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Abstract

OBJECTIVE—Machine learning methods are flexible prediction algorithms that may be more 

accurate than conventional regression. We compared the accuracy of different techniques for 

detecting clinical deterioration on the wards in a large, multicenter database.

DESIGN—Observational cohort study.

SETTING—Five hospitals, from November 2008 until January 2013.

PATIENTS—Hospitalized ward patients
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INTERVENTIONS—None

MEASUREMENTS AND MAIN RESULTS—Demographic variables, laboratory values, and 

vital signs were utilized in a discrete-time survival analysis framework to predict the combined 

outcome of cardiac arrest, intensive care unit transfer, or death. Two logistic regression models 

(one using linear predictor terms and a second utilizing restricted cubic splines) were compared to 

several different machine learning methods. The models were derived in the first 60% of the data 

by date and then validated in the next 40%. For model derivation, each event time window was 

matched to a non-event window. All models were compared to each other and to the Modified 

Early Warning score (MEWS), a commonly cited early warning score, using the area under the 

receiver operating characteristic curve (AUC). A total of 269,999 patients were admitted, and 424 

cardiac arrests, 13,188 intensive care unit transfers, and 2,840 deaths occurred in the study. In the 

validation dataset, the random forest model was the most accurate model (AUC 0.80 [95% CI 

0.80–0.80]). The logistic regression model with spline predictors was more accurate than the 

model utilizing linear predictors (AUC 0.77 vs 0.74; p<0.01), and all models were more accurate 

than the MEWS (AUC 0.70 [95% CI 0.70–0.70]).

CONCLUSIONS—In this multicenter study, we found that several machine learning methods 

more accurately predicted clinical deterioration than logistic regression. Use of detection 

algorithms derived from these techniques may result in improved identification of critically ill 

patients on the wards.
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INTRODUCTION

An estimated 2.5 quintillion bytes of data are generated every day, and the volume, velocity, 

and variety of information has led to the popularization of the term “big data (1).” 

Companies like Google, Amazon, and Netflix have leveraged big data in concert with 

complex algorithms to improve predictions of human behavior and events (2). These 

algorithms, known as machine learning in computer science, are flexible techniques 

designed to learn and generalize from data. Highly accurate prediction is a valuable asset for 

companies, as highlighted by the Netflix challenge, which awarded one million U.S. dollars 

to researchers who improved the accuracy of its algorithm by 10% (3).

Despite their common use in business analytics, the mainstream medical community has 

lagged behind in terms of studying and implementing machine learning methods for real-

time risk prediction. Traditional methods, such as logistic regression, are the standard when 

developing prediction models even when accuracy, instead of interpretation of the 

regression coefficients, is the primary goal (4,5). However, previous comparison studies 

have suggested that machine learning methods can be more accurate than traditional logistic 

regression across a wide variety of subject areas (6). Thus, when the stakes are high, it is 

important to consider techniques beyond standard regression to optimize accuracy (7).
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The aim of this study was to compare several of the most popular machine learning 

techniques in a large multicenter dataset of patients on the medical-surgical wards for 

predicting clinical deterioration. In this area of medicine, small improvements in accuracy 

can have large benefits given the high mortality associated with clinical deterioration and 

costs of resource utilization for false alarms. An additional aim of the study was to illustrate 

how machine learning methods can be visualized in order to provide face validity to 

clinicians and researchers interested in implementing these techniques.

MATERIALS AND METHODS

Study setting

Details regarding the study population are shown in eTable 1 and have been previously 

described (8). Briefly, patients with documented ward vital signs from November 2008 to 

January 2013 at five hospitals, which included a tertiary academic center, two suburban 

teaching hospitals, and two community hospitals, were included in the study. The University 

of Chicago Institutional Review Board (IRB #16995A) and NorthShore University 

HealthSystem (IRB #EH11-258) granted waivers of consent based on general 

impracticability and minimal harm.

Outcomes

The primary outcome of the study was the composite of ward cardiac arrest, ward to ICU 

transfer, or death on the wards without attempted resuscitation. Cardiac arrests were 

manually reviewed for data quality, as previously described (8). ICU transfers were 

determined using location-stamped vital signs, and death on the wards was confirmed using 

administrative databases.

Predictor variables

Age, time since ward admission, number of previous ICU stays, vital signs, and routinely 

collected laboratory values (electrolytes, creatinine, liver function tests, and blood counts) 

were utilized as predictors (8). These variables were obtained from the electronic health 

record (EHR) (EPIC; Verona, WI) at the University of Chicago and the Electronic Data 

Warehouse at the NorthShore hospitals.

Model development

Overview—The dataset was split by date at each hospital into derivation (60%) and 

validation (40%) cohorts, and all model tuning using ten-fold cross-validation described 

below was performed in the derivation dataset only. Because previous literature suggested 

that some machine learning techniques have decreased accuracy in highly unbalanced data 

(e.g. many more non-event observations than event observations), as was the case in this 

study, each time window where an event occurred was matched to a randomly selected non-

event window for model derivation (9,10). In order to standardize model development in the 

setting of longitudinal data, a discrete-time survival analysis statistical framework was used 

(8,11). This involved separating time into discrete eight-hour intervals using the predictor 

values closest to the beginning of the interval, and the outcome being whether the event 

occurred within the following interval (see eFigure 1). In the case where data for a variable 
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were missing from a time-block then the value from the prior time block was pulled 

forward. If no prior value was available then the median value was imputed, similar to other 

risk score studies (4, 8). Eight-hour intervals were chosen due to the frequency of 

physiologic data collection and our prior work (8). This methodology transformed the data 

structure into a binary classification problem, where many of the machine learning methods 

were developed and are commonly utilized (10,11). A brief overview of the different 

methods are outlined below, and additional details are provided in the Supplementary 

Appendix eMethods.

Logistic regression—Two logistic regression models, which utilized all the predictor 

variables, were compared in this study. The first model was fit with each variable term 

entering linearly. The second model modeled the predictors using restricted cubic splines 

with three knots to allow for non-linearity. The number of ICU stays and mental status, 

which was coded in the alert, responsive to voice, responsive to pain, and unresponsive 

(AVPU) scale, entered the model linearly due to the small number of possible values.

Tree-based models—Decision trees partition the sample data by splitting the variables at 

discrete cut-points and are often presented graphically in the form of a tree (10, 12). For this 

study, the decision tree algorithm determined the best variable and location for each split 

using the Gini index (10). A cost complexity parameter, which penalizes more complex 

trees, was used to control the size of the final tree, and the optimal value was determined 

using ten-fold cross-validation.

Because decision trees often have suboptimal predictive accuracy, several methods were 

used to combine multiple trees together. First, a bagged tree model was fit. This involved 

taking random samples of the derivation dataset with replacement and fitting a tree to each 

sample (10). The final model is then a collection of many trees, the optimal number of 

which was determined using ten-fold cross-validation. Second, a random forest model was 

fit. Random forests are modified bagged trees that only allow a random sample of the 

predictor variables to be considered at each split of each tree (10). The optimal number of 

trees and predictor variables to be considered at each split were determined using ten-fold 

cross-validation. Finally, a boosted tree model was fit. This model derived consecutive 

decision trees using random samples of the training data to predict the residuals of the 

previous models, thus creating a combination of trees that weight the “difficult to predict” 

events to a greater degree (10). The optimal number of splits for each individual tree, the 

total number of trees, and an additional shrinkage factor, which reweights the prediction 

contribution from each individual tree, were determined using ten-fold cross-validation.

K-nearest neighbors—K-nearest neighbors (KNN) models use local geographic 

information in the predictor space to predict the outcome of a new sample (10, 12). For 

example, a KNN model utilizing five neighbors uses the five closest observations in 

multidimensional space, based on a distance measure, to predict the outcome of a new 

observation. The optimal number of neighbors is unknown, so ten-fold cross-validation was 

used to determine the number of neighbors for the final model.
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Support vector machines—Support vector machines are unique in that they primarily 

utilize the data points from each outcome class that are closest to the class boundary or that 

are misclassified when determining the structure of the boundary (10, 12). The radial basis 

function, a commonly used flexible kernel function, was used for the support vector machine 

model in this study. The main tuning parameter is the cost penalty, with higher values 

penalizing misclassified observations to a greater degree. The optimal value was determined 

using ten-fold cross-validation and the scale parameter was determined computationally 

using the method of Caputo et al (10).

Neural networks—Neural networks are non-linear models originally inspired by how the 

brain works, and involve creating a set of linear combinations of the original predictor 

variables and then using those as inputs into a hidden layer (or layers) of units, which then 

create new combinations of these inputs to finally output the probability of the event of 

interest (10, 12). A feed-forward multi-layer perceptron neural network was fit, and the 

penalty term, known as weight decay, and the number of hidden units in the model were 

determined using ten-fold cross-validation.

Model comparisons

Predicted probabilities were calculated for each observation in the validation dataset from 

each derived model. In order to put the accuracy results in perspective with prior studies, the 

Modified Early Warning Score (MEWS), a commonly utilized rapid response team 

activation tool, was also calculated (13). The area under the receiver operating characteristic 

curve (AUC) was then determined using whether an event occurred within twenty-four 

hours of each individual observation because this is a standard metric for early warning 

score comparisons (8,14). A plot of the percentage of observations above a probability 

threshold versus the percentage of observations detected that were followed by an outcome 

(i.e. sensitivity), previously described as an “early warning score efficiency curve,” was 

created for the logistic regression models, MEWS, and the most accurate machine learning 

method (14). A pre-defined comparison of the percentage of observations in the validation 

dataset above the 75% sensitivity cut-off for each model was utilized (14). Model 

calibration, which is the agreement between a model’s predicted probability and the actual 

probability of an event, was measured in several ways using the discrete-time framework in 

the validation dataset (15). First, the Hosmer-Lemeshow goodness of fit (H-L) test was 

calculated for each model, and plots of predicted versus actual risk across risk deciles were 

created. In addition, the calibration slope and calibration intercept (i.e. Cox calibration) were 

also calculated. To visualize the contribution of the predictor variables in the most accurate 

model, a variable importance measure that utilized the change in the Gini index was used 

(10). The effects of the most accurate predictor variables across different values and 3-D 

interaction plots were also created for the most accurate model using partial dependence 

plots (16). All analyses were performed using R version 3.1.1 (The R Foundation for 

Statistical Computing; Vienna, Austria) and Stata version 13.1 (StataCorps; College Station, 

Texas). A two-tailed p-value <0.05 denoted statistical significance.
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RESULTS

In total, 269,999 patient admissions and 16,452 adverse outcomes (424 cardiac arrests, 2,840 

deaths on the ward, and 13,188 ICU transfers) occurred during the study period, with 

demographic characteristics as previously described elsewhere (8). In the dataset, vital signs 

had the lowest amount of missing data (<1% except oxygen saturation (10%) and AVPU 

(19%)). Laboratory data had more missing values than vital signs (complete blood count (7–

8%), electrolytes and renal function (11–16%), and liver function (48–50%)). During model 

derivation, 10,309 time windows with adverse events were randomly matched to 10,309 

non-event windows. In the validation dataset, the random forest model was the most 

accurate (AUC 0.80 [95% CI 0.80–0.80]) followed by the gradient boosted machine (AUC 

0.80 [95% CI 0.79–0.80]; Figure 1). The logistic regression model with spline terms was 

more accurate than the model utilizing linear predictor terms (AUC 0.77 vs 0.74; p<0.01), 

and all models were more accurate than the MEWS (AUC 0.70 [95% CI 0.70–0.70]). A 

post-hoc sensitivity analysis using a logistic regression model with four knots for continuous 

variables had an AUC of 0.69. As shown in e-Figures 2–4, the random forest model was the 

most accurate model for all three individual outcomes, with an AUC of 0.94 for death, 0.83 

for cardiac arrest, and 0.79 for ICU transfer. Of note, the logistic spline model was more 

accurate than the logistic linear term model for ICU transfer (AUC 0.75 vs 0.71) but was 

less accurate than the linear term model for detecting cardiac arrest (AUC 0.78 vs 0.81) and 

death (0.91 vs 0.92). Figure 2 illustrates an “early warning score efficiency curve” for the 

random forest, logistic regression models, and the MEWS. As shown, at the 75% sensitivity 

cut-off 31% of the observations in the validation dataset are above the risk threshold 

associated with this sensitivity for the random forest model compared to 37% for the logistic 

spline model, and 44% for the logistic linear term model.

Respiratory rate, heart rate, age, and systolic blood pressure were the most important 

predictor variables in the random forest model (Figure 3). The partial plots illustrating the 

effects of these predictors across a range of values in the random forest model are shown in 

Figure 4. The risk for the outcome was U-shaped for respiratory rate, heart rate, and systolic 

blood pressure, with increased risk for both high and low values. Risk also increased with 

increasing age, and an inflection point with more rapidly increasing risk occurred at 

approximately age 40. Partial plots illustrating two-way interactions between the four most 

important variables are shown in e-Figures 5–10, with blue indicating lower risk and red 

indicating higher risk. Some variables, such as heart rate and systolic blood pressure (e-

Figure 5), demonstrated little evidence of interaction, with higher risk across both low and 

high values of each variable across the range of the other variable. Other variables had 

important qualitative interactions. For example, there was no increased risk for low heart 

rates when the respiratory rate was 20, while low heart rates had increased risk at other 

levels of respiratory rate (e-Figure 6). In addition, once the respiratory rate was very high 

(e.g. >30) the risk of an event was also very high regardless of the heart rate. Model 

calibration results in the validation dataset are shown in eTable 2 and eFigure 11, with the 

gradient boosted machine demonstrating the best calibration (H-L p-value 0.68; calibration 

slope and intercept 0.98 and −0.1, respectively). The calibration of the random forest model 
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was dependent upon the number of variables that were allowed to be considered at each 

split, even in the derivation dataset (eTable 3).

DISCUSSION

In this large, multicenter cohort study we found that the random forest algorithm was more 

accurate than eight other methods for detecting clinical deterioration on the wards. At our 

pre-defined sensitivity level, the random forest model would need to screen 6% and 13% 

fewer observations than the logistic spline and logistic linear term models, respectively. In 

the validation dataset of over 4.6 million observations, this would result in over 500,000 

fewer alarms over the study period with the random forest model compared to the logistic 

model with linear terms. We illustrated how aspects of the random forest model can be 

visualized, which provides face validity for clinicians hoping to use this flexible algorithm. 

Finally, for several of the techniques studied, this is the first use of the discrete-time survival 

analysis framework to model longitudinal data in the medical literature.

Our finding that the random forest algorithm, which was first described by Leo Breiman in 

2001, was the most accurate is consistent with prior literature in other areas. For example, 

Fernandez-Delgado et al. compared over 100 different techniques in 121 datasets, many of 

which were small and in non-medical fields, and found that the random forest algorithm was 

the most accurate method (6). This is in stark contrast to the fact that a PubMed search in the 

core clinical journals for “random forest prediction” resulted in 11 articles compared to over 

1400 for “logistic regression prediction” as of January 1, 2015. Random forests 

automatically investigate interactions and non-linear effects of predictors, which must be 

pre-specified by the user in logistic regression. This enhanced flexibility can lead to 

improved accuracy but also increases the chance of overfitting, and studies suggest that 

large amounts of data are needed to estimate a stable random forest model (17). It is possible 

that the random forest was most accurate in our data because of the method’s flexibility 

combined with the large size our derivation dataset. We also found that the gradient boosted 

machine was the best calibrated model and its AUC was second only to the random forest. 

The calibration of the random forest was also related to the number of predictors allowed to 

be utilized at each split in our data. Therefore, in a field where calibration is of high 

importance it is imperative to investigate this measure in addition to model discrimination.

In the field of predicting in-hospital deterioration, few studies have been performed 

comparing machine learning techniques to conventional regression. For example, an ICU-

based study of 24,508 patients by Pirracchio et al. compared the newly described “Super 

Learner” algorithm, a combination of multiple machine learning techniques, to previously 

published severity of illness models and several machine learning algorithms (18). They 

found that the Super Learner algorithm and the random forest model had greater accuracy 

(both with AUCs of 0.88) than the established severity of illness scores and other machine 

learning methods for predicting mortality. In addition, Mao and colleagues developed an 

early warning score in a single-center study and compared logistic regression models to 

support vector machine and decision tree models, finding logistic regression to be more 

accurate (19). Finally, Badriyah et al. developed a decision tree model for ward deterioration 

and found that its accuracy was similar to the National Early Warning Score (20). Studies in 
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other areas have suggested that logistic regression can be as accurate or more accurate than 

other machine learning methods (21–23). Thus, as per Wolpert’s “No Free Lunch Theorem,” 

no one technique will be most accurate across every scenario, and so comparisons of 

techniques in different research areas and datasets may yield different results (24).

One criticism of machine learning techniques is that they are black boxes and thus may be 

viewed with suspicion by clinicians. Our study demonstrated that these methods can be 

much more accurate than a logistic model with easily interpretable linear terms. Therefore, if 

accuracy is paramount then these methods should strongly be considered. In addition, 

various ways to visualize variable importance have been developed, as we illustrated in this 

study (10, 16, 25). Notably, we found that the most important variables in the random forest 

model have also been shown to be important predictors in prior research in this area (8, 26, 

27). In addition, the risk for adverse outcomes across the range of values of the predictors 

was consistent with clinical intuition and prior work. Finally, because the random forest is 

inherently an interaction model that can cut variables at points across their entire range, 

important interactions and threshold values can be discovered that are difficult to find using 

alternative techniques, such as those between respiratory rate and heart rate in our study.

The proliferation of EHRs across the United States offers a remarkable opportunity to 

leverage machine learning techniques to improve patient care. Although mainly used only as 

an electronic chart for reading, recording, and billing purposes, there are examples of using 

this environment for real-time clinical decision support. For example, Sawyer et al. used 

EHR data to provide real-time alerting for septic patients on the wards, which resulted in 

increased early interventions (28). The same group also published a study utilizing 

electronic alerts with automated pages going to nurses for patients showing signs of clinical 

deterioration on the wards (29). Similar studies have been published in step-down and ICU 

patients (30,31), and these real-time alerts may also help bridge the gap between when rapid 

response teams are typically alerted and when instability events actually occur (32). Our 

results suggest that utilizing the random forest model has the potential to markedly decrease 

false alarms compared to logistic regression. These models can be implemented by running 

the model using a wide range of programming languages or commercially available tools, 

which can run externally to and interact with the EHR.

Importantly, our utilization of discrete-time survival analysis is the first reported use in the 

medical literature for several of the machine learning techniques. This method is similar to 

the approach described by Biganzoli et al. for neural networks, whose study provided 

examples of its use in cancer datasets (33). Discrete-time decision trees and random forests 

have been reported by Bou-Hamad et al. using bankruptcy data, but we are unaware of 

publications in the clinical literature for any of the methods except logistic regression and 

neural networks (34). Other methods to extend machine learning methods to survival 

analysis data have been described, but the discrete-time approach provided a standardized 

approach for model development in this study (35).

There are several limitations of our study. First, our population was from five Illinois 

hospitals, and our results may not be generalizable to other settings. In addition, because our 

goal was to compare popular machine learning techniques in a standardized framework, we 
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did not compare all available methods or their variations. There are hundreds of different 

techniques and variations, and a completely comprehensive study was not feasible.

CONCLUSIONS

In conclusion, we found that several machine learning methods were more accurate than 

traditional logistic regression for predicting clinical deterioration on the wards. We 

illustrated how to extend these methods for use with time-varying predictors and how to 

visualize variable importance and the effect of variables on the risk of the outcome across of 

range of values. Implementation of the most accurate model, the random forest, may result 

in considerable resource savings compared to traditional methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Area under the receiver operator characteristic curves of the compared methods for 
the composite outcome in the validation cohort*
*Error bars indicate the upper 95% confidence intervals. Abbreviations: MEWS: Modified 

Early Warning Score, AUC: Area under the receiver operating characteristic curve
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Figure 2. Graph illustrating model sensitivity by the percent of observations above a score 
threshold (i.e. positive screen) for the Modified Early Warning Score, logistic regression models, 
and random forest model in the validation cohort
Abbreviations: MEWS: Modified Early Warning Score
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Figure 3. Importance of the predictor variables in the random forest model, scaled to a 
maximum of 100
Abbreviations: BUN: blood urea nitrogen; AVPU: alert, responsive to voice, responsive to 

pain, unresponsive; SGOT: serum glutamic oxaloacetic transaminase; ICU: intensive care 

unit
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Figure 4. 
Partial plot of the effect of respiratory rate (A), heart rate (B), age (C), and systolic blood 

pressure (D) on the risk of the composite outcome across different values in the random 

forest model.
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