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Abstract

Hepatic encephalopathy (HE) is major neuropsychiatric disorder occurring in patients with severe 

liver disease and ammonia is generally considered to represent the major toxin responsible for this 

condition. Ammonia in brain is chiefly metabolized (“detoxified”) to glutamine in astrocytes due 

to predominant localization of glutamine synthetase in these cells. While glutamine has long been 

considered innocuous, a deleterious role more recently has been attributed to this amino acid. This 

article reviews the mechanisms by which glutamine contributes to the pathogenesis of HE, how 

glutamine is transported into mitochondria and subsequently hydrolyzed leading to high levels of 

ammonia, the latter triggering oxidative and nitrative stress, the mitochondrial permeability 

transition and mitochondrial injury, a sequence of events we have collectively termed as the 

Trojan horse hypothesis of hepatic encephalopathy.
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Introduction

Hepatic encephalopathy (HE) is the major neurological disorder associated with severe liver 

disease which presents in chronic and acute forms [1]. Complications of chronic HE (usually 

in the setting of alcohol-induced cirrhosis) are principally neuropsychiatric abnormalities 

characterized by personality disorders, altered mood, increased irritability, changes in sleep/

wake cycles, decline in intellectual capacity and abnormal muscle tone [2].

The symptoms of acute HE (acute liver failure, ALF), on the other hand, progress more 

rapidly, wherein patients present with seizures, delirium, alterations in the level of 
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consciousness and coma [3]. The major manifestation of ALF is brain edema (increased 

brain water content) resulting in increased intracranial pressure (ICP) and brain herniation. 

While acute HE has been associated with a high mortality (80–90%) [3,4], recent surveys 

have reported a somewhat lower mortality rate (approximately 60%) [5,6], likely due to 

better clinical management of this condition. ALF is usually a consequence of 

acetaminophen toxicity, viral-mediated hepatitis, or exposure to various hepatotoxins [7]. 

The major etiological factor in both chronic and acute HE is increased blood and brain levels 

of ammonia.

The pathogenetic manifestations of ALF primarily develop in astrocytes, as these are the 

cells that are most affected histopathologically [8]. This is likely due to the fact that 

ammonia is exclusively metabolized in these cells by glutamine synthetase, which converts 

ammonia and glutamate into glutamine [9]. Accordingly, high brain and CSF levels of 

glutamine are also characteristic features of HE [10–12].

Ammonia has been shown to result in oxidative/nitrative stress, mitochondrial dysfunction, 

and alterations in the activity of various metabolic signaling pathways, including activation 

of mitogen activated protein kinases and the transcriptional factors (NF-κB, p53) as well as 

cerebral inflammation, and all of these factors have been shown to contribute to the cerebral 

complications of ammonia toxicity and ALF [13–16]. Thus, increased production of reactive 

oxygen and nitrogen species, lipid peroxidation, oxidation of mRNA, oxidation/nitration of 

key astrocytic proteins, and induction of the mitochondrial permeability transition (mPT) 

have been reported in experimental models of ALF, as well as in cultured astrocytes exposed 

to a pathophysiological concentration of ammonia [13,14,17,18]. Additionally, strategies 

geared towards a reduction of the above abnormalities have been shown to exert beneficial 

effects in ALF [18, 19]. More recently, most of the above noted astrocytic abnormalities 

have been attributed to glutamine as a consequence of the ammonia “detoxification” process 

[20,21].

This article reviews the Trojan horse hypothesis in HE whereby glutamine is transported 

into mitochondria, where it is subsequently hydrolyzed to yield high levels of ammonia, 

ultimately resulting in the induction of the mPT, mitochondrial dysfunction and the 

generation of oxidative/nitrative stress (ONS).

Historical perspective on glutamine in the pathogenesis of HE

Early in the evolution of the role of ammonia in the pathogenesis of hepatic encephalopathy 

[22–24], a seminal finding by Warren and Schenker [25] documented that methionine 

sulfoximine (MSO), an inhibitor of glutamine synthetase, significantly protected mice from 

acute ammonia toxicity, including a lowering of the seizure threshold, prevention of coma 

and improvement of their survival. These investigators thus proposed that glutamine may be 

a harmful factor in the pathogenesis of HE. Subsequent studies by other groups disclosed 

that MSO normalized the decreased glucose utilization in a rat model of chronic HE [26], 

and restored altered vascular CO2 responsiveness [27] in a rat model of chronic HE. MSO 

was also shown to prevent the cytotoxic edema in experimental models of HE and 

hyperammonemia [28–30], as well as the cell swelling in cultured astrocytes following 
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exposure to ammonia [31]. These critical studies highlighted the crucial role of glutamine in 

the pathogenesis of HE.

Mechanisms by which glutamine may contribute to brain edema/astrocyte swelling are not 

clear. A commonly held view is that the accumulation of glutamine leads to an osmotic shift 

of water into astrocytes [32]. While glutamine is indeed an osmolyte [33], it remains to be 

proven whether this amino acid is responsible for the osmotic shift of water into neural cells 

(principally astrocytes). Noteworthy, there is data showing a lack of temporal correlation of 

astrocyte glutamine concentration with the extent of cell swelling, as well as reports 

documenting the reduction of brain edema by various modalities, in the absence of a 

commensurate reduction in cerebral glutamine concentrations [34–36]. Furthermore, one 

study showed no temporal correlation between glutamine concentration and the extent of 

cell swelling in cultured astrocytes following treatment with ammonia [37]. Thus, while 

glutamine appears to play a crucial role in the mechanism of ALF, it is unlikely that it does 

so by an osmotic effect.

Recently, another view on the osmotic aspects of glutamine in the production of brain edema 

has been proposed. According to this hypothesis, glutamine is synthesized in astrocytes 

during the process of ammonia removal, released into the brain extracellular space via the 

small neutral amino acid transporter 5 (SNAT5), and then taken up by neurons to generate 

glutamate. A defect in the inter-cellular trafficking of glutamine between neurons and 

astrocytes has been postulated to occur which may contribute to the pathogenesis of ALF 

[38]. This proposal was based on the observation that mRNA levels of SNAT5 were found 

to be reduced in cerebral cortex of rats with ALF [38], a process postulated to result in the 

accumulation of glutamine in astrocytes, ultimately leading to cell swelling by an osmotic 

effect.

This view, however, is at variance with the well known fact that extracellular glutamine 

levels in brain are increased by over 5-fold in patients and in experimental models of ALF 

[11,39,40]. Accordingly, if high levels of glutamine were to be achieved in astrocytes, brain 

extracellular levels of glutamine would have shown a commensurate reduction (since 

astrocytes are the major source of extracellular glutamine in brain). This proposal, moreover, 

relied on a reduction in mRNA levels of SNAT5; yet, a comparable reduction in SNAT5 

protein was never documented. In recent studies, we in fact found that protein levels of 

SNAT5 were unchanged in cerebral cortical sections of mice with ALF induced by 

hepatotoxin thioacetamide (TAA) (Figure 2). Likewise, cultured astrocytes treated with a 

pathophysiological concentration of ammonia (5 mM NH4Cl) did not result in any change in 

SNAT5 protein expression (Figure 3).

The Trojan horse hypothesis

In 2006, an alternate mechanism was proposed whereby glutamine may result in harmful 

effects in brain, the so called Trojan horse hypothesis. Fundamental studies prior to 

formulating this hypothesis were carried out by Zieminska et al. [41] in isolated 

mitochondria from rat brain wherein, glutamine caused a marked Ca2+-dependent 

mitochondria swelling (mPT), which was sensitive to cyclosporine A (CsA), an inhibitor of 
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the mPT [41]. Notably, the direct exposure of ammonia to mitochondria did not elicit the 

mPT [41]. These observations were subsequently extended with the use of cultured 

astrocytes. We found that glutamine also resulted in the induction of the mPT in these 

cultures [42]. Further studies on mechanisms by which glutamine, presumably an innocuous 

amino acid, induces the mPT, disclosed that glutamine is transported into mitochondria 

where it undergoes hydrolysis, thereby yielding high levels of ammonia; the latter triggers 

oxidative stress and mitochondrial dysfunction which ultimately leads to the mPT and 

astrocyte swelling [42], a process that was blocked by MSO [43].

While the results documenting the mitigation of the mPT and oxidative stress by MSO 

implied the involvement of glutamine in this process, the precise mechanisms by which such 

protection occurred was not apparent. In order for glutamine to exert mitochondrial 

abnormalities, it must first be carried into mitochondria, where it undergoes hydrolysis by 

phosphate-activated glutaminase (PAG) to generate ammonia and glutamate. Accordingly, 

studies employing L-histidine, an inhibitor of glutamine transport into mitochondria, showed 

a significant attenuation in the ammonia-induced mPT and oxidative stress. Likewise, 6-

diazo-5-oxo-L-norleucine (DON), an inhibitor of phosphate-activated glutaminase (PAG), 

blocked the mPT and free radical production by ammonia. This clearly established a Trojan 

horse role for glutamine in the mechanism of ammonia neurotoxicity, whereby glutamine 

enters mitochondria, followed by its hydrolysis that yields toxic levels of ammonia in the 

organelle. For further details on the Trojan horse hypothesis, see references [20,21,44].

Studies showing inhibition by DON and L-histidine in the activation of mitogen-activated 

protein kinases (MAPKs) also support this hypothesis [21]. Likewise, some of the astrocytic 

abnormalities caused by ammonia, including activation of the transcriptional factors NF-κB, 

p53, as well as the decreased uptake of glutamate were rectified by treatment with either 

DON or L-histidine, all of which support the Trojan horse hypothesis.

This hypothesis is also in keeping with in vivo conditions in ALF induced by hepatotoxin 

TAA. L-histidine treatment of rats with ALF significantly blocked the induction of oxidative 

stress, the mPT and the development of brain edema [45]. A recent study also disclosed that 

reduction of mitochondrial glutathione levels in brains of rats with ALF contribute to the 

induction of oxidative stress [46], a phenomenon that was attenuated by treatment with L-

histidine.

While the Trojan horse hypothesis represents a major mechanism by which glutamine 

mediates the deleterious effects of ammonia in HE, concerns have been raised as to its 

validity [47]. The presence of glutaminase in astrocytes, a key factor implicated in the 

Trojan horse hypothesis, was questioned, since glutaminase was generally considered to be 

exclusively present in neurons and brain levels of PAG were reported to be relatively low 

[48]. However, a study by Wurdig and Kugler [49] clearly identified PAG rat brain 

astrocytes by enzyme histochemistry. Likewise, cultured astrocytes were shown to express 

abundant quantities of PAG [50–52], which subsequently was shown to be localized in 

mitochondria isolated from cultured astrocytes [53]. A subsequent study unequivocally 

confirmed the presence of L-type glutaminase (LGA) in astrocytes in rat brain [54]. 

Employing cortical sections of mouse brain, we also localized LGA in astrocytic 
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mitochondria as observed by triple immunocytochemistry (Figure 1). Together, these reports 

clearly document the presence of LGA in astrocytic mitochondria, a finding that strongly is 

in keeping with the Trojan horse mechanism.

Concluding remarks

The Trojan horse hypothesis continues to represent a major mechanism by which glutamine 

contributes to the pathogenesis of HE. It postulates that glutamine is transported into 

mitochondria, where it undergoes hydrolysis to yield high levels of ammonia, resulting in 

deleterious effects, including induction of the mitochondrial permeability transition and 

oxidative/nitrative stress. Accordingly, inhibition of glutamine synthesis, inhibition of 

glutamine transport into mitochondria, or reducing the activity of phosphate-activated 

glutaminase were all found to exert beneficial effects in ALF, as shown by a reduction in 

astrocyte swelling/brain edema, improvement of mitochondrial function, enhanced cerebral 

energy metabolism, increased astrocytic glutamate uptake, as well as inhibition of the 

activity of detrimental signaling mechanisms. We propose that targeting astrocytic 

glutamine transport and/or its hydrolysis in mitochondria remains an attractive strategy for 

the treatment of HE and other hyperammonemic disorders.
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Figure 1. 
Immunohistochemistry (IHC) of L-type glutaminase (LGA) (green fluorescence) in normal 

mouse brain cortical sections. Frozen brain sections were performed as described previously 

[45]. Briefly, sections were fixed in ice-cold methanol and incubated overnight at 4°C with 

antibodies to LGA (goat polyclonal, 1:100), cytochrome oxidase subunit IV (red 

fluorescence, CO-IV, mouse monoclonal, 1:100) and GFAP (blue fluorescence, rabbit 

polyclonal, 1:400); washed 3-times with phosphate-buffered saline containing 0.1% Triton 

X 100; incubated with fluorescent secondary antibodies with different excitation 

wavelengths; and fluorescence was visualized with a confocal microscope. Note the merged 

image showing marked co-localization of LGA with CO-IV consistent with the 

mictochondrial localization of LGA.
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Figure 2. 
Immunohistochemistry (IHC) of the glutamine transporter SNAT5 (green fluorescence) in 

brain cortical sections from control and mice treated with hepatotoxin thioacetamide (TAA) 

to induce ALF . Immunohistochemistry of frozen brain sections were performed as 

described in Figure 1. The antibodies used included SNAT5 (goat polyclonal, 1:100) and 

GFAP (red fluorescence, rabbit polyclonal, 1:400). Note that SNAT5 expression did not 

change in mice with TAA-induced ALF as compared to control animals (SNAT5-C).
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Figure 3. 
Effect of ammonia (5 mM NH4Cl) treatment to cultured astrocytes on SNAT5 protein 

expression. A. Representative immunoblot of SNAT5 protein density. B. Immunoblot of 

tubulin protein density (loading control) corresponding to the immunoblot of SNAT5. C. 

Quantification of SNAT5 protein densities. Note that ammonia treatment of astrocytes had 

no significant effect on SNAT5 expression at any time point. Values in each group are mean 

± S.E.M of 2 individual culture plates taken from 2 separate seeding batches (n=4).
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