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Low back pain with resultant loss of function, decreased productivity, and high economic costs is burdensome for both the
individual and the society. Evidence suggests that intervertebral disc pathology is a major contributor to spine-related pain and
degeneration. When commonly used conservative therapies fail, traditional percutaneous or surgical options may be beneficial
for pain relief but are suboptimal because of their inability to alter disc microenvironment catabolism, restore disc tissue, and/or
preserve native spine biomechanics. Percutaneously injected Multipotent Mesenchymal Stem Cell (MSC) therapy has recently
gained clinical interest for its potential to revolutionarily treat disc-generated (discogenic) pain and associated disc degeneration.
Unlike previous therapies to date, MSCs may uniquely offer the ability to improve discogenic pain and provide more sustained
improvement by reducing disc microenvironment catabolism and regenerating disc tissue. Consistent treatment success has the

potential to create a paradigm shift with regards to the treatment of discogenic pain and disc degeneration.

1. Introduction

It is well documented that low back pain is a common and
debilitating condition. Costs related to its medical expenses
and lost wages exceed $100-200 billion annually in the United
States alone. The intervertebral disc has been identified as
the single most common pain generator for low back pain
[1-3]. There is considerable interest in emerging bioregen-
erative therapies (specifically Mesenchymal Stem Cells) to
treat painful pathologic discs as current interventional and
surgical options appear to provide inconsistent pain reliefand
offer no restorative potential.

2. Intervertebral Disc Anatomy and
Pathophysiology

When defining intervertebral disc (IVD) pathology, it is
prudent to first briefly review normal disc anatomy and
physiology. In simple terms, a disc is composed of the nucleus
pulposus (NP), annulus fibrosis (AF), and the vertebral
endplate. A remnant of the notochord, the NP contains
randomly organized collagen and elastin fibers embedded in

a highly hydrated gel-like matrix rich in proteoglycan (PG),
which is synthesized by chondrocyte-like intervertebral disc
(IVD) cells. The nuclear matrix is about 70-90% water, which
is contained within the domains of proteoglycan. The NP
plays an important role in spine flexibility and axial load
distribution. The surrounding annulus (AF) is composed
of parallel collagen fibers arranged in concentric lamellae
(10-20 sheets). The cells of the AF are morphologically and
phenotypically similar to fibroblasts. The annulus provides
tensile strength and works in conjunction with the nucleus to
absorb shock. The third component, the cartilaginous verte-
bral endplate, is composed of both hyaline and fibrocartilage
and is intimately involved in connecting and anchoring the
disc to the vertebral body [1, 4-6]. Innervation to the IVD
is confined to the outer third of the annulus and endplate
and is composed of microscopic nerve plexuses; the grey
rami communicates anteriorly and the sinuvertebral nerves
posteriorly [1, 4-6].

The IVD is a dynamic structure. The disc microenvi-
ronment appears to rely on a harmonious balance between
anabolic and catabolic factors important for normal disc
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TABLE 1: Intervertebral disc pathology.

(i) Defined by the development of focal fissures extending outward from the nucleus into the annulus (radial
fissure) or along annular lamellae (circumferential fissure) [1, 7].

(i) Annular fissures provide a conduit for inflammatory chemical mediators to trigger nociceptive nerve
endings in the outer AF [1, 7]. Additionally, “nerve ingrowth” along fissure sites can increase exposure to

Internal disc
disruption (IDD)

nociceptive and mechanical stimuli [1, 7]

(iii) Discogenic pain may develop when annular pain fibers are directly stimulated by inflammatory

mediators or are indirectly stimulated secondary to increased mechanical loading pressures [1, 4, 6].

(iv) Though nuclear degeneration is minimal in early stages of IDD, it is believed to trigger a catabolic
cascade within the microenvironment of the disc, which serves as a precursor to overt disc herniation and

DDD at later stages [1, 7].

(v) IDD is considered to be the most common detectable cause of LBP (estimated prevalence of 39%) [1, 8].

(i) Defined as a diffuse, progressive, and age-related phenomenon defined by nuclear dehydration and
fibrosis and resultant disc space narrowing (3-4% loss per year) [1, 4, 9, 10].

(ii) Mechanical, biochemical, nutritional, and genetic factors contribute to a shift towards catabolic

Degenerative disc
disease (DDD)

metabolism within the disc microenvironment. Hallmarks include increased metalloproteinase (MMP)
activation, decreased IVD cell viability, and decreased proteoglycan (PG) production [4, 9, 11, 12].

(iii) Resultant increased disc space narrowing can cause a redistribution of axial mechanical forces on nearby
structures (e.g., vertebral body endplates, facet joints) causing tissue irritation and degeneration (i.e.

osteophytes, buckling) [1, 13].

(iv) DDD may or may not result in discogenic LBP but almost universally compromises disc integrity,
predisposing the disc to further injury [4, 12, 13].

(i) Defined by a displacement of nuclear disc material beyond the normal contours of the outer nucleus [1, 5].

(ii) Stages include bulge, protrusion, extrusion, and sequestration

(iii) It is the most common etiology of radicular leg pain, via chemical radiculitis or mechanical compression

Disc herniation of nerve roots [1].

(iv) May contribute to focal LBP as a result of inflamed dura of a surrounding nerve root sleeve (somatic
referred pain) or from activation of outer annular pain fibers within the injured disc [1].

(v) Data suggests an alteration of the annulus may contribute to decreased disc integrity and accelerated

DDD [13-17].

cell turnover. Growth factors including TGF-b, BMP, GDF-
5, and IL-GF are examples of important anabolic factors.
Conversely, catabolic metabolism is achieved via catabolic
enzymes, inflammatory cytokines, proteinases, and aggre-
canases. Examples include IL-1, TNF-alpha, ADAMTS, and
MMPs. The disc is relatively avascular, consequently creating
a harsh microenvironment (acidic pH, low oxygen tension,
and paucity of nutrients) for IVD cells. Similar to most
cartilaginous structures, this limited vascular support is
a significant contributor to the poor natural regenerative
capacity of the IVD when metabolic homeostasis is disrupted
(1, 4, 6].

Clinical history and physical exam can be suggestive, but
not diagnostic, of intervertebral disc pathology. Advanced
imaging and diagnostics are needed for more accurate confir-
mation [1, 18]. MRI is the best noninvasive imaging modality
that can be used initially to better define disc pathology
(18, 19]. MRI can also be utilized to grade the severity
of disc degeneration, detect vertebral endplate/subchondral
bone pathology, and identify the presence of disc hernia-
tion [18, 20, 21]. In many instances, the presence of high
intensity zones (HIZs) on MRI can be used to identify
an annular disc tear [19]; however, MRI often lacks the
ability to detect more centrally located fissures. Though
controversial, provocation discography (without or without

an analgesic component) may be employed as a means
of both visualizing intradiscal pathology (via CT discog-
raphy) and determining dynamically if the disc itself is
the pain generator of interest (disc stimulation) [7, 22-
24]. Using these imaging and diagnostic modalities, three
related, but unique pathologic disc states can be described
(Table 1).

Literature review reveals that these three pathologic disc
states found in Table 1 are not consistently well understood
and are often lumped together when describing discogenic
pain [25]. It is of important to note that disc pathology often
represents a continuum of disease where one form of disc
pathology predisposes to another and where some degree of
each may be found along with the primary pathology. Each
pathologic state has unique characteristics and varies in its
correlation with true discogenic pain, radicular pain, and
predisposition to adjacent tissue irritation and degeneration
[1]. To summarize, the primary pathology in IDD centers
around painful fissuring of the annulus, though some nuclear
degeneration also occurs. In DDD, nuclear degeneration
predominates, compromising mechanical disc integrity and
serving as a precursor to additional disc injury. Furthermore,
a change in disc morphology leads to altered spine biome-
chanics may lead to irritation and degeneration of nearby
tissues [1]. It is important to clarify that discogenic LBP may
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FIGURE 1: Goals of interventional treatment (pain relief, improved disc microenvironment, and tissue regeneration).

or may not be present in cases of DDD [1, 26, 27]. In disc
herniation, acute radicular pain is most common, though
axial LBP may occur if annular or somatic fibers are activated.
Disc herniation may also alter disc integrity and predispose
the disc to additional pathology over time [17].

3. Percutaneous and Surgical Interventions for
Discogenic Low Back Pain

Along with a proper understanding of disc anatomy and
pathophysiology, knowledge of currently available treatment
modalities for discogenic LBP is important for enhancing
patient outcomes and mitigating risks. If conservative treat-
ment modalities fail, trained clinicians have traditionally used
interventional techniques to aid in providing pain relief.
However, we propose that interventional therapies should
optimally strive to fulfill the following trio of treatment objec-
tives: decline and/or resolution of primary nociceptive disc
pain (with functional improvement), slowing and/or reversal
of the catabolic metabolism (and associated degradation)
within the disc microenvironment, and partial or complete
restoration of disc tissue (Figure 1) [12, 28-30]. Readers are
encouraged to evaluate available interventional treatment
options to better understand their proposed mechanism of
action, reported efficacy, and perceived disadvantages. One
must also consider whether each modality possesses the
ability to accomplish any, some, or all of the three stated
objectives for the treatment of axial low back pain secondary
to DDD, IDD, or disc herniation (Table 2).

Many of these therapies have shown some benefit
(namely, in reducing pain); however, with the exception
of a few listed emerging therapies, each are considered
suboptimal in the treatment of discogenic pain because

they fail to accomplish the entirety of the three previ-
ously stated objectives for disc pathology treatment. Most
demonstrate evidence of short-term pain improvements,
but many lack evidence of sustained benefit and/or com-
plete relief. Though difficult to study, nearly all (with the
exception of biologics) lack cellular support and conse-
quently evidence demonstrating an ability to slow or reverse
microenvironment catabolism, regenerate disc tissue, or
restore native spine biomechanics. To achieve disc access,
many of these interventions may promote a predisposition
to further disc pathology with no ability to reverse this
negative cascade [14, 31]. Furthermore, surgical modalities
are considered a last resort for neurological compromise,
instability, or intractable pain as they serve, namely, to reduce
pain and improve stability via an essentially destructive
process (tissue elimination or tissue fixation). This process
alters native spine biomechanics and offers no restorative
potential.

4. Multipotent Mesenchymal Stem Cell
(MSC) Treatment

Traditional conservative, interventional, and surgical treat-
ment modalities used in isolation or in combination have
reported successes but are insufficient to accomplish the
entirety of the three objectives outlined for the treatment of
disc pathology. Percutaneously delivered Multipotent Mes-
enchymal Stem Cell (MSC) treatment has recently gained
attention for its potential to revolutionize the treatment
of discogenic LBP and associated disc degeneration. Con-
trary to traditional interventions, MSC therapy provides
the necessary cellular support for regeneration and current
research suggests that these treatments may have the ability
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to uniquely accomplish the three stated objectives for treating
disc pathology (Figure 1).

It is important to first highlight key fundamental con-
cepts of MSCs prior to discussing their clinical applica-
bility in MSC-based intradiscal treatments. According to
the International Society of Cellular Therapy, MSCs are
defined by their ability to adhere to plastic under standard
tissue culture conditions, express certain cell surface markers
and lack expression of other markers, and differentiate into
osteoblasts, adipocytes, and chondroblasts under in vitro
conditions [74]. Inquiry has revealed that MSCs can act
locally to accomplish many functions. In addition to dis-
playing multipotency, MSCs are known for their self-renewal
capacity as well as their chemotactic facilitation of nearby
cellular activity. They are also able to modulate immunologic
activities as well as exhibit trophic and anti-inflammatory
effects on damaged tissues [75-78].

5. Mesenchymal Stem Cell Sourcing and
Available Treatment Models

Currently, tissue engineers and clinicians appear most inter-
ested in the application of MSCs derived from bone mar-
row, adipose, and umbilical cord tissue. Synovium, skeletal
muscle, and periosteum have also been rarely sourced [4].
Interestingly, no tissue source has shown clear superiority
to date, with each displaying advantages and disadvantages.
The most studied, MSCs derived from the bone marrow
(BM-MSCs) appear well suited to both stimulate native disc
cells and differentiate into IVD-NP cells. To obtain these
cells, bone-marrow aspirate (BMA) can be collected (most
commonly from the posterior iliac crest). BMA can then
be centrifuged after harvest to obtain a nucleated cell con-
centrate referred to as Bone-Marrow Aspirate Concentrate
(BMAGC). If concentrated appropriately, a nucleated cell-rich
concentrate including BM-MSCs along with other growth
factors, mononucleated cells, and growth factor rich platelets
can be generated. BM-MSCs have consistently shown ability
to produce nuclear matrix componentry when cultured in
a laboratory [4]. More importantly, BM-MSCs have been
injected intradiscally in both animal (rat, porcine, canine,
and sheep) and human models with promising results [79-
86]. Disadvantages include a more cumbersome harvesting
process and a decreased MSC density within the BM aspirate
(compared to cells derived from adipose) [4, 82]. Adipose-
derived MSCs (ADSCs) can be more easily collected from
fatty tissue. Gene profile analysis has more recently demon-
strated that ADSCs may be suited for easily acquiring a
phenotype similar to that of IVD cells found in the nuclear
matrix [27, 87]. Some consider adipose a superior source
because of the relatively higher concentrations of MSCs
within the tissue [26, 27, 78]. During the collection process,
harvested fatty tissue is centrifuged to collect a layer known as
lipoaspirate. Isolation of the Stromal Vascular Fraction (SVF)
requires either enzymatic matrix digestion with collagenase
or less desirable mechanical isolation [88, 89].

Human umbilical cord tissue-derived Mesenchymal Stem
Cells (HUC-MSCs) may be easily collected from cord tissue
and have potential allogeneic application. Perhaps the best
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source of cells for expansion, HUC-MSCs, could be well
suited for allogeneic use because they appear to demonstrate
low-immunogenicity [90]. There is data to support that
HUC-MSCs can be beneficial for localized immunosuppres-
sion [91].

Researchers have identified other cell types worth men-
tioning that may work in concert with MSCs. There has
been some interest in a niche of cells located within the
disc referred to informally as mesenchymal progenitor cells.
Recognition of these cells may be prove beneficial if they
can be stimulated by exogenously administered MSCs or
other biologics to aid in the regenerative process [27, 92-94].
However, they do appear to be suboptimal sources for cell
harvest because they may be equally susceptible to degener-
ation, are markedly reduced with age, and require additional
disc puncture to be extracted [27, 92, 93]. Lastly, some have
explored using cells found at differing stages along the cell
lineage such as juvenile or adult chondrocytes [95, 96]. Coric
et al. demonstrated that injection of juvenile chondrocytes
could improve pain, function, and disc morphology [95].
These more differentiated cells may lack key highlighted
functions of MSCS but perhaps could be combined with
MSC:s for disc treatment and repair [27].

Once harvested and isolated via centrifugation, MSCs
(e.g., BM-MSCs, ADSCs) follow one of a few basic treatment
modes/models prior to percutaneous cell implant (Figure 2).
Cells can be directly reimplanted into the target tissue of the
donor at the time (point-of-care) of extraction (autologous,
in vivo model) or cultured outside the body and reimplanted
into the donor at a later date (autologous, in vitro model) after
purification and amplification [26, 27]. It is worth mentioning
that cultured MSCs may additionally be combined with host
tissue, a process termed ex vivo culturing [26, 27]. Significant
advantages/disadvantages may exist with each of these mod-
els [4]. From a research standpoint, in vitro models (using
animal or human cells) have been helpful in studying effects
of varying cell (BM-MSC/ADSC) concentrations as well as
how MSCs respond to progrowth stimulants. Using an in
vitro model, MSC response (i.e., cell viability, differentiation)
to manipulation of key factors (oxygen tension, nutrients, pH,
osmolarity, cytokine levels, and exerted mechanical forces)
can be assessed [4, 26, 27]. Clinically, in vitro models allow for
cell expansion and differentiation prior to implant. Clinical
application within the USA has been slowed in part by an
FDA restriction against the use of cultured MSCs in humans.
The FDA notes that transplant of human MSCs cultured in
vitro constitutes more than “minimal manipulation” and falls
under the same regulatory category as mass-produced drugs
(88, 97].

In vivo models on the other hand are helpful for the study
of safety, feasibility, and efficacy of MSC transfer. Several
studies using an animal in vivo model have yielded valuable
information about how injected cells perform within the
disc environment [4]. The phenomenon of disc degeneration
can be specifically studied in an animal in vivo model
(via enzymatic digestion of disc tissue); however, this acute
iatrogenic injury model is unable to precisely mimic DDD
and to an even lesser degree simulate IDD [4]. Additionally,
MSC effects using animal in vivo models are limited by
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Models for cell transplant

Autologous in vitro

Autologous in vivo

Injection under fluoroscopy

After cell transplant

FIGURE 2: Models for mesenchymal stem cell (MSC) concentration and/or isolation prior to fluoroscopically-guided intradiscal injection.

differences between humans and animals (i.e., tissue size,
cell populations, disc milieu, and spine biomechanics) [27].
Clinically, an in vivo model (“same-day” procedure) applied
to humans is allowed per FDA and provides a “real world”
scenario in which treatment effects such as pain and function
can be assessed along with safety and tolerability of cell
transfer. Additionally, quantification of tissue regeneration
can be measured with MRI [4, 27]. Clinically applicable and
less scrutinized, this model of MSC transplant is gaining
traction as the method of choice in treating discogenic pain
within the confines of the U.S.

A third basic cell transplant model exists in which cells
may be isolated from a donor and transplanted into a separate
recipient (allogeneic, in vitro model). Cells in this model
may undergo in vitro culturing and/or may be simply stored
without manipulation prior to future transplantation [94].
Unlike autologous cells, these cells may have an advantage
of being transplanted “oft the shelf.” Concerns of immune-
reactivity (i.e., graft versus host) as well as questions about
perceived efficacy have been raised [26, 98] (Figure 2).

6. Evidence for Mesenchymal Stem
Cell Therapy in Discogenic LBP and
Disc Degeneration

Bench-work research has provided positive evidence for
the potential benefits of MSC transplant into pathologic
discs. Disc microenvironment is important for growth and
viability of native IVD cells as well as injected MSCs. In vitro
studies combining MSCs and IVD cells have demonstrated
bidirectional synergy promoting an anabolic environment.
An in vitro study of combined rat IVD-NP cells and human
synovial MSCs revealed suppression of genes related to
matrix degradative enzymes and inflammatory cytokines
[99]. Lui et al. showed evidence that BM-MSCs could secrete
anti-inflammatory TGF-b and IL-10 [98]. The combination of
MSCs and IVD-NP cells has resulted in IVD-NP cell prolifer-
ation and disc tissue regeneration [100, 101]. Both Richardson
et al. and Strassburg et al. demonstrated the ability of human
BM-MSCs to take on an NP-like phenotype as well as

stimulating IVD-NP cells to produce new nuclear matrix
componentry (cocultured system) [27, 101, 102]. Similarly,
reciprocal effects were found when ADSCs were cocultured
with IVD-NP cells [27, 103]. Though evidence is limited,
notochordal (immature) IVD cells as well as IVD-AF cells
have also been cocultured with MSCs with promising results
[4,104, 105]. Of interest, Gebraad et al. recently demonstrated
that human ADSCs took on an AF phenotype when cultured
in serum-free chondrogenic media [106]. Combination treat-
ments with additional biologics (e.g., growth factors) may
prove valuable for preconditioning, growth, differentiation,
and maintenance of MSCs but require further investigation
[4,27,107].

The application of MSCs in various in vivo animal models
has demonstrated similar anticatabolic and disc-tissue regen-
erative effects. In postnucleotomy rabbit models, injection of
BM-MSCs has demonstrated suppression of nuclear collagen
type 1 formation (causing fibrosis) as well as restoration of
disc height values and MRI signal intensities approaching 81%
and 91%, as compared to sham-treated discs at 67% and 60%,
respectively [108, 109].

Using a canine in vivo model, Hiyama et al. similarly
demonstrated that an injection of BM-MSCs into the nucleus
of enzymatically degenerated (postnucleotomy) discs showed
increased proteoglycan (PG) content consistent with normal
nondegenerated discs at 12 weeks posttreatment; control
postnucleotomy discs showed marked decrease in PG [83,
109]. A more recent study was performed in sheep using
allogeneic Immunoselected-STRO-3+ Mesenchymal Precur-
sor Cells (MPCs) (antibody selected). Adjacent enzymati-
cally degenerated discs were injected with either low dose
MPC or high dose MPCs (within a hyaluronic acid (HA)
carrier). A third degenerated level was injected with HA-
alone (control). Combined histopathology scoring showed
statistically significant higher scores in low dose MPC (at 3
months) and high dose MPC (at 6 months) when compared
to internal and external controls. Although all three injected
discs showed some disc height recovery at 6 months, only
those injected with MPCs (low and high dose) showed
statistically equivalent MRI scores to that of nondegenerated
controls [79].



Since there are clear mechanical differences on the IVD
with a quadrupedal animal, human in vivo studies are needed
to confirm reduction or elimination of discogenic pain. A
pilot investigation by Orozco et al. using in vitro expanded
autologous BM-MSCs has demonstrated early safety and
feasibility in a percutaneous approach. Ten patients with
persistent discogenic LBP, DDD (>50% disc height loss), and
an intact outer annulus (per discography) underwent a single
injection after failing 6 months of conservative treatment.
The authors reported statistically significant improvements in
both pain and disability after 3 months, with results persisting
at one year. Although there was no recovery of disc height
on MRI, water content of the discs significantly improved at
one year [110]. In a recent pilot study by Pettine et al., twenty-
six patients with discogenic LBP (DDD-Pfirrmann grades
IV-VII) received percutaneously injected BMAC (same-day
procedure). In 8 patients, provocative discography was used
to confirm discogenic etiology. Authors found a reduction
in ODI and VAS scores from 56.5 and 79.3 at baseline to
22.8 and 29.2 at 3 months, which continued throughout
12 months. Additionally, eight of twenty patients improved
by one modified Pfirrmann grade (on MRI) at one year.
Interestingly, authors found that patients receiving greater
than 2,000 CFU/mL of MSCs experienced significantly faster
and greater reductions in VAS and ODI scores [2], justifying
the need to concentrate BMA in a same-day procedure. The
authors of this review are currently enrolling 30 patients
for a prospective, blinded, RCT investigating safety and
preliminary efficacy following an injection of autologous
BMAc (same-day procedure). Additionally, a prospective,
multicenter, double-blinded RCT performed in humans is
currently being performed to evaluate safety and preliminary
efficacy of allogeneic MSCs combined with an HA carrier
in 100 patients with clinically determined single level disc
pain and degeneration (Pfirrmann III-VI). Patients were
randomized to receive a single injection of proprietary
allogeneic low or high-dose MSCs + HA, HA-alone, or saline
(control) and are followed for a 2-year period. After 1-year,
69% of the low-dose MSC and 62% of the high-dose MSC
groups have showed greater than 50% reduction in VAS
scores compared to 35% and 31% in HA-alone and saline
groups. A mean reduction in ODI of 43% (high-dose MPC),
35% (low-dose MPC), 30% (HA-only), and 28% (saline) has
been reported [111]. Results of data analysis at 24 months was
recently announced which demonstrates that 46% (after 12
months) and 48% (after 24 months) of the low-dose MPC
group achieved minimal or no residual pain (VAS < or = 20)
compared to 13% of saline-treated patients [3].

These cited studies have added to the growing body
of evidence suggesting that percutaneously injected MSCs
may uniquely provide clinical improvements in discogenic
pain, reduced microenvironment catabolism, and reduced
disc tissue loss. In vitro studies show evidence that MSCs
promote anti-inflammatory and anticatabolic effects within
the disc microenvironment. Furthermore, in vitro and in
vivo studies (mostly in animals) have demonstrated MSC and
IVD cell proliferation, nuclear matrix production, improved
annular integrity, and recovered disc height. In vitro culturing
of human MSCs has shown many of these same effects.
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Though limited clinical studies have been conducted to date,
improvements in pain and function following intradiscal
MSC injection have been demonstrated. Evidence supporting
disc tissue regeneration exists and there is evidence now
demonstrating at least partial recovery of disc tissue in
both animals and humans, [2, 79, 110, 112]. Though limited
clinical studies have been performed to date, improvements
in pain and function following MSC injection have been
demonstrated in addition to safety and feasibility. Further
human studies are required to further support the initially
observed potential benefits.

7. Cell Scaffolds as an Adjunct to
Mesenchymal Stem Cell Therapies

The efficacy of intradiscally injected MSC based treatments
may be potentially enhanced by combination therapies. The
concept of an added cell matrix or scaffold has been intro-
duced and has been shown to aid in cell delivery, orientation,
differentiation, growth, replication, cellular metabolism, and
sustained viability. Naturally occurring biopolymers can be
used alone or in combination as hydrogel scaffolds for in
vitro and in vivo MSC preparation and treatment. Examples
include collagen-type I and solubilized atelocollagen, calcium
alginate, chitosan, KLD-12 peptide, carboxymethyl cellulose,
and collagen-type II. Hyaluronan-based hydrogels have been
frequently used as a scaffold for MSCs with noted success
in rat, sheep, and more recently human models [79, 86, 110,
111]. Another biopolymer, fibrin continues to show genuine
promise as a presealant or scaffold for MSC therapy because
of its sealant properties and anti-inflammatory and promatrix
effects [49, 113]. Each of these biopolymers conveys certain
advantages, but none has proven clearly superior to date.
Numerous synthetic polymers have also been created to
optimize the most desired scaffold characteristics [7, 13, 27].
Given the structural differences found within the nucleus
and annulus, different combinations of biopolymers and
synthetic polymers are currently being considered [13, 114].
These polymers may be permanent; however, most polymeric
scaffolds of interest are either thermoreversible or susceptible
to enzymatic degradation. This may be ideal for allowing
needed space for regenerated tissue growth [7, 13, 27].

8. Safety Concerns with Mesenchymal Stem
Cell Therapies

The clinical application of intradiscally injected MSCs has
raised potential concerns. Chief among these is the potential
for MSC-promoted carcinogenesis. It is well documented
that embryonic stem cells (found earlier in cell lineage) can
promote tumor formation [115]. However, multipotent MSCs
are present at a more committed cell stage and have a more
limited differentiation potential than totipotent embryonic
stem cells. With regards to in vitro culturing, there is some
concern that increased cell passage of MSCs may increase
risk for spontaneous cell mutation. This concern should
not exist with autologous, same-day procedures in which
cells are not altered or cultured but exist as they were in
the body previously. To date, there has been no published
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evidence demonstrating carcinogenesis of multipotent MSCs
using in vivo or in vitro models [94, 115]. Concern for
abnormal tissue formation exists. A study by Vadala et al.
demonstrated ectopic osteophyte tracts in a rabbit model
in which BM-MSCs were found extravasating beyond the
margins of the outer annulus [116]. It has been demonstrated
that added care must be taken when combinations are added
to augment MSC eflicacy. Chen et al. demonstrated evidence
of intradiscal osteogenesis promotion with combined MSC
and PRP injection in an ex vivo porcine model; however, this
too has not been reported in humans [117]. Adding further
complexity, growth factor effects of certain biologics have
been shown to be pleiotropic (producing multiple effects)
at varied concentrations [118]. Though evidence is lacking,
there is potential that promotion of angiogenic factors may
enhance nerve and vessel ingrowth (from peripheral annulus
towards nucleus) [119-121]. Aside from safety concerns, some
question MSC sustainability given the harsh milieu of the
disc. Axial and torsional forces that are hard to mimic in
animal models may hamper MSC efficacy in human discs as
well [107, 122].

9. Conclusion

Percutaneous injection of MSCs into the intervertebral disc
may uniquely fulfill the objectives of treating disc pathology
with clinical improvements in pain and decreased microen-
vironment catabolism. Some evidence suggests that MSCs
may fulfill the final major objective of reversing disc tissue
loss. At this time, MSC-based therapies appear most suited
for the treatment of discogenic pain secondary to IDD and
DDD, serving as an obviation of more invasive surgical inter-
ventions. If successfully accomplished early in the disease
process, this proactive approach may aid in preserving native
spine biomechanics, ideally resulting in less degeneration
of the IVD and surrounding tissues structures and again
serving as an obviation to future surgical interventions. As
the therapy advances, there may be some role for these
therapies in improving the disc microenvironment and struc-
tural integrity in cases of small disc herniations; some have
suggested a similar role in postsurgical discs (i.e., partial
discectomy) [4, 17, 96, 123]. Proper patient selection will be
important as MSC based therapies should not be thought
of as a “cure all” for spine pain. Realistically, patients with
non-IVD pain generators as well as those with advanced disc
degeneration or severe annular compromise may not be ideal
candidates for this therapy.

A continued collaboration between researchers and
physicians will be important in optimizing the therapeutic
potential of MSC-based therapies as well as the refinement
of optimal MSC cell type, concentration, and supportive
componentry. As the field advances, factors unique to both
autologous and allogeneic cell preparations should be fur-
ther studied and considered with each having advantages
and disadvantages. Ideally, in vitro cell culturing should
be compared to same-day therapies in terms of safety and
efficacy. Given the harsh environment of the disc (acidic pH,
low oxygen tension, and paucity of nutrients) development
of future therapies may include preconditioning cells prior

to transplant (e.g., genetic manipulation and cell culturing
in harsh conditions) to enhance survivability. Additionally,
studies are needed to determine an optimal time course
for applying MSC treatments. Traditionally, symptomatic
patients have been encouraged to pursue conservative ther-
apies, reserving interventional injections for nonresponders
and spine surgery for severe, refractory axial pain. This
dogma has existed in large part because previous interven-
tional and surgical options have inconsistently provided pain
relief and have not offered the same restorative potential that
may be present with MSC-based treatments. If demonstrated
consistently safe and effective, MSC-based treatment may
lead to a paradigm shift towards more aggressive, nonsurgical
care for patients with discogenic LBP (IDD/DDD) and other
forms of compromised disc integrity.
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