lipid concentra-
tion of 1 mm. The different liposomes were prepared with
a DMPC/DMPG ratio of 2:1 or a DMPC/PS ratio of 4:1. Large uni-
lamellar vesicles were mechanically extruded at 40 8C by use of
a Thermobarrel extruder (10 mL Thermobarrel extruder; Lipex
Northerns Lipids Inc. Burnaby, Canada) with at least ten cycles of
extrusion and use of a polycarbonate filter (100 nm). To verify the
appropriate size of the liposomes, the mean diameter was checked
by dynamic light scattering (Zetasizer Nanoseries S, Malvern Instru-
ments).

Surface plasmon resonance (SPR): SPR experiments with BASP1
were carried out with a Biacore 2000 instrument (Biacore, GE
Healthcare) and SPR sensor chip (L1, Biacore, GE Healthcare). Lipo-
somes were injected for 500 s at a flow rate of 5 mL min¢1. The
reference channel was coated with BSA by use of a 200 s injection
of BSA (1 mg mL¢1, Sigma, fatty acid free) at a flow rate of
10 mL min¢1. Protein binding experiments were performed at
50 mL min¢1. The interaction of MyrBASP1 or LauBASP1 with lipo-
somes was followed by observing the SPR response when a solu-
tion of protein was injected for 100 s (association phase), followed
by a 300 s washing period (dissociation phase). MyrBASP1 binding
to DMPC/PS liposomes was monitored by injections at concentra-
tions ranging from 10 nm to 2.5 mm. LauBASP1 binding to DMPC/
PS liposomes was monitored by injections at concentrations rang-
ing from 20 nm to 7.5 mm. All experiments were performed in the
running buffer, which consisted of Na3PO4 (20 mm), NaCl (50 mm),
pH 7.4. The surface was regenerated with a series of CHAPS
(20 mm)/HCl (10 mm)/CHAPS (20 mm) pulses, each pulse for 30 s at
100 mL min¢1. Each experiment was started with freshly captured
liposomes. Liposome coating was reproducible, with a variation
smaller than 4 % between subsequent coatings, ensuring very re-
producible protein binding curves.

SPR experiments with MyrUSH3 were performed in a very similar
fashion, with slight modifications. The SPR chip (a 2D carboxyme-
thyldextran surface) was purchased from Xantec and modified by
covalent attachment of phytosphingosine (TebuBio) to allow the
capture of DMPC:DMPG (2:1) liposomes. Liposomes were injected
at 10 mL min¢1 for 200 s before the protein binding experiment:
MyrUSH3 or LauUSH3 was injected at 50 mL min¢1 for 60 s, and dis-
sociation was allowed for 300 s. The running buffer was composed
of Na3PO4 (50 mm), NaCl (150 mm), EDTA (0.2 mm, pH 7.5). Lipo-
some coating was reproducible, with a variation of about 1 % be-
tween the subsequent coatings, ensuring very reproducible protein
binding curves. Data analysis was performed with the Biacore Bia-
evalution software.
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