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Abstract: Multiple large-scale neural networks orchestrate a wide range of cognitive processes. For
example, interoceptive processes related to self-referential thinking have been linked to the default-
mode network (DMN); whereas exteroceptive processes related to cognitive control have been linked
to the executive-control network (ECN). Although the DMN and ECN have been postulated to exert
opposing effects on cognition, it remains unclear how connectivity with these spatially overlapping
networks contribute to fluctuations in behavior. While previous work has suggested the medial-
prefrontal cortex (MPFC) is involved in behavioral change following feedback, these observations
could be linked to interoceptive processes tied to DMN or exteroceptive processes tied to ECN because
MPFC is positioned in both networks. To address this problem, we employed independent component
analysis combined with dual-regression functional connectivity analysis. Participants made a series of
financial decisions framed as monetary gains or losses. In some sessions, participants received feed-
back from a peer observing their choices; in other sessions, feedback was not provided. Following
feedback, framing susceptibility—indexed as the increase in gambling behavior in loss frames com-
pared to gain frames—was heightened in some participants and diminished in others. We examined
whether these individual differences were linked to differences in connectivity by contrasting sessions
containing feedback against those that did not contain feedback. We found two key results. As framing
susceptibility increased, the MPFC increased connectivity with DMN; in contrast, temporal-parietal
junction decreased connectivity with the ECN. Our results highlight how functional connectivity pat-
terns with distinct neural networks contribute to idiosyncratic behavioral changes. Hum Brain Mapp
36:2743–2755, 2015. VC 2015 Wiley Periodicals, Inc.
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INTRODUCTION

Our behavior is governed by the interaction of multiple
brain regions [Park and Friston, 2013]. These interacting
brain regions are organized into multiple distinct networks
that orchestrate disparate cognitive processes [Smith et al.,
2009]. For example, activation within the executive-control
network (ECN) has been generally associated with extero-
ceptive processes (though not exclusively [Critchley et al.,
2004]) relating to cognitive control and goal-directed atten-
tion [Dosenbach et al., 2007; Smith et al., 2009]. In contrast,
the default-mode network (DMN) has been generally
linked to interoceptive processes based on its relative
deactivation during tasks [Raichle et al., 2001; Shulman
et al., 1997; Smith et al., 2009] and involvement in self-
referential processing [Gusnard et al., 2001]. Despite these

broad conceptualizations, it remains unclear how DMN
and ECN, as commonly considered in the literature [Laird
et al., 2011; Smith et al., 2009], contribute to changes in
behavior.

A common method for influencing behavior is the use
of feedback, which can be perceived as validation for our
choices. Indeed, the mere presence of feedback can alter
cognitive performance [Pessoa, 2009; Ravizza et al., 2012].
Yet, the influence of feedback on performance is idiosyn-
cratic [e.g., Jimura et al., 2010; Locke and Braver, 2008],
aiding some individuals [Graham, 1984; Ravizza et al.,
2012; Schonberg et al., 2007] while hindering others
[Dweck, 1999; Kamins and Dweck, 1999; O’Brien et al.,
2011]. Recent work has suggested that feedback from other
individuals modulates activation within the medial-
prefrontal cortex (MPFC) [Somerville et al., 2006; Somer-
ville et al., 2010]. The MPFC has been involved aspects of
performance monitoring and feedback-based adaptation in
a variety of studies that include examinations of social
feedback [Somerville et al., 2006] and outcome [Knutson
et al., 2003] processing to promote behavioral change [Falk
et al., 2011]. Unfortunately, parts of MPFC, including the
pregenual cingulate and paracingulate, are situated in
both the ECN and the DMN (Supporting Information Fig.
1). Thus, focusing on the MPFC without considering its
broader role in distinct neural networks would necessarily
conflate different functions, potentially those relating to
interoceptive and exteroceptive processes, thereby, limiting
our understanding of how MPFC contributes to changes in
behavior.

We hypothesized that functional connectivity with dis-
tinct networks that contain the MPFC—namely ECN and
DMN—would reflect an individual’s propensity to change
behavior based on fictitious feedback. To test this

Figure 1.

Experimental task. Participants engaged in a financial decision-

making task that has been previously used to study framing sus-

ceptibility. On each trial, participants were presented with a

monetary endowment ($50 or $100) before choosing between

sure and gamble options. The sure option was framed such that

the participant could keep (Gain Frame; see panel A) or lose

(Loss Frame; see panel B) a fixed proportion of the endowment.

Notably, the Gain Frame and Loss Frames were mathematically

identical (e.g., keeping $60 of $100 is the same as losing $40 of

$100). The gamble option did not differ according to frame and

was represented by a pie chart reflecting the probability (20%,

40%, 60%, and 80%) of winning or losing the entire endowment

(with expected value matched to the sure option). In half of the

sessions, participants received fictitious feedback from another

person seated outside the scanner; remaining sessions utilized a

similar trial structure but did not provide any feedback (see

panel C). This design allowed us to examine fluctuations in

behavior that arise from the presence of feedback. [Color figure

can be viewed in the online issue, which is available at wiley

onlinelibrary.com.]
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hypothesis, we adopted a paradigm that allowed us to
examine how a specific behavioral trait—susceptibility to a
framing manipulation [De Martino et al., 2006]—changes
according to the presence or absence of feedback provided
by a peer (Fig. 1). Although the presence of a peer creates
a social context [Chein et al., 2011; Fareri and Delgado,
2014; Fareri et al., 2012; Sip et al., 2015], which may aug-
ment the salience of the feedback manipulation, we note
that our core hypothesis is centered on the concept of
feedback more generally and not necessarily the source
(e.g., social or nonsocial) or type (e.g., positive or negative)
of feedback. Indeed, the main goal was to quantify how
the presence or absence of feedback influenced functional
connectivity with ECN and DMN using independent com-
ponent analysis (ICA) combined with dual-regression anal-
ysis. Crucially, this approach dissociates responses from
overlapping networks [Utevsky et al., 2014] while isolating
the distributed computations that contribute to individual
differences in behavior [Smith et al., 2014b]. Our analyses
focused on two key questions. First, are fluctuations in
framing susceptibility linked to changes in connectivity
with ECN and DMN? Second, does MPFC connectivity
with ECN or DMN increase in the presence of feedback?

MATERIALS AND METHODS

Participants

We recruited 31 individuals (16 females) for the study
(median age: 19 years, range: 18–32 years). Our prescreen-
ing process excluded individuals with a history of psychi-
atric or neurological illness. Prior to analysis, we also
excluded four additional participants for excessive head
motion (see Supplemental Methods), leaving a final sam-
ple of 27 participants (14 females; median age: 19 years).
All participants provided written informed consent as part
of a protocol approved by the Institutional Review Board
of Rutgers University.

Framing Task

To study how changes in connectivity with spatially
overlapping functional networks contribute to behavior,
we reanalyzed a previous dataset from our laboratory [Sip
et al., 2015]. Although there is no overlap in the goals or
approaches of the original paper and the current investiga-
tion, we note that the paradigm afforded a unique oppor-
tunity to examine how distinct neural networks are
associated with changes in a specific behavioral variable.
In particular, participants performed a financial decision-
making task that allowed us to quantify individual differ-
ences in susceptibility to a framing manipulation.

During the imaging session, participants completed four
50-trial runs of a financial decision-making task that has
been previously used to study framing effects [De Martino
et al., 2006] (Fig. 1). On each trial, participants were shown

an endowment ($50 or $100) before choosing between
“sure” and “gamble” options. The sure option was framed
such that the participant could keep (Gain Frame; Fig. 1A)
or lose (Loss Frame; Fig. 1B) a fixed proportion of the
endowment. The gamble option did not differ according
to frame and was represented by a pie chart reflecting the
probability (20%, 40%, 60%, and 80%) of winning (green
portion) or losing (red portion) the entire endowment
(with expected value matched to the sure option). Notably,
the Gain Frame and Loss Frame were mathematically
identical (e.g., keeping $60 of $100 is equivalent to losing
$40 of $100); therefore, the likelihood of choosing the sure
option or the gamble option should be identical in a per-
fectly rational participant (We note that the term “rational”
here simply denotes consistency of choice). We quantified
the susceptibility to the framing manipulation (i.e., the
magnitude of the framing effect) as the signed difference
between the proportion of gamble choices in the Loss
Frame compared to the Gain Frame. Although most partic-
ipants gamble more in the Loss Frame compared to the
Gain Frame, using the signed difference between frames is
critical for distinguishing the effects of feedback. Thus, a
small framing effect indicates similar gambling behavior in
both frames (i.e., low susceptibility to the framing manipu-
lation) while a large framing effect indicates greater gam-
bling behavior in the Loss Frame relative to the Gain
Frame (i.e., high susceptibility to the framing manipula-
tion). Importantly, the framing effect magnitude controls
for overall changes in risk-sensitive behavior and allows
our analyses to isolate the effects of feedback on the sus-
ceptibility to the framing manipulation. Of course, we note
that changes in framing susceptibility could arise from
decreased risk-sensitive behavior in the Gain Frame and/
or increased risk-sensitive behavior in the Loss Frame.

We coded the framing task using E-prime 2.0 (Psychol-
ogy Software Tools, Sharpsburg, PA). Stimuli were pro-
jected onto a screen at the back of the scanner bore and
were viewed by the participants through mirrored glasses.
Responses were recorded using a MRI-compatible keypad.
All participants received $65 for completing the study.

Procedure for Feedback Manipulation

The framing task allowed us to identify a specific behav-
ioral variable quantifying susceptibility to the framing
effect. Yet, our key goal was to examine whether changes
in this behavior—susceptibility to the framing effect—were
associated with distinct functional connectivity patterns.
To do this, participants performed separate sessions of the
framing task. In one session, they received feedback from
a peer seated outside the scanner (see below); and in the
other session, they did not receive feedback. On the day
preceding the imaging session, participants were asked to
come to the laboratory with a close friend of the same gen-
der (neither a romantic partner nor a family member).
Each friendship dyad completed the Inclusion of Other in
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Self scale [Aron et al., 1992], which provided an estimate
of closeness between the two individuals. In addition,
each dyad provided examples of five positive and five
negative comments that they would normally offer to each
other when engaging in shared activities where feedback
is provided (e.g., playing video games) which were then
used as feedback during the feedback session (interleaved
runs with order counterbalanced across participants).
Importantly, the feedback was the only source of knowl-
edge the participants had available about their perform-
ance. While the feedback itself was not related to actual
performance, the participants believed that it was
performance-based feedback meant to guide their deci-
sions. This was confirmed by a debriefing questionnaire at
the end of the experiment and a subjective measure sug-
gesting that a majority of participants viewed the feedback
as helpful (23 out of 27 participants).

Participants received randomly selected feedbacks from
their friend in each feedback session (total 32 feedback
through entire experiment). In the no feedback session, the
words “No Feedback Provided” were used instead of giv-
ing explicit feedback. Thus, there were two conditions—
feedback and no feedback—delivered in independent ses-
sions [for further details on the experimental setup, please
see Sip et al., 2015]. Crucially, we note that the peer was
present throughout the entire experiment, thereby, reduc-
ing the likelihood that feedback and no feedback sessions
differed due to social context.

Neuroimaging Data Acquisition

We collected neuroimaging data using a 3 Tesla Sie-
mens MAGNETOM Trio scanner (equipped with 12 chan-
nels) at the Rutgers University Brain Imaging Center.
Functional images sensitive to blood-oxygenation-level-
dependent contrast were acquired using a single-shot T2*-
weighted echo-planar imaging sequence with slices paral-
lel to the axial plane [repetition time (TR): 2000 ms; echo
time (TE): 30 ms; matrix 64 3 64; field of view (FOV):
192 mm; voxel size: 3.0 mm3; 32 slices; flip angle: 90�].
The first four volumes of each functional run were
removed to allow for magnetic stabilization. To facilitate
coregistration and normalization of functional images, we
also collected high-resolution anatomical scans covering
the whole brain (TR: 1900 ms; TE: 2.52 ms; matrix 256 3

256; FOV: 256 mm; voxel size: 1.0 mm3; 176 slices; flip
angle: 9�).

FMRI Preprocessing

Our preprocessing procedure utilized tools from the
FMRIB Software Library (FSL Version 5.0.2; http://www.
fmrib.ox.ac.uk/fsl/) package [Smith et al., 2004]. We first
corrected for head motion by realigning the time series to
the middle volume. Next, we corrected for intravolume
slice-timing differences using Fourier-space phase shifting,

aligning to the middle slice. Spatial smoothing employed a
Gaussian isotropic kernel of full-width-half-maximum
5 mm. The entire 4D dataset was then grand-mean intensity
normalized using a single multiplicative factor. To remove
low frequency drift in the MR signal, we used a high-pass
temporal filter with a 100-second cutoff. Finally, we spa-
tially normalized our imaging data to the Montreal Neuro-
logical Institute (MNI) avg152 T1-weighted template (4 mm
isotropic resolution) using a 12-parameter affine transforma-
tion implemented in FMRIB’s Linear Image Registration
Tool [Jenkinson and Smith, 2001]. Affine transformations
were subsequently optimized with a nonlinear registration
algorithm implemented in FSL. Our preprocessing also
identified outlier volumes with excessive displacements
[Power et al., 2015] and four participants with excessive
head motion (see Supporting Information Methods).

FMRI Analyses

Our analytic procedures can be distilled into the follow-
ing steps: (1) obtain networks using ICA; (2) identify net-
works matching DMN and ECN reported in prior work
[Smith et al., 2009]; (3) quantify voxelwise connectivity
with each network for Feedback and No Feedback condi-
tions; (4) contrast connectivity maps between each condi-
tion for each network and identify regions in which the
difference in connectivity is associated with the difference
in framing susceptibility. These procedures are fleshed out
in detail below and summarized in Figure 2.

We used FSL’s Multivariate Exploratory Linear Decom-
position into Independent Components Version 3.10
[Beckmann and Smith, 2004] to identify 25 large-scale
neural networks (see Supporting Information Methods).
To evaluate individual differences in connectivity with
networks identified by the ICA, we employed a dual-
regression analytical approach [Filippini et al., 2009; Leech
et al., 2011; Murty et al., 2014; Utevsky et al., 2014]. Dual-
regression analysis proceeds in two separate stages (Fig.
2). In a first spatial-regression step, spatial maps are
regressed onto each participant’s functional data, resulting
in a T (time points) 3 C (components) set of beta coeffi-
cients that characterize, in each participant and session,
the temporal dynamics for each spatial map. Then, in the
second temporal-regression step, the resulting temporal
dynamics that describe each network, in each participant
and session, are regressed onto each participant’s func-
tional data. This step produces a set of spatial maps that
quantify, within each participant and session, each voxel’s
connectivity with each map identified with the group
ICA. Importantly, the temporal-regression step estimates
each voxel’s connectivity with each spatial network while
controlling for the influence of other networks—some of
which may reflect artifacts, such as physiological noise
and head motion. As an additional control for head
motion, our temporal-regression step also included six
parameters describing motion (rotations and translations
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along the three principal axes) and volumes identified as
outliers (see Supporting Information Methods). Removing
outlier volumes via linear regression accounts for the non-
linear effects of motion (e.g., signal spikes, spin history
effects, etc.) that cannot be described by motion parame-
ters alone [Lemieux et al., 2007; Satterthwaite et al., 2013].

To identify maps in our ICA that correspond to the
DMN and ECN reported in Smith et al. [2009], we con-
ducted a spatial correlation analysis. A spatial correlation
analysis quantifies the degree to which the values of one

set of spatial points are correlated with the values of
another set of spatial points; this approach is identical to
a conventional correlation analysis (i.e., Pearson’s R sta-
tistic) and has been employed in previous work [Smith
et al., 2009]. We selected the components that best
matched the DMN and ECN reported in Smith et al.
[2009] [ECN: rmax 5 0.58 (other components: rmean 5 0.02;
rSD 5 0.13); DMN: rmax 5 0.79 (other components:
rmean 5 0.01; rSD 5 0.07)]. Other components in our data-
set corresponded to other networks identified by Smith

Figure 2.

High-level schematic of analytic approach. Our primary analyses

proceeded in multiple steps. Data were first preprocessed and

then spatially transformed into standard (MNI) space. Next, data

from all participants and conditions were concatenated across

time and submitted to a group independent component analysis

(ICA). The group ICA produced a set of 25 spatial maps that

were compared (using spatial correlation) with maps represent-

ing executive control network (ECN; red) and default mode net-

work (DMN; blue) in prior work [Smith et al., 2009]. Notably,

ECN and DMN overlapped in the medial prefrontal cortex

(MPFC; yellow; maps thresholded at Z> 4). All maps were then

entered into the dual-regression analysis, which quantified,

within each subject, each voxel’s functional connectivity with

each spatial map while controlling for the influence of other,

potentially confounding, spatial maps. These functional connec-

tivity measures were contrasted across feedback and no feed-

back sessions. Crucially, this procedure allowed us to isolate our

key variable of interest—i.e., the presence of feedback—while

formulating a between-sessions psychophysiological interaction

analysis that examines how connectivity changes according to

the presence of feedback. The resulting connectivity maps were

then subjected to permutation-based statistical testing to evalu-

ate whether differences in connectivity (Feedback minus No

Feedback) reflect changes in framing susceptibility. [Color figure

can be viewed in the online issue, which is available at wiley

onlinelibrary.com.]
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et al. [2009]; for example, see Supporting Information
Table 1.

Using participant-specific and condition-specific connec-
tivity maps corresponding to DMN and ECN, we then
computed difference images between feedback conditions
(i.e., Feedback minus No Feedback). Examining the change
in connectivity (i.e., the difference) between sessions is
considered a between-sessions psychophysiological inter-
action (PPI) analysis [Friston, 2011; O’Reilly et al., 2012].
Unlike conventional PPI analysis where the key psycholog-
ical variable of interest is often imbedded within a single
session [Friston et al., 1997], our psychological variable of
interest (i.e., the presence of feedback) differs across ses-
sions and hence a simple subtraction is sufficient to isolate
the change in connectivity. Thus, the between-sessions PPI
procedure allowed us to quantify how the presence of
feedback influences connectivity with the DMN and ECN.
Next, we constructed a group-level general linear model to
estimate whether fluctuations in framing susceptibility
(i.e., Feedback Framing Effect minus No Feedback Framing
Effect) correlated with changes in connectivity for each
network. Our model also included covariates to control for
gender [Smith et al., 2014b] and individual differences in
average head motion between feedback sessions (i.e., dif-
ference in the proportion of outlier volumes).

Statistical significance of connectivity maps was assessed
in a nonparametric fashion, using Monte Carlo
permutation-based statistical testing with 10,000 permuta-
tions [Nichols and Holmes, 2002]. We used an alpha of

0.05, which was corrected for multiple voxelwise compari-
sons across the whole brain and for multiple network
comparisons across the ECN and DMN [Utevsky et al.,
2014]. We estimated clusters of activation using threshold-
free cluster enhancement [Smith and Nichols, 2009], which
retains a fundamentally voxel-wise inference. Significant
results are displayed using MRIcroGL (http://www.
mccauslandcenter.sc.edu/mricrogl/). Finally, to evaluate
the uncertainty associated with our results, we boot-
strapped the effect sizes (N 5 10,000) and identified the
99.9% confidence interval. These intervals are useful for
depicting the likely magnitude of the true effect, which is
potentially small, given the imperfect reliability of neural
and behavioral measures [Kriegeskorte et al., 2010; Vul
et al., 2009; Yarkoni, 2009].

RESULTS

Loss Framing Promotes Risky Decision Making

Our behavioral analyses focused on two key issues.
First, we examined the influence of decision frame on
risky choice. Several studies have shown that people
take more risks when an outcome is framed as a poten-
tial loss [Tversky and Kahneman, 1981]. Consistent
with this observation, we found that participants
gambled more in the loss frame (M 5 50%, SE 5 3.7%)
compared to the gain frame (M 5 35%, SE 5 2.9%;

Figure 3.

Behavioral effects of frame and feedback. (A) In both the Feed-

back (FB) and No Feedback (NFB) sessions, subjects gambled

more when the decision was framed as a potential loss com-

pared to a potential gain. The magnitude of this framing effect

was similar across FB and NFB sessions. (B) Yet, we observed

idiosyncratic changes in framing susceptibility (i.e., the magnitude

of the framing effect in a subject) in the presence of feedback. In

particular, we found that some subjects were less susceptible to

the framing manipulation during the FB session compared to the

NFB session. In contrast, other subjects were more susceptible

to the framing manipulation during the FB session compared to

the NFB session. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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t(26) 5 5.09, P< 0.001), indicating a robust framing effect
across participants, regardless of whether feedback was
present or absent (Fig. 3A).

Second, given that psychologists have long recognized
how feedback can shape subsequent behavior [Thorndike,
1898], we evaluated whether the framing effect was modu-
lated by the presence of feedback. Although we did not
find a main effect of feedback on framing susceptibility
[Feedback (FB): M 5 14.5%, SE 5 3.1%; No Feedback (NFB):
M 5 14.8%, SE 5 3.0%; t(26) 5 0.15, P 5 0.88], participants
exhibited considerable individual differences in their fram-
ing susceptibility following feedback. In particular, fram-
ing susceptibility was heightened in some participants and
diminished in others (FB minus NFB: range 5 216.7:25.5%,

SD 5 10.6%). In a post hoc analysis, we found that the
changes in framing susceptibility were trending toward a
non-Gaussian distribution (Jarque-Bera test 5 3.249,
P 5 0.07), suggesting that the observed changes are mean-
ingful and not simply random fluctuations in behavior.
Nevertheless, we note that such variability in behavior—
whether random or induced by feedback—may have roots
in the fluctuations of large-scale neural networks [Fox
et al., 2007].

Functional Connectivity Reflects Feedback

Effects on Framing Susceptibility

Our behavioral results indicated that feedback had a
wide range of effects on subsequent framing susceptibility,
with some individuals becoming more susceptible and
others individuals becoming less susceptible (Fig. 3B). We
predicted that the idiosyncratic influence of feedback on
subsequent behavior would be rooted, in part, in changes
in functional connectivity with MPFC—a region whose
activation increases in the presence of feedback [Somer-
ville et al., 2006]. Unfortunately, MPFC sits at the intersec-
tion of two networks (see Supporting Information Fig. 1)
that are hypothesized to have opposing effects on cogni-
tion [Fox et al., 2005; Greicius et al., 2003]. Activation
within the executive control network (ECN) has been
postulated to reflect exteroceptive processes related to cog-
nitive control and goal-directed attention [Dosenbach
et al., 2007]. In contrast, the default mode network (DMN)
has been linked to interoceptive processes due to its deac-
tivation during cognitive tasks [Raichle et al., 2001; Shul-
man et al., 1997] and involvement in self-referential
processing [Gusnard et al., 2001]. Although interoceptive

Figure 4.

Networks identified by independent component analyses. We

identified large-scale neural networks using independent compo-

nent analysis (ICA). This analysis resulted in 25 spatial maps,

some reflecting artifacts (e.g., head motion) and others reflecting

well-characterized sensory and cognitive networks identified in

prior work [e.g., Smith et al., 2009]. Our dual regression analy-

ses focused on two networks identified in the ICA. (A) The

default mode network (DMN) consisted of lateral parietal

regions, posterior cingulate, and portions of the medial prefron-

tal cortex (MPFC). (B) The executive control network (ECN)

consisted of the striatum, the anterior cingulate, and portions of

the MPFC. For visualization purposes, maps are thresholded at

Z> 4. (C) We also examined how the decision phase of the

task modulates responses within each network. Consistent with

prior work, we found that both networks were sensitive to the

decision phase, with increased activation of the ECN and

decreased activation of the DMN. The magnitude of activation

in the DMN was greater in the feedback session, indicating that

feedback modulates responses within DMN. [Color figure can

be viewed in the online issue, which is available at wileyonline

library.com.]
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and exteroceptive processes may not be uniquely associ-
ated with DMN and ECN respectively [Critchley et al.,
2004], it is clear that changes in connectivity with MPFC
could reflect processes related to either network.

To address this problem, we used ICA to separate multi-
ple overlapping spatial networks, including ECN and
DMN. These networks were identified in our ICA output
using a spatial correlation with resting-state networks
found in prior work [Smith et al., 2009]. Two of our ICA
maps bared striking similarity to resting-state networks
associated with DMN (Fig. 4A; Rmax 5 0.79) and ECN (Fig.
4B; Rmax 5 0.58); in addition, our other non-noise ICA
maps resembled those identified in previous work (Sup-
porting Information Table 1). We then submitted the time
courses of DMN and ECN to a general linear model to
estimate task-dependent network responses (see Support-
ing Information Methods). We found that the decision
phase of our task evoked significant activation within the
ECN (NFB: t(26) 5 2.0, P 5 0.028; FB: t(26) 5 1.78, P 5 0.043)
and deactivation within the DMN (NFB: t(26) 5 210.94,
P< 0.001; FB: t(26) 5 28.16, P< 0.001). We also found that
feedback (relative to no feedback) evoked increased activa-
tion within the DMN (t(26) 5 3.61, P 5 0.0013; Fig. 4C),
which is consistent with prior work noting increased
DMN responses during tasks requiring social and emo-
tional processing [Mars et al., 2012a]. Next, these net-
works—and others derived from the ICA—were submitted
to a dual-regression analysis to examine whether changes

in functional connectivity (as a function of the presence or
absence of feedback) relate to subsequent changes in fram-
ing susceptibility. Our analysis revealed two key results.
We found that increased connectivity between DMN and
MPFC (MNIx,y,z 5 210, 38, 12) during runs containing
feedback reflected increased susceptibility to the framing
manipulation (i.e., larger framing effect; R 5 0.66,
CI99.9% 5 0.19 to 0.89) (Fig. 5). In contrast, decreased con-
nectivity between ECN and temporal-parietal juncture
(TPJ) (MNIx,y,z 5 230, 250, 32) during runs containing
feedback was associated with increased susceptibility to
the framing manipulation (i.e., larger framing effect;
R 5 20.81, CI99.9% 5 20.94 to 20.30) (Fig. 5). Notably, these
brain-behavior relationships were not driven by the inclu-
sion of confound regressors in our group-level model (Fig.
5B); and we observed similar results when we removed
the covariates for gender and head motion (DMN:
P< 0.05, corrected; ECN: P< 0.001, uncorrected).

In a series of control analyses, we also examined
whether our key results could be explained by other fac-
tors. We reasoned that idiosyncratic features within each
dyad—particularly the dyad’s social closeness [e.g., Fareri
et al., 2012] and the perceived helpfulness of feedback—
might influence the resulting behavioral change in framing
susceptibility. We tested these alternative explanations
using a rank-order correlation. This analysis failed to
reveal an association between the change in framing sus-
ceptibility and the social closeness within each dyad

Figure 5.

Fluctuations in functional connectivity reflect changes in framing

susceptibility. We employed a between-session psychophysiologi-

cal interaction analysis to examine whether changes in functional

connectivity with DMN and ECN correlated with changes in

framing susceptibility. (A) Our analysis identified two regions—

temporal-parietal junction (TPJ) and medial-prefrontal cortex

(MPFC)—whose functional connectivity with DMN (blue) and

ECN (red) changed as a function of the presence of feedback

and changes in framing susceptibility. (B) In sessions containing

feedback (relative to no feedback), increased connectivity

between the DMN and MPFC was associated with increased

framing susceptibility. In contrast, increased connectivity

between the ECN and TPJ correlated with decreased framing

susceptibility. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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(q 5 20.07, P 5 0.73) or perceived helpfulness of feedback
(q 5 20.15, P 5 0.46). Likewise, the absolute change in
behavior was uncorrelated with social closeness
(q 5 20.05, P 5 0.78) and perceived helpfulness of feedback
(q 5 0.03 P 5 0.87). In addition, although we carefully con-
trolled for head motion, we also checked whether individ-
ual differences in head motion contributed to our results—
an important consideration given recent observations link-
ing spurious functional connectivity results to head motion
[Power et al., 2012]. Our analysis revealed that there was
no association between the change in framing susceptibil-
ity and individual differences in average volume-to-
volume head motion (r(25) 5 0.12, P 5 0.54). Taken together,
these observations indicate that our reported changes in
connectivity with DMN and ECN are linked to changes in
framing susceptibility and not other factors measured
within the constraints of our experiment.

Although our results clarify how changes in functional
connectivity with ECN and DMN contribute to changes in
behavior, other work has shown that functional connectiv-
ity between ECN and DMN may also be worth consider-
ing [Cole et al., 2010]. In a post hoc analysis, we therefore
examined whether interactions between ECN and DMN
contribute to feedback and changes in behavior using pro-
cedures established in prior work [Cole et al., 2010; Young
et al., 2015]. Specifically, we performed a partial correla-
tion analysis using the network time courses and motion
confounds in each subject during sessions containing feed-
back and sessions containing no feedback. Our results
indicated that the presence of feedback did not impact
inter-network connectivity between DMN and ECN
(t(26) 5 20.0636, P 5 0.95). In addition, changes in inter-
network connectivity were unpredictive of changes in
framing susceptibility (r(25) 5 0.1817, P 5 0.3643). These
observations, though inconclusive due to limitations in sta-
tistical power, imply that inter-network connectivity has
less impact on behavior compared with functional connec-
tivity with ECN and DMN.

DISCUSSION

A host of recent studies have highlighted the importance
of considering how the interaction of multiple brain
regions shapes behavior [Park and Friston, 2013]. These
studies have led to the specific hypothesis that the brain is
organized into a series of overlapping networks across
multiple task states [Smith et al., 2009]. Yet, understanding
the behavioral significance these networks has been chal-
lenging [Laird et al., 2011]. Here, we examined how two
distinct networks—the DMN and the ECN—contribute to
behavioral fluctuations following feedback from a peer.

The mere presence of feedback can influence cognitive
performance [Ravizza et al., 2012], but can also lead to
individual differences in performance based on how the
feedback is interpreted [Dweck, 1999]. In this study, we
investigated whether the idiosyncratic effects of feedback

on decision making in particular would be reflected in the
functional connectivity patterns with distinct neural net-
works that have opposing influences on cognition, namely
the ECN and DMN. We adapted a gain/loss framing para-
digm [De Martino et al., 2006], where participants chose to
be conservative or risky with respect to an endowed
amount of money. Consistent with prior observations
[Tversky and Kahneman, 1981], participants tended to be
riskier when a decision was framed as a loss rather than a
gain. Critically, in half of the trials (split across runs), par-
ticipants received occasional feedback from a peer observ-
ing outside the scanner.

The presence of feedback elicited a range of individual
differences in participant’s susceptibility to the framing
effect, with some showing increased framing susceptibility
while others demonstrating reduced framing susceptibility.
These individual differences were reflected in changes in
functional connectivity with the MPFC—a region involved
in integrating external information such as feedback [Som-
erville et al., 2006] to influence future decisions [Boorman
et al., 2013]. Specifically, increased susceptibility to the
framing effect following feedback (relative to no feedback)
was associated with both stronger connectivity between
DMN and MPFC, and weaker connectivity between ECN
and TPJ. Taken together, our results suggest that the pres-
ence of feedback can lead to individual differences in the
expression of framing susceptibility and such effects of
behavior may be due to the MPFC mediating between
exteroceptive and interoceptive attentional processes.

The multifaceted MPFC has been involved in a variety
of processes related to decision making [Rushworth et al.,
2004], weighing costs and benefits of available stimuli
[Cunningham and Zelazo, 2007], including personal goals
[D’Argembeau et al., 2010] and social feedback from others
[Somerville et al., 2006], to promote behavioral change
[Falk et al., 2011]. In our experiment, participants received
occasional feedback from peers sitting outside the scanner,
which yielded individual differences in how one
approached decisions framed as either gains or losses.
Although the feedback in our task was presented ran-
domly and was unrelated to any particular decision, it
was tailored to the specific participant in the scanner. That
is, each instance of feedback was one that the participant
and the peer outside the scanner frequently used during
social interactions. The personal nature of these messages
could have been persuasive enough at an implicit level,
even if the participants chose to disregard it. Indeed, self-
tailored messages have been found to recruit MPFC activ-
ity more so than generic ones [Chua et al., 2009], promot-
ing adaptive changes in long-term behaviors like use of
sunscreen [Falk et al., 2010] and smoking [Falk et al.,
2011]. Interestingly, in these studies, activation of MPFC
correlated with changes in behavior but not self-reported
attitudes towards performing the behavior itself. In
accordance with these findings, we also do not observe
any changes in decision making based on the perceived
helpfulness of the feedback. Rather, behavioral change is
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attributed to functional connectivity with networks that
contain the MPFC, further highlighting an important role
for the MPFC in integrating external information such as
the presence of feedback to promote behavioral change.

While previous work has suggested that MPFC
responds differently to evaluative feedback depending on
self-esteem [Somerville et al., 2010], our findings highlight
the importance of considering such responses in the con-
text of connectivity with the executive control network
(ECN) and the default mode network (DMN). We found
that both networks contributed to reductions in framing
susceptibility through distinct functional connectivity pat-
terns: in runs containing feedback compared to runs with-
out feedback, DMN increased connectivity with MPFC
while ECN decreased connectivity with the TPJ. Although
the MPFC and TPJ are classically associated with the
DMN [Buckner et al., 2008], our findings suggest that TPJ
may participate in other networks depending on task
demands [Utevsky et al., 2014]. Within the context of our
paradigm, changes in connectivity with TPJ could reflect
attentional and social functions because receiving feedback
from a peer involves social interaction [Carter et al., 2012]
and may be inherently salient, thus modulating attention
[Kahnt and Tobler, 2013]. These functions need not be
mutual exclusive, as TPJ may perform multiple functional
roles, depending on the pattern of responses within TPJ
[Woo et al., 2014] and/or its connectivity with other
regions [Carter and Huettel, 2013; Mars et al., 2012b; Nel-
son et al., 2012; Smith et al., 2014a].

Unlike previous work, we employed a relatively novel
approach—independent components analysis (ICA) com-
bined with dual-regression analysis—that allowed us to
investigate how individual differences in one’s ability to
integrate external feedback into the decision process are
governed by spatially overlapping networks containing
the MPFC. Using this approach can be valuable in studies
of functional connectivity. In addition to resolving spa-
tially overlapping networks such as the ECN and DMN,
ICA combined with dual regression can help account for
artifacts that manifest as other components [Salimi-Khor-
shidi et al., 2014]. These artifact components could be
related to head motion, which has dramatic effects on esti-
mates of functional connectivity [Power et al., 2015].
Removing noise components would not be possible if the
ICA stage were bypassed by limiting the dual-regression
analysis to networks of interest [e.g., those found in Smith
et al., 2009]. We note that ICA combined with dual-
regression is not restricted to ECN and DMN; other work
has focused on alternative networks that are commonly
found in studies employing ICA, including the frontopari-
etal networks [Leech et al., 2011; Smith et al., 2014b;
Utevsky et al., 2014]. Nevertheless, one practical issue to
consider with this approach is the extent to which a region
of interest participates in one or more networks, poten-
tially at different timescales [Smith et al., 2012]. Future
work will therefore need to refine this general analytical
approach and broaden its applicability.

We note that our results are accompanied by three cav-
eats that merit further consideration. First, our results—
like those reported elsewhere [Leech et al., 2011]—are
derived from a between-sessions PPI analysis and thus do
not explicitly consider task-specific changes in connectivity
[Friston et al., 1997; O’Reilly et al., 2012]. In other words,
changes in connectivity could, in part, be influenced by
changes in responses to specific phases of the task (e.g.,
the decision phase and/or the receipt of feedback). Indeed,
this observation is particularly relevant for DMN, which
exhibited greater decision-phase responses in sessions con-
taining feedback. Although some studies have attempted
to regress out task specific effects [He et al., 2007], it
remains unclear whether such approaches are accurate,
given the uncertainty in the hemodynamic response func-
tion [Woolrich et al., 2004], or whether such approaches
would alter state-dependent change in connectivity [Utev-
sky et al., 2014]. In any case, future studies could build on
our findings by interspersing the presence or absence of
feedback within the same imaging session. Although this
approach would create an opportunity to examine task-
specific changes in connectivity, it may also conflate the
psychological distinction between decisions for which the
participant utilized external feedback and decisions for
which feedback was unavailable. Given these potential
problems, we therefore believe that our between-sessions
PPI approach is optimal for investigating feedback-
dependent connectivity within our design.

Second, the behavioral changes observed in our task
could be related to factors that are unrelated to feedback.
Although we controlled for this possibility by ruling out
confounding factors measured within the constraints of
our experiment, it remains conceivable that the fluctua-
tions in behavior are due to unmeasured personality fac-
tors [Aminoff et al., 2012] or variation in brain structure
[Hermundstad et al., 2013]. Alternatively, fluctuations in
behavior could be random, potentially reflecting the possi-
bility that feedback was viewed as a distracting external
influence. Whether the fluctuations in framing susceptibil-
ity are due to feedback or other factors, understanding
how large-scale networks contribute to such variations in
behavior has been longstanding goal in neuroscience [Fox
et al., 2007].

Third, the feedback delivered in our task was linked to
a social context: the participant believed that their peer
was outside of the scanner providing feedback on their
choices. This design choice, while enhancing the realism of
the feedback, could introduce a social context whose
effects may interact with feedback. However, we note that
this potential social effect is partially mitigated by the fact
that the peer was present throughout both sessions. Never-
theless, future work could build on our paradigm by
incorporating a nonsocial control, such as a computer
[Carter et al., 2012; K€atsyri et al., 2013], or parametrically
manipulating social elements within the task [Fareri and
Delgado, 2014; Fareri et al., 2012; Smith et al., 2014a; Utev-
sky and Platt, 2014]. In addition to examining the source
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of feedback (e.g., social vs. nonsocial), extensions of our
work could also examine the type of feedback (e.g., posi-
tive vs. negative) presented. These extensions could clarify
how both the source and type of feedback—which may
involve various attentional, social, and affective functions
[Roy et al., 2012]—contribute to changes in behavior and
connectivity with DMN and ECN.

CONCLUSION

In sum, our findings highlight how distinct neural net-
works contribute to fluctuations in behavior. Specifically,
we observed that the presence of feedback led to a wide
range of individual differences in framing susceptibility.
These changes are not explained by factors such as the
perceived helpfulness of the feedback or closeness between
the participants and their friend, but rather by changes in
functional connectivity with the DMN and ECN—distinct
neural networks containing the MPFC. Irrespective of
whether these changes are adaptive [e.g., promoting
healthier habits, Falk et al., 2010, 2011] or maladaptive
[e.g., increasing risky behaviors, Chein et al., 2011; O’Brien
et al., 2011], our results further underscore the importance
of understanding how distinct neural networks contribute
to individual differences in behavioral fluctuations.
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