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Abstract

Terrestrial carbon exchange is a key process of the global carbon cycle consisting of a delicate balance between 
photosynthetic carbon uptake and respiratory release. We have, however, a limited understanding how long-term 
decreases in precipitation induced by climate change affect the boundaries and mechanisms of photosynthesis and 
respiration. We examined the seasonality of photosynthetic and respiratory traits and evaluated the adaptive mecha-
nism of the foliar carbon balance of Quercus ilex L. experiencing a long-term rainfall-exclusion experiment. Day res-
piration (Rd) but not night respiration (Rn) was generally higher in the drought treatment leading to an increased Rd/Rn 
ratio. The limitation of mesophyll conductance (gm) on photosynthesis was generally stronger than stomatal limitation 
(gs) in the drought treatment, reflected in a lower gm/gs ratio. The peak photosynthetic activity in the drought treat-
ment occurred in an atypical favourable summer in parallel with lower Rd/Rn and higher gm/gs ratios. The plant carbon 
balance was thus strongly improved through: (i) higher photosynthetic rates induced by gm; and (ii) decreased carbon 
losses mediated by Rd. Interestingly, photosynthetic potentials (Vc,max, Jmax, and TPU) were not affected by the drought 
treatment, suggesting a dampening effect on the biochemical level in the long term. In summary, the trees experienc-
ing a 14-year-long drought treatment adapted through higher plasticity in photosynthetic and respiratory traits, so 
that eventually the atypical favourable growth period was exploited more efficiently.
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Introduction

Warmer and drier conditions are expected globally under 
current climate change scenarios and particularly in the 
Mediterranean region (Somot et  al., 2008; Friend, 2010; 
IPCC, 2013). Seasonal reoccurring drought is the main 
natural environmental factor in the Mediterranean region 

limiting plant growth and yield (Specht, 1969; Di Castri, 
1973). Projected water shortages are thus likely to inten-
sify the limitations on plant productivity and forest growth. 
Several studies have already reported drought-induced forest 
impacts and diebacks in the Mediterranean region (Peñuelas 
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et  al., 2001; Martínez-Vilalta and Piñol, 2002; Raftoyannis 
et al., 2008; Allen et al., 2010; Carnicer et al., 2011; Matusick 
et  al., 2013), as well as shifts in vegetation composition 
(Jump and Peñuelas, 2005; Anderegg et al., 2013). Seasonal 
summer drought limits plant growth and productivity most 
strongly through reductions in the plant carbon budget, 
which depends on the balance between photosynthesis and 
respiration (Flexas et  al., 2006). Winter has been somehow 
overlooked, despite the importance of potential recovery 
and growth periods for the annual carbon budget, especially 
for evergreen vegetation (Sperlich et  al., 2014, 2015). The 
Mediterranean region is characterized by a high variability 
in temperature and precipitation regimes, especially in moun-
tainous areas such as the Prades Mountains in north-eastern 
Spain (Barbeta et  al., 2013). Climate extremes combined 
with high interannual variability complicate the scaling of 
carbon dynamics from one year to another (Reynolds et al., 
1996; Morales et al., 2005; Gulías et al., 2009). In fact, the 
modelling performance in Mediterranean-type ecosystems is 
particularly poor (Morales et al., 2005; Vargas et al., 2013) 
owing to under-represented soil–water patterns and our lim-
ited understanding of the effects of water stress on both car-
bon uptake and release (Hickler et al., 2009; Niinemets and 
Keenan, 2014).

The non-photorespiratory carbon release in leaves is called 
mitochondrial respiration—a central metabolic process that 
produces energy (ATP, NADPH) and carbon skeletons for 
cellular maintenance and growth. It also contributes to sig-
nificant carbon losses—especially under stress conditions—
altering the net carbon gain (van Oijen et al., 2010). Although 
the drought responses of Mediterranean vegetation have 
been investigated extensively, most studies concern photo-
synthetic responses (reviewed by Flexas et al., 2014), whereas 
respiratory responses in leaves have largely been neglected 
(Niinemets, 2014). Also, it is not clear how seasonality and 
other abiotic stressors affect the balance of night respiration 
(Rn) and day respiration (Rd) in the leaves. This is partly owing 
to measurement difficulties; Rn can easily be measured by 
darkening the leaf, but Rd is harder to obtain and is tradition-
ally estimated from carbon-response curves with the Laisk 
method, from light-response curves with the Kok method, or 
with an amended version of the Kok method with chlorophyll 
fluorescence developed by Yin et al. (2009) (reviewed by Yin 
et al., 2011). Measurement constraints and lacking research 
priorities can account for the dearth of data on respiratory 
responses to abiotic stress, particularly drought (Atkin and 
Macherel, 2009; Heskel et al., 2014). Wright et al. (2006) pro-
vided evidence that irradiance, temperature, and precipitation 
affect respiration in a wide range of woody species around 
the world; Mediterranean species, however, were not covered. 
Catoni et al. (2013) recently provided evidence that tempera-
ture, and monthly rainfall to a lesser extent, could explain 
the seasonal variation of Rd in several Mediterranean maquis 
species. Galmés et al. (2007) noted that the number of studies 
on plant respiration responses to drought is generally limited, 
but particularly so for Mediterranean species. This is surpris-
ing considering the obvious importance of water stress in the 
Mediterranean region. Seasonal acclimation of respiration 

is believed to be more important in sclerophyllic perennial 
leaves (Galmés et  al., 2007; Zaragoza-Castells et  al., 2007, 
2008) than in plants with short-lived leaves (review by Atkin 
and Macherel, 2009). A better characterization of the respira-
tory responses to drought relative to carbon gain is vital for 
elucidating the overall effects on carbon exchange dynamics 
in water-limited environments. Rainfall-exclusion experi-
ments in natural ecosystems are laborious and expensive but 
are highly valuable to simulate more realistically long-term 
drought. Some studies have addressed the photosynthetic 
limitations under long-term drought in natural ecosystems 
comprising stomatal, mesophyll, and biochemical compo-
nents (Limousin et al., 2010; Martin-StPaul et al., 2012). To 
the best of our knowledge, the effects of long-term experi-
mental drought on photosynthesis in parallel with night and 
day respiration has not been investigated so far on mature 
species in natural ecosystems.

Quercus ilex L.  is one of the ‘flagship’ species for the 
Mediterranean Basin because it is a typical evergreen scle-
rophyllic tree extending over a large geographical range and 
forms the terminal point of secondary succession over vast 
areas in the Iberian Peninsula, including low and higher alti-
tudes, and near-coastal sites with an oceanic climate, as well as 
inland sites with a semi-arid climate (Lookingbill and Zavala, 
2000; Niinemets, 2015). However, reduced stem growth and 
higher mortality rates found for Q. ilex in response to drought 
(Barbeta et al., 2013) could decrease the distribution under 
predicted future drier conditions. Hence, Q. ilex is the ideal 
candidate to evaluate the seasonal acclimation of the foliar 
carbon balance in the long-term drought experiment of 
Prades (north-eastern Spain) where partial rainfall exclusion 
has been applied for the last 14 years, reducing soil moisture 
by an average of 13% (Ogaya et al., 2014; Barbeta et al., 2015).

We investigated the variations of foliar respiratory and 
photosynthetic traits of Q. ilex affected by seasonal changes 
in growth temperature and precipitation from winter to 
spring and summer. Furthermore, we studied the impact of 
long-term experimental drought on key limitations of pho-
tosynthesis comprising stomatal, mesophyllic, and biochemi-
cal components, as well as mitochondrial respiration during 
the day and night. Based on these parameters, we evaluated 
the response pattern of the foliar intrinsic water- and carbon-
use efficiency (WUEi and CUEi, respectively) with respect to 
the simulated drought. Our aim was to improve our under-
standing of the boundaries and mechanisms of foliar respi-
ration and photosynthesis in terms of seasonal acclimation 
and adaptation to drought. We provide here a set of needed 
parameters that potentially help to improve model simulation 
of ecosystem carbon fluxes.

Material and methods

Experimental site
The experimental site was situated in the Prades Mountains in 
southern Catalonia (north-eastern Spain; 41°21′N, 1°2′E) at 950 m 
above sea level on a 25% south-facing slope. Temperature, photosyn-
thetically active radiation, air humidity, and precipitation have been 
monitored continuously with a meteorological station installed at 
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the site. The climate is Mediterranean, with a mean annual rainfall 
of 609 mm and a mean annual temperature of 12.2 °C (climate data 
from the meteorological station for 1999–2012). The soil is a Dystric 
Cambisol over Paleozoic schist with a depth of 35–90 cm. The for-
est is characterized by a dense, multi-stemmed crown dominated by 
Q. ilex and Phillyrea latifolia L. with a maximum height of 6–10 
m. The understorey is composed of Arbutus unedo L., Erica arbo-
rea L., Juniperus oxycedrus L., and Cistus albidus L. A long-term 
rainfall-exclusion experiment has been established and maintained 
in this forest since 1999 to simulate in situ projected decreases in pre-
cipitation in the Mediterranean region (Peñuelas et al., 2007). Four 
control and four treatment plots of 15 × 10 m were installed at the 
same altitude along the mountain slope. In the treatment plots, rain 
was partially excluded by PVC strips suspended 0.5–0.8 m above the 
soil (covering 30% of the soil surface). A ditch of 0.8 m in depth 
around the plots intercepted the runoff water from above the plots 
and conducted the water around to the bottom. The control plots 
received no treatment.

Sampling method
We conducted three seasonal field campaigns: winter (5–11 January 
2013), spring (30 April–4 May 2013) and summer (24–29 July 2013) 
(Fig. 1). Eight twigs for each drought and control plot (two replicates 
for each plot) were cut with a pruning pull from the sun-exposed 
crowns of Q. ilex trees. We recut the twigs under water in the field, 
wrapped them in plastic bags to minimize transpiration, and trans-
ported them in water buckets to a nearby laboratory. The twigs 
were pre-conditioned overnight in the laboratory at room tempera-
ture (22–26 °C), freshly recut in the morning, and then kept in dim 
light [50–100 photosynthetic photon-flux density (PPFD) in µmol 
photons m−2 s−1]. Once the leaves showed open stomata [stomatal 
limitation (gs)>0.03 mol H2O m−2 s−1] and a stable stomatal internal 
CO2 concentration (Ci, µmol CO2 mol air−1), we started the response 
curves. In a few cases, the twigs were kept for one or two addi-
tional nights until gas exchange was sufficiently stable to conduct 
a light-response curve. We have adopted this method to overcome 
limitations that we often faced in the field such as: (i) accessibility 
of the branches of mature trees (canopy height between 6 and 10 
m); (ii) limited ability of the instruments to reach the standard leaf 
temperature (Tleaf) of 25 °C; and (iii) unpredictable plant responses 

such as closed stomata or patchy stomatal conductance (Mott and 
Buckley, 1998, 2000). With the pre-conditioned twigs, in contrast, 
we reached stable gas-exchange values that are required for conduct-
ing a noise-free light- or CO2-response curve and to estimate reliably 
the photosynthetic potentials (see Supplementary Fig. S1 at JXB 
online). The leaves remained fresh and functional for several days 
controlled by stomatal conductance and fluorescent signals. The cut 
twigs showed stable values of night respiration for several days (see 
Supplementary Fig. S2 at JXB online). This method works well on 
Mediterranean oak species including Q. ilex as shown in other stud-
ies (Haldimann and Feller, 2004; Niinemets et al., 2005; Sperlich et 
al., 2015). This method provided us with the opportunity to look 
at the potential physiological properties under standardized condi-
tions that are representative for each season of a control group and 
a drought treatment and that are independent of short-term mete-
orological variability (e.g. cloud cover, extreme temperatures, chilly 
periods, rain events) and unpredictable plant responses.

Analyses of gas exchange and chlorophyll fluorescence
Gas exchange and chlorophyll fluorescence were measured with a 
Li-Cor LI-6400XT Portable Photosynthesis System equipped with 
a LI-6400-40 Leaf Chamber Fluorometer (Li-Cor, Lincoln, USA). 
Response curves of net assimilation versus PPFD were recorded 
in parallel with chlorophyll fluorescence measurements on mature, 
fully expanded leaves. In the summer campaign, we additionally 
conducted response curves of net assimilation versus CO2. Some 
of the Q. ilex leaves were too small to fill the leaf cuvette (2 cm2), 
so the measured parameters were adjusted after the measurements. 
The leaves were prepared and acclimated prior to recording the 
response curves as described by Sperlich et al. (2014). First, we 
measured the maximum quantum yield of photosystem II (PSII; 
unitless) [Fv/Fm=(Fm–Fo)/Fm] of a dark-adapted leaf (>30 min) at 
ambient CO2 (Ca of 400 µmol CO2 m

−2 s−1) and Tleaf of  25 °C. Fo 
is the minimal fluorescence measured under darkness, and Fm is 
the maximal fluorescence measured after a saturating light pulse. 
Fv/Fm describes the fraction of absorbed photons used in photo-
chemistry under dark conditions and serves as the primary stress 
indicator of the photosystems. Typical values range between 0.74 
and 0.85. Ratios of <0.80 are indicative of induced photoprotec-
tion (sustained energy dissipation), and ratios <0.74 are indicative 

Fig. 1. Environmental variables for the days of the year (DOY) from January to August 2013: rainfall (a), atmospheric vapour-pressure deficit (VPD) (b), 
and maximum and minimum temperatures (°C) (c) on the primary y-axes (red circles) and radiation (yellow crosses) on the secondary y-axes. The field 
campaigns are indicated.

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv492/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv492/-/DC1
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of chronic photoinhibition (Björkman and Demmig, 1987; Maxwell 
and Johnson, 2000; Verhoeven, 2014). We then acclimated the leaf 
to saturating light conditions (PPFD of 1200 µmol photons m−2 s−1) 
and simultaneously recorded gas exchange and chlorophyll fluores-
cence parameters at ambient CO2 and Tleaf as above: net assimilation 
rate (Anet, µmol CO2 m

−2 s−1), gs, Ci, non-photochemical quenching 
(unitless) [NPQ=(Fm – Fm’)/Fm’, where Fm’ is the maximal fluores-
cence of a light-adapted leaf], and the effective quantum yield of 
PSII (unitless) [ΦPSII=(Fm’ – Fs)/Fm’, where Fs is the steady-state fluo-
rescence of a light-adapted leaf].

We used the relationship of Anet versus gs to estimate the foliar 
water-use efficiency (WUEi) which is defined as the amount of car-
bon gained per unit water used (Flexas et al., 2013).The electron-
transport rate based on the effective quantum yield of PSII (JCF in 
µmol electron m−2 s−1) was calculated as

 JCF = ε Φ α* PSII* *PPFDL  (1)

where ε is a scaling factor accounting for the partitioning of inter-
cepted light between PSI and PSII. We assumed that light was equally 
distributed between the two photosystems (ε=0.5) (Bernacchi et al., 
2002; Niinemets et al., 2005). The foliar absorbance (αL, unitless) 
was 0.932 for Q. ilex (Sperlich et al., 2014). JCF at ambient CO2 and 
saturating light was termed Jamb.

Light experiments
Light-response curves (A/PPFD) were generated by automatically 
applying changes in the photosynthetically active radiation with the 
LI-6400XT light source at a leaf chamber internal concentration 
(Ca) of 400 µmol CO2 mol air−1. To obtain precise responses at the 
low range of the light gradient for estimating the daily mitochon-
drial respiration by the Kok effect (Kok, 1948), we used the follow-
ing PPFD sequence (in µmol photons m−2 s−1): 2500→2000→150
0→1000→800→600→500→400→300→200→150→125→100→75
→50→40→30→20→10→5→0. The minimum and maximum times 
between each light level for the generation of the A/PPFD curves 
were set to 1 and 2 min, respectively. The rapid changes in light levels 
prevented the correct adjustment of Tleaf. We fixed the Peltier-block 
temperature (Tblock) in the leaf cuvette, so that Tleaf was 25 °C at the 
beginning of the A/PPFD curve. In the lower light levels where day 
respiration was estimated, Tleaf had dropped on average by 0.8 °C 
(standard error ±0.0004). Day respiration (Rd in µmol CO2 m

−2 s−1) 
was estimated from the light-response curves with the method pro-
posed by Yin et al. (2009) combining measurements of gas exchange 
and chlorophyll fluorescence. This method amended the Kok 
method (Kok, 1948) by substituting the A/PPFD relationship with 
A/(PPFD×ΦPSII/4) (see Yin et al., 2009, for details on the protocol). 
We estimated night respiration (Rn in µmol CO2 m

−2 s−1) after dark-
ening the leaf for 20–30 min, ensuring that all reaction centres had 
been closed (controlled with Fo). Rd and Rn were then normalized to 
unity at 25 °C with an Arrhenius function [parameter=exp(c – ΔHa/
RTk)]. Tk is the leaf temperature (in Kelvin) and R is the molar gas 
constant (0.008314 kJ K−1 mol−1). The values of the scaling constant 
c (18.72, dimensionless) and energy of activation ΔHa (46.39 kJ 
mol−1) for leaf respiration were taken from Bernacchi et al. (2001).

Thereafter, we applied a correction of Rd to account for the 
increase of Ci with decreases of PPFD described by Kirschbaum 
and Farquhar (1987). In this method, the intercept of plots of pho-
tosynthetic electron transport to PPFD is minimized through the 
adjustment of Rd via iteration (see Weerasinghe et  al., 2014, for 
details on the protocol).

With Rd from the light-response curves, we calculated the intrinsic 
carbon-use efficiency (CUEi) as proportion of carbon assimilated per 
carbon respired (Gifford, 2003), which served as a rough indicator for 
the foliar carbon balance (Pattison et al., 1998; Galmés et al., 2007):
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CO2 experiments
The Ca concentrations used to generate the CO2-response 
curves were 400→300→200→150→100→50→400→400→600→ 
800→1200→2000 µmol CO2 mol air−1. Tleaf was set to 25 °C. The sat-
urating PPFD used was 1200 µmol photons m−2 s−1 based on light-
response curves conducted prior to the measurements campaigns. 
The results of all light-response curves after the measurement cam-
paign, however, indicated a saturating PPFD of 1500 µmol photons 
m−2 s−1. The minimum and maximum times for stabilizing Anet, gs, 
and Ci for each log were set to 4 and 6 min, respectively. Diffusion 
leakage was corrected as described by Flexas et al. (2007).

Estimation of mesophyll conductance
We estimated gm (mol m−2 s−1 bar−1) using the variable-J method of 
Harley et al. (1992):
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where Γ* is the CO2 concentration at which the photorespiratory 
efflux of CO2 equals the rate of photosynthetic CO2 (37.43 ppm at 
25 °C). Γ* and its temperature response were taken from Bernacchi 
et al. (2002). The chloroplastic CO2 concentration (Cc in µmol CO2 
mol air−1) was determined as:
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Photosynthesis model
The photosynthesis model of Farquhar et al. (1980) considers pho-
tosynthesis as the minimum of the potential rates of Rubisco activ-
ity (Ac) and ribulose-1,5-bisphosphate (RuBP) regeneration (Aj). 
A third limitation (Ap) was implemented that considers the limita-
tion by triose-phosphate use at high CO2 concentrations when the 
CO2 response shows a plateau or decrease (Sharkey, 1985). The 
model was further modified by replacing Ci with Cc for the chloro-
plast where the actual carboxylation takes place (reviewed by Flexas 
et al., 2008). As outlined above, we used the variable-J method for 
the Cc calculation to create A/Cc curves. The modelled assimilation 
rate Amod was then calculated by the minimum of these three poten-
tial rates from the A/Cc curves:
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where Vc,max (µmol CO2 m
−2 s−1) is the maximum rate of Rubisco 

carboxylation, Kc is the Michaelis–Menten constant of Rubisco 
for CO2, O is the partial pressure of O2 at Rubisco, and Ko is 
the Michaelis–Menten constant of Rubisco for O2, taken from 
Bernacchi et  al. (2002). The equation representing photosynthesis 
limited by RuBP regeneration is:
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where J1200 (in µmol electron m−2 s−1) is the rate of electron trans-
port at a PPFD of 1200 µmol photons m−2 s−1 and saturating CO2. 
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We assumed that J1200 became Jmax under light and CO2 saturation 
when the maximum possible rate of electron transport was theoreti-
cally achieved, although we may have underestimated the true Jmax 
(Buckley and Diaz-Espejo, 2015). The limitation of triose-phos-
phate use was estimated as:

 
A

TPU C
C

Rp
c

c TPU
d=

− +( ) −
3
1 3

*
* *α Γ

 (8)

where TPU is the rate of triose-phosphate use at saturating CO2 
concentrations, and αTPU is the proportion of glycerate not returned 
to the chloroplasts. Eqn 8 is from von Caemmerer (2000) after cor-
recting a typographical error in the expression 3αTPU/2 to 3αTPU, as 
described by Gu et al. (2010). This equation fits the A/Cc curve pla-
teau at high CO2 when a further increase in Cc does not produce any 
increase of Anet anymore or, in some cases, even produces a decline 
of Anet.

In addition to the A/Cc curves, we replaced Cc with Ci in Eqns 
6–8 and thus applied the above photosynthesis model to the tradi-
tional A/Ci curve. We used an adequate set of kinetic constants from 
Bernacchi et al. (2001). We considered Vc,max, J1200, and TPU from 
the A/Cc curve as the ‘true’ biochemical potential to drive photosyn-
thesis whereas the parameters from the A/Ci curve were the ‘appar-
ent’ photosynthetic potential.

Statistical analyses
We estimated the true and apparent values of Vc,max, J1200, and TPU 
from Eqns 6–8 with the SOLVER Excel tool. SOLVER iteratively 
changes the parameters to minimize the sum of squares of the devia-
tion of observed Anet versus modelled Amod. We then performed fur-
ther statistical analyses with R version 3.0.2 (http://www.r-project.
org/). Differences in the parameters between control and drought 
plots were determined with Student’s t-test (P≤0.05). The normality 
of the data was tested with the Shapiro–Wilk test, and the data was 
normalized if  not normally distributed. One-factorial ANOVA with 
season as the main factor was tested for seasonal differences in the 
parameters. Significant differences were determined at P≤0.05 with 
Tukey’s honestly significant difference test. Linear regression analy-
ses were conducted to study the relationships among various leaf 
traits such as Anet/gs, Anet/gm, J1200/Vc,max, gm/gs, and Rn/Rd. We tested 
for differences in regression slopes and intercepts with analyses of 
co-variance (ANCOVAs).

Results

Environmental conditions over the sampling period

Frost events were frequent in winter and snowfall was also 
observed. The maximum temperatures during the day were 
on an average 4.9 °C (Table 1). The spring was humid with a 
precipitation comparable to that in winter (246 and 269 mm, 
respectively) and was relatively cold (average of 12 °C) with 

occasional night frosts (Fig. 1). Spring together with winter 
accounted for nearly 80% of the annual average precipitation. 
The summer, in contrast, was dry and warm (total precipi-
tation of 21 mm and average temperature of 20.3 °C), with 
a vapour- pressure deficit (VPD) nearly twice as high as in 
spring (0.83 kPa) (Table  1). The partial rainfall exclusion 
reduced the soil water content (SWC) by a total of 13% from 
the beginning of the experiment in 1999 until the end of our 
measurement campaign in 2013. For the period of our meas-
urement campaign, the SWC was on average 14% lower in 
the partial rainfall-exclusion plots compared with the control 
plots (Table  1). This difference was highest in spring, with 
a 24% lower SWC in the drought plots compared with the 
control plots.

Seasonal changes in photosynthetic parameters

We analysed the seasonality of the photosynthetic parameters 
using the full dataset independent of treatment. Winter had a 
strong effect on several parameters with lower average values 
than in spring and summer, except for Rn and Ci (Table 2). 
Anet, gs, gm, and Fv/Fm were significantly (P<0.05) and Rd, Cc, 
CUEi were marginally significantly (P<0.10) lower in winter 
than in either spring or summer (Figs 2 and 3). In summer, we 
found the highest mean values of Anet, gs, gm, and Cc, which 
were significantly different from those in spring and winter 
(Fig.  3). Fv/Fm was also highest in summer, demonstrating 
that the photosynthetic systems in spring had not yet fully 
recovered from the low winter temperatures but operated at 
peak efficiency in summer (Fig. 4b). NPQ is an indicator for 
photoinhibitory stress and dissipation of excess energy and 
was lowest in spring (significantly different from both winter 
and summer) (Fig. 4a). Neither ΦCO2 nor ΦPSII differed signif-
icantly between the seasons (Table 2 and Supplementary Fig. 
S3 at JXB online). The saturating PPFDs for Anet and Jcf were 
1484 and 1552, respectively, and did not change seasonally.

Several relationships were analysed with ANCOVAs to test 
whether seasonal changes in environmental conditions pro-
duced significant differences in slopes (Table 3). We analysed 
the relationship of Anet/gs as an indicator for WUEi. The slope 
of this relationship for the control group was significantly gen-
tler in winter compared with spring and summer, indicating 
a lower WUEi. For the relationship of Anet/gm, we analysed 
the effect of the mesophyll internal CO2 diffusion on net car-
bon assimilation. This relationship had a significantly steeper 
slope in winter in comparison with summer in the drought 

Table 1. Dates and days of the year (DOY) for each season in 2013 with mean temperature (T), total precipitation (Prec.), mean vapour-
pressure deficit (VPD), mean radiation, and the percentage of the difference in the soil water content between the control and drought 
plots (ΔSWC)

Season Date DOY T (°C) Prec. (mm) VPD (kPa) Radiation  
(W m−2)

ΔSWC (%)

Winter 1 January–21 March 2013 1–79 4.9 269 0.20 9.1 5.3
Spring 22 March–21 June 2013 79–171 12.0 246 0.45 21.3 23.9
Summer 22 June–31 August 2013 172–242 20.3 21.8 0.83 25.0 7.7
Total 1 January–31 August 13 1–242 12.1 537 048 18.3 13.5

http://www.r-project.org/
http://www.r-project.org/
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv492/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv492/-/DC1
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group. The relationship of gm/gs unveils the relative contribu-
tion of stomatal and mesophyll diffusion limitation on the 
net carbon assimilation. The relationship of gm/gs was signifi-
cantly steeper in the control plot in spring in comparison with 
summer. We analysed the relative importance of day and night 
mitochondrial respiration with the relationship of Rd/Rn. The 
slope was significantly steeper in winter compared with spring 
and summer in both the control and drought plots.

Effect of experimental drought

Rd/Rn for all seasons combined was significantly higher in the 
drought treatment (0.79 ± 0.06) compared with the control 

plots (0.71 ± 0.03). No other general trends were detected. In 
the respective seasons, however, we found significant effects 
of the drought treatment, with several parameters showing 
higher average values compared with the control group (Figs 
2 and 3): Anet, gs, and gm were significantly higher, and CUEi 
and Cc were marginal significantly higher in summer, and Rd 
was marginally significantly higher in spring. We conducted 
carbon-response curves in summer only (see Material and 
methods). J1200, Vc,max, and TPU were thus only available for 
the summer campaign. The drought treatment had no signifi-
cant effect on these photosynthetic potentials when estimated 
from an A/Cc curve (Fig. 5). Additionally, we estimated the 
apparent photosynthetic potential from A/Ci curves. The 

Fig. 2. Line graphs depicting seasonal changes of night respiration (Rn) (a), day respiration (Rd) (b), net assimilation rate (Anet) (c), and (d) carbon-use 
efficiency (CUEi) (d) for Q. ilex. Seasonal campaigns were conducted in winter, spring, and summer 2013. Asterisks and asterisks in brackets indicate 
significant (P<0.05) and marginally significant (P<0.1) differences between the control and drought plots for each season, respectively. Different lower-
case letters indicate differences between seasons. Vertical bars indicate standard errors of the mean (n=59).

Table 2. Means (±standard errors) of a set of photosynthetic parameters and foliar traits for Q. ilex for the control group and the 
drought treatment in three seasonal campaigns (n=5–9)

Variable Control Drought

Winter Spring Summer Winter Spring Summer

Rn 1.91 ± 0.03 1.53 ± 0.28 1.68 ± 0.17 2.12 ± 0.06 1.79 ± 0.13 1.65 ± 0.14
Rd 1.22 ± 0.17 1.04 ± 0.19 1.21 ± 0.11 1.62 ± 0.22 1.58 ± 0.16 1.19 ± 0.11
Rd/Rn 0.64 ± 0.09 0.69 ± 0.03 0.74 ± 0.05 0.77 ± 0.11 0.88 ± 0.03 0.73 ± 0.06
Anet 6.76 ± 1.2 9.43 ± 1.0 10.71 ± 1.0 5.52 ± 2.0 10.17 ± 0.7 13.66 ± 0.9
gs 0.077 ± 0.032 0.090 ± 0.016 0.116 ± 0.012 0.054 ± 0.021 0.113 ± 0.009 0.161 ± 0.013
gm 0.054 ± 0.009 0.085 ± 0.014 0.097 ± 0.011 0.047 ± 0.017 0.074 ± 0.017 0.137 ± 0.014
Ci 206 ± 30 198 ± 21 234 ± 8 210 ± 20 227 ± 8 243 ± 6
Cc 74 ± 9 77 ± 3 119 ± 7 61 ± 10 81 ± 5 139 ± 23
NPQ 2.70 ± 0.29 0.82 ± 0.02 2.97 ± 0.26 2.61 ± 0.14 0.80 ± 0.02 2.74 ± 0.31
Fv/Fm 0.80 ± 0.011 0.81 ± 0.007 0.83 ± 0.005 0.78 ± 0.022 0.80 ± 0.007 0.82 ± 0.005

ΦCO2 0.0074 ± 0.0020 0.0092 ± 0.0009 0.0102 ± 0.0014 0.0054 ± 0.0014 0.0097 ± 0.0008 0.0119 ± 0.0018

ΦPS2 0.215 ± 0.045 0.250 ± 0.024 0.206 ± 0.029 0.220 ± 0.009 0.273 ± 0.021 0.218 ± 0.030

Vc,max 107 ± 9 120 ± 11
Jmax 132 ± 11 148 ± 12
TPU 9.4 ± 1.2 7.6 ± 1.3
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drought treatment had a marginally significant effect on the 
apparent J1200 and apparent Vc,max with lower values in the 
control plot, but no effect on the apparent TPU (Fig. 5). A 
comparison of the photosynthetic potential from A/Ci and 
A/Cc curves indicated that the foliar internal diffusion limita-
tion imposed by gm accounted on average for a 54% higher 
Vc,max and a 30% higher J1200 and a 29% higher TPU  with 
regard to the apparent photosynthetic potential.

The ANCOVAs in the respective seasons identified sig-
nificant differences in slopes as a result of the experimental 
drought. The slope of Anet/gs was significantly steeper in the 
control compared with the treatment group in the winter cam-
paign, indicating a higher WUEi in the control group (Fig. 6). 
The slope of Anet/gm was significantly steeper in the control 
group compared with the treatment group in the summer 
campaign (Fig. 6). The overall slope of gm/gs was significantly 
steeper in the control group compared with the treatment 
group when all seasons were combined (Fig. 6). The slope of 

Rd/Rn was significantly gentler in the control group compared 
with the treatment group in the spring campaign and when all 
seasons were combined. Neither season nor treatment signifi-
cantly affected the slopes of Anet/Rd, Anet/Rn, Jamb/ Anet, and 
Cc/Ci (Supplementary Tables S1–S4 at JXB online).

Discussion

The scaling of carbon dynamics from one year to another is 
particularly challenging in Mediterranean environments due 
to climate extremes combined with a high interannual varia-
bility (Reynolds et al., 1996; Morales et al., 2005; Gulías et al., 
2009). We aimed to investigate the effect of seasonal changes in 
temperature and precipitation from winter to spring and sum-
mer on the photosynthetic and respiratory traits of a widely 
abundant Mediterranean tree species. However, abiotic stress 
under field conditions often hampers gas-exchange meas-
urements due to deviations from the standard temperature 

Fig. 3. Line graphs depicting seasonal changes of stomatal conductance (gs) (a), mesophyll conductance (gm) (b), stomatal internal CO2 concentration 
(Ci) (c), and chloroplastic CO2 concentration (Cc) (d) in sunlit leaves of Q. ilex. Seasonal campaigns were conducted in winter, spring, and summer 2013. 
Asterisks and asterisks in brackets indicate significant (P<0.05) and marginally significant (P<0.1) differences between the control and drought plots for 
each season, respectively. Different lower-case letters indicate differences between seasons. Vertical bars indicate standard errors of the means (n=59).

Fig. 4. Line graphs depicting seasonal changes of non-photochemical quenching (NPQ) (a) and maximum quantum efficiency of PSII (Fv/Fm) (b) for 
Q. ilex. Seasonal campaigns were conducted in winter, spring, and summer 2013. Different lower-case letters indicate differences between seasons. 
Vertical bars indicate standard errors of the means (n=59).

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv492/-/DC1
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(25 °C) or unpredictable plant responses, e.g. patchy stoma-
tal conductance (Mott and Buckley, 1998, 2000), making it 
impossible to conduct response curves for the estimation of 
photosynthetic and respiratory parameters. Our data was 
thus obtained on cut twigs under standardized conditions in 

order to provide insights into the photosynthetic and respira-
tory potential independently of meteorological variability in 
the field. The cutting-twig method allowed us to analyse the 
long-term acclimation to the environmental conditions from 
which the twigs were derived and has been applied by other 
experts in the field (e.g. Epron and Dreyer, 1992; Niinemets 
et al., 1999, 2005; Laisk et al., 2002; Haldimann and Feller, 
2004; Heskel et  al., 2014; Dusenge et  al., 2015). Our study 
thus provides a mechanistic description of seasonal changes 
in photosynthetic and respiratory processes under long-term 
drought that contributes to improve our understanding of 
the impacts of future climate change in Mediterranean-type 
ecosystems.

Effect of seasonality on photosynthetic and 
respiratory traits

We found that cold winter temperatures had a stronger neg-
ative impact on the leaf physiology of Q.  ilex than summer 
drought. The standardized Anet under controlled conditions 
(see Material and methods) was approximately half the rate 
in winter compared with the peak found in summer, yet rela-
tively high average winter values were reached (6.5 ± 1.3) that 
were comparable to those reported in other studies (Gratani, 
1996; Ogaya and Peñuelas, 2003). Both gm and gs reduced the 
CO2 concentration in the chloroplasts in winter compared with 
spring and summer. In winter, however, gm limited photosyn-
thesis relatively more than gs. High water availability and low 
VPDs make the reduction of transpiratory water loss through 
stomatal closure less urgent in the winter period. There is some 
evidence that gm acts as a stronger regulator for photosynthe-
sis in winter (Sperlich et al., 2014), although very few studies 
have examined the behaviour of gm under natural winter con-
ditions. Low temperatures in winter hamper photosynthetic 
metabolism and enzymatic activities (e.g. Corcuera et al., 2004; 
Aranda et  al., 2005), which may account for a concurrent 
downregulation of photosynthesis through gm, as our results 
indicated. This was paralleled by a drastic decrease in the foliar 
carbon-use efficiency. In winter, chilly or freezing temperatures 
often coincide with clear skies and relatively high solar irradi-
ances. The imbalance created between light energy absorbed in 
photochemistry and light energy used in metabolism increases 
the susceptibility to photoinhibitory stress (Demmig-Adams 
and Adams, 1992). This imbalance is particularly problematic 

Table 3. Regression equations and coefficients of determination 
(R2) for Anet/gs, Anet/gm, gm/gs, and Rd/Rn for Q. ilex in three 
sampling campaigns in the control and drought plots

P values indicate the significance of the differences between the 
slopes for the control and drought plots. Equations for non-significant 
relationships are not displayed (n=5–9).

Variable Campaign Plot Equation R2 P

Anet/gs Total Control y=60.7x+3.68 0.72 0.417
Drought y=74.7x+1.92 0.88

Winter 2013 Control y=36.1x+3.98 0.86 0.009
Drought y=94.9x+0.39 0.92

Spring 2013 Control y=104.1x+1.51 0.98 0.380
Drought y=74.0x+2.71 0.68

Summer 2013 Control y=79.1x+1.49 0.89 0.222
Drought y=53.9x+5.01 0.64

Anet/gm Total Control y=79.3x+2.61 0.77 0.513
Drought y=70.2x+4.00 0.75

Winter 2013 Control 0.279
Drought y=115.1x+0.08 0.62

Spring 2013 Control y=88.5x+1.01 0.92 0.521
Drought y=63.8x+5.17 0.80

Summer 2013 Control y=88.8x+2.07 0.85 0.040
Drought y=30.5x+9.47 0.10

gm/gs Total Control y=0.254x+0.059 0.06 0.011
Drought y=0.757x+0.011 0.57

Winter 2013 –
Drought y=0.595x+0.017 0.56

Spring 2013 Control y=1.051x+0.015 0.86 0.337
Drought y=0.637x+0.015 0.27

Summer 2013 Control y=0.758x+0.009 0.75 0.949
Drought y=0.732x+0.020 0.30

Rd/Rn Total Control y=0.540x+0.263 0.59 0.0035
Drought y=0.980x 0.272 0.68

Winter 2013 Control y=4.05x 6.14 0.78 0.279
Drought y=1.036x 0.343 0.61

Spring 2013 Control y =0.639 x+0.063 0.96 0.0126
Drought y=1.147x 0.427 0.95

Summer 2013 –
Drought y=0.487x+0.373 0.38

Fig. 5. Bar graphs of maximum carboxylation rate (Vc,max) (a), electron-transport rate at saturating light and CO2 (J1200) (b), and triose-phosphate use 
(TPU) (c) estimated with CO2-response curves based on Ci (A/Cc) and Cc (A/Cc) in the control and drought plots for the summer campaign. Marginal 
significant differences (P<0.1) between the control and drought plots are indicated by asterisks in brackets. Vertical bars indicate standard errors of the 
means (control, n=7; drought, n=8).
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for the evergreen vegetation, and thermal acclimation to win-
ter conditions is essential to survive these adverse conditions 
(Blumler, 1991; Öquist and Huner, 2003). As a response, thy-
lakoid membranes are reorganized, reaction centres are closed, 
and antennal size is reduced in order to protect the photo-
synthetic apparatus against overexcitation by the incoming 
radiation (García-Plazaola et  al., 1997; Huner et  al., 1998; 
Ensminger et al., 2012; Verhoeven, 2014). The increased NPQ 
and decreased Fv/Fm found in our study are good proxies for 
these photoprotective processes in the thylakoid membranes, 
indicating an increased thermal dissipation of excess energy 
and a decreased photochemical efficiency (Maxwell and 
Johnson, 2000). Thus, we found that Q. ilex acclimated to the 
winter conditions with reoccurring night frosts, and exploited 
the winter period photosynthetically at the cost of lower assim-
ilation rates and a lower carbon-use efficiency (see also Hurry 
et  al., 2000; Dolman et  al., 2002; Sperlich et  al., 2014). We 
underline the fact that winter acclimation and exploitation can 
be essential for Mediterranean evergreen tree species to recover 
from stressful summer periods and to achieve a positive annual 
carbon balance.

Notably lower NPQs in spring indicate that the photosys-
tems experienced the least amount of photochemical stress in 
this period. This is because the spring in our study was par-
ticularly cool and wet and was characterized by a low VPD. 
The high NPQ in winter and summer, in contrast, reflects 
strong photoprotection against photoinhibitory stress due 
to the temperature extremes. However, the photoprotective 
mechanisms seemed to be effective: the optimal light inten-
sity for net assimilation and the electron transport (approxi-
mately 1500 µmol photons m−2 s−1 for both) and the effective 
quantum yield of PSII (ΦPSII) (Supplementary Fig. S3) did 
not change between the seasons.

The assimilation rates and the carbon-use efficiency 
increased from winter to spring, although it was not until 
summer that the peak photosynthetic activity was reached. 
The elevated Fv/Fm underlines the fact that the photosynthetic 
apparatus fully recovered its maximum photochemical effi-
ciency in summer. This contrasts with a very low total pre-
cipitation measured during the summer (22 mm). However, 
Q. ilex can benefit from water reserves in deep soil layers 
and also in rock fractures (Barbeta et al., 2015), which also 
explains its water-spending behaviour during drier periods 
(Sánchez-Costa et al., 2015). It is known that Q. ilex develops 
a profound root system with a lignotuber that can make up as 
much as half  of the total tree biomass (Canadell et al., 1999), 
which is vital to withstand abiotic stress periods or distur-
bances. The precipitation in winter and spring together nearly 
reached the annual mean, so that deep soil water reserves are 
likely to have been yet filled in summer. High water avail-
ability in combination with high summer temperatures can 
account for the high photosynthetic activity in a potential 
water stress period. The replenishment of soil water reserves 
early in the growing season is critical to endure seasonal sum-
mer droughts in Mediterranean trees (Sperlich et al., 2015). 
Pinto et al. (2014) also found the highest sap flow rates of 
Quercus suber L. in summer because its roots had access to 
the groundwater.

Effect of rainfall exclusion on photosynthetic and 
respiratory traits

Drought experiments with rainfall exclusion under natural 
conditions can serve as valuable real-time model simulations 
for scenarios of future climate change. Unfortunately, long-
term experiments over several years are costly and laborious 

Fig. 6. Scatter plots and regression lines of stomatal conductance (gs) versus net assimilation rate (Anet) (a), mesophyll conductance (gm) versus Anet (b), 
gs versus gm (c) and night respiration (Rn) versus day respiration (Rd) (d) for each season and for control and drought plots. Only the regression lines for 
significant relationships (P<0.05) are displayed.

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv492/-/DC1
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and thus are particularly scarce. The rainfall exclusion in 
Prades, maintained since 1999, has reduced soil moisture by 
13% with respect to ambient conditions and is probably the 
longest continuous-drought experiment worldwide (Wu et al., 
2011; Ogaya et al., 2014).

Plants face a trade-off  under water stress: the closure of the 
stomates reduces transpiratory water loss but at the same time 
constrains CO2 diffusion to the chloroplasts. Besides gs, gm can 
act as a second leaf internal valve regulating the gas exchange 
through carbonic anhydrase and aquaporins and can thus 
help to prevent dehydration of vacuoles and cells (Terashima 
and Ono, 2002; Lopez et al., 2013; Perez-Martin et al., 2014). 
When chronic water stress begins to deplete stores of non-
structural carbohydrates, plants are particularly reliant on 
photosynthetic products for refinement, repair, and protec-
tive actions (Niinemets et al., 2009). We have provided novel 
evidence that gm not only imposes an additional leaf inter-
nal resistance to gas exchange but can also facilitate the CO2 
diffusion to the chloroplasts in comparison with a stronger 
control by stomata under drought. This was reflected by a 
comparatively higher gm that increased the gm/gs ratio under 
long-term drought (see also Galmés et al., 2013). Our results 
are supported by recent findings obtained in Q. ilex and Pinus 
halepensis leaves showing a higher leaf internal CO2 conduct-
ance in parallel with a stricter stomatal control under severe 
drought (Sperlich et al., 2015).

In addition to the importance of the diffusive capacity of 
stomata and mesophyll for the foliar carbon balance, this bal-
ance also depends strongly on the relationship of photosynthe-
sis with respiration. However, the extent to which Rn or Rd are 
affected by water scarcity is highly uncertain. We found that Rd 
was approximately 74% of Rn and that the long-term rainfall-
exclusion experiment increased the ratio of Rd/Rn (0.79 ± 0.04) 
compared with the control plot (0.71 ± 0.03) due to a higher 
Rd. Some studies found increased foliar respiration under 
severe water stress (Ghashghaie et al., 2001), but reductions 
were also reported (Flexas et al., 2006). The leaf may exert an 
acclimation of the respiratory metabolism through Rd because 
the demands for energy (ATP and NADPH) for synthesis of 
sucrose and carbon skeletons in the cytoplasm are higher under 
stressful conditions (Flexas et al., 2006; Zaragoza-Castells et 
al., 2007). Rd provides the basis for building up heat-stabilizing 
components such as heat-shock proteins or biogenic volatile 
organic compounds protecting the plant against detrimental 
effects (Tcherkez and Ribas-Carbó, 2012). Higher photoinhibi-
tory stress can thus increase the respiratory metabolic activity 
expressed as a higher protein turnover at a given overall protein 
content (Niinemets, 2014; Weerasinghe et al., 2014). This might 
explain the generally higher values of Rd that we found in the 
drought treatment. A lower stress level would evidently lead to 
a lower demand for energy and carbon skeletons and hence to 
a lower protein turnover. We found an indication for this in the 
effective photoprotective mechanism and lower rates of Rd in 
the summer campaign characterized by favourable conditions. 
In contrast to the results of Zaragoza-Castells et al. (2007), 
in our study only Rd but not Rn acclimated seasonally. The 
higher Rd in the drought treatment decreased significantly and 
coincided with the lower values of the control group, which 

remained unaffected throughout the seasons. This decrease of 
Rd in the drought treatment in summer—paralleled by higher 
rates of photosynthesis—significantly decreased Rd/Rn and 
increased the foliar carbon-use efficiency. Griffin and Turnbull 
(2013) showed that a decreased Rd/Rn can be explained by a 
suppressed light-saturated rate of oxygenation in photorespira-
tion. Although we did not measure photorespiration directly, 
our data showed increased gm and thus elevated CO2 concen-
trations in the chloroplasts (increase of 35% from spring to 
summer) (Fig. 3), which would benefit carboxylation over oxy-
genation. Overall, we found that Rd—as the key player for the 
foliar carbon balance in Q. ilex—was the most responsive to 
seasons or treatment effects.

We found that the drought treatment had no significant 
effect on J1200, Vc,max, or TPU in the summer campaign. Our 
results emphasize that the increased photosynthetic activity 
in the drought treatment in summer was not attributed to a 
higher potential in the biochemistry of photosynthesis, but 
rather than to an increased diffusive capacity of both gs and 
gm. Interestingly, analysis of the apparent J1200 and apparent 
Vc,max (derived from A/Ci curves) identified marginally signifi-
cant higher values in the rainfall-exclusion plot. This shows 
that the A/Cc method is more appropriate and that the tradi-
tional fitting method based on A/Ci curves may lead to con-
founding effects—as also shown in grapevines by Flexas et al. 
(2006). The foliar internal diffusion limitation imposed by gm 
accounted on average for a 54% higher Vc,max, a 30% higher 
Jmax, and a 29% higher TPU of  the apparent photosynthetic 
potential. Similar values were reported for nearly 130 C3 spe-
cies in a recent study by Sun et al. (2014).

We postulate firstly, that the summer period provided 
counterintuitively favourable conditions (as discussed above), 
and secondly, that the trees in the drought treatment accli-
mated most efficiently the balance between energy supply 
versus energy consumption in this period. Recent findings 
underscore the high plasticity of Q. ilex in response to sea-
sonal changes in temperature or soil water compared with 
other Mediterranean species (Sperlich et al., 2015). The rain-
fall-exclusion experiment in Prades was shown to result in a 
higher stem mortality (Barbeta et al., 2013) and in a reduced 
leaf area in Q. ilex (Ogaya and Peñuelas, 2006), while increas-
ing leaf mass per area (data not shown). With fewer leaves 
and lower total leaf area, the concentration of biochemical 
resources per leaf would increase. This might contribute to 
explaining the partly higher photosynthetic rates and carbon-
use efficiency in the drought treatment. Sperlich et al. (2015) 
also found higher photosynthetic potentials in crowns that 
suffered a reduced total leaf area after a severe drought.

In this study, we examined the seasonality of photosyn-
thetic and respiratory traits and evaluated the adaptive mech-
anism in response to reduced soil water under partial rainfall 
exclusion. A  high climatic variability in the Mediterranean 
region can lead to counterintuitive effects, with the peak pho-
tosynthetic activity in summer, which is usually character-
ized by a high level of abiotic stress. The trees experiencing 
a 14-year-long drought treatment adapted through a higher 
plasticity in photosynthetic traits, so that eventually an atypi-
cal favourable growth period in summer was exploited more 
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efficiently, with gm and Rd as the determining parameters. 
Drought-induced growth declines may be attenuated in the 
long-term through morphological and physiological acclima-
tion to drought (Leuzinger et al., 2011; Barbeta et al., 2013). 
Fewer leaves in the drought treatment were compensated by 
higher net photosynthetic rates. The similarity of photosyn-
thetic potentials in the treatment and control plots suggests 
that there is also a dampening effect on the biochemical level.

Supplementary data

Supplementary data are available at JXB online.
Supplementary Fig. S1. Four exemplary samples of car-

bon-response curves conducted at leaves of (i) twigs attached 
to the tree (field), (ii) after cutting and pre-conditioning the 
twigs under dim light in water in the lab for one night (day 
1) and (iii) two nights (day 2).

Supplementary Fig. S2. Bar chart depicting the evolution 
of night respiration (Rn) of Q. ilex directly after cutting the 
twig and after darkening for 30 min (field), and at day 1, 2, 
and 3 after being pre-conditioned under dim light in water in 
the laboratory.

Supplementary Fig S3. Line graphs depicting seasonal 
changes of (a) quantum yield of CO2 (ΦCO2) and (b) effective 
quantum yield of PSII (ΦPSII) for Q. ilex.

Supplementary Fig. S4. Scatter plots and regression lines 
of maximum carboxylation rate (Vc,max) versus maximum 
rate of electron transport (Jmax) derived from (a) A/Cc and 
(b) A/Ci response curves for control and drought plots in 
summer 2013.

Supplementary Table S1. Regression equations and coef-
ficients of determination (R2) for Anet/Rd for Q. ilex in three 
sampling campaigns in control and drought plots.

Supplementary Table S2. Regression equations and coef-
ficients of determination (R2) for Anet/Rn for Q. ilex in three 
sampling campaigns in control and drought plots.

Supplementary Table S3. Regression equations and coef-
ficients of determination (R2) for Jamb/Anet for Q. ilex in three 
sampling campaigns in control and drought plots.

Supplementary Table S4. Regression equations and coef-
ficients of determination (R2) for Cc/Ci for Q.  ilex in three 
sampling campaigns in control and drought plots.
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