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Abstract

Given the variety of available clustering methods for gene expression data analysis, it is important 

to develop an appropriate and rigorous validation scheme to assess the performance and 

limitations of the most widely used clustering algorithms. In this paper, we present a ground truth 

based comparative study on the functionality, accuracy, and stability of five data clustering 

methods, namely hierarchical clustering, K-means clustering, self-organizing maps, standard finite 

normal mixture fitting, and a caBIG™ toolkit (VIsual Statistical Data Analyzer - VISDA), tested 

on sample clustering of seven published microarray gene expression datasets and one synthetic 

dataset. We examined the performance of these algorithms in both data-sufficient and data-

insufficient cases using quantitative performance measures, including cluster number detection 

accuracy and mean and standard deviation of partition accuracy. The experimental results showed 

that VISDA, an interactive coarse-to-fine maximum likelihood fitting algorithm, is a solid 

performer on most of the datasets, while K-means clustering and self-organizing maps optimized 

by the mean squared compactness criterion generally produce more stable solutions than the other 

methods.
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2. INTRODUCTION

High throughput gene expression profiling using microarray technologies provides powerful 

tools for biologists to pursue enhanced understanding of functional genomics. A common 

approach for extracting useful information from gene expression data is data clustering, 

where sample clustering and gene clustering are two main applications. Sample clustering 

groups samples whose expression profiles exhibit similar patterns (1, 2). Gene clustering 

groups co-expressed genes together (3, 4). Application of various clustering algorithms in 

genomic data research has been reported and these methods can be categorized under 

different taxonomies (5–7). With respect to mathematical modeling, clustering algorithms 

can be classified as model-based methods like mixture model fitting (4) and VIsual 

Statistical Data Analyzer (VISDA, a toolkit of caBIG™) (8–11), or “nonparametric” 

methods such as the graph-theoretical method (12). Regarding the clustering scheme, there 

are agglomerative methods, such as conventional Hierarchical Clustering (HC) (13), or 

partitional methods including Self-Organizing Maps (SOM) (1, 3) and K-Means Clustering 

(KMC) (14). The assignment of data points to clusters can be achieved by either soft 

clustering methods like fuzzy clustering (15) and mixture model fitting (4), or hard 

clustering methods like HC and KMC. While most algorithms perform clustering 

automatically, with even the parameter initialization automated, e.g. random initialization, 

other recent methods like VISDA attempt to exploit the human gift for pattern recognition 

by incorporating user-data interactions into the clustering process.

Efforts have been made to evaluate and compare the performance and applicability of 

various clustering algorithms for genomic data analysis. As Handl et al. stated in (16), 

external measures and internal measures are two main lines to validate clustering. External 

assessment approaches use knowledge of the correct class labels in defining an objective 

criterion for evaluating the quality of a clustering solution. Gibbons and Roth used mutual 

information to examine the relevance between clustered genes and a filtered collection of 

GO classes (17, 18). Gat-Viks et al. projected genes onto a line through linear combination 

of the biological attribute vectors (GO classes) and evaluated the quality of the gene clusters 

using an ANOVA test (19). Datta and Datta used a biological homogeneity index (relevance 

between gene clusters and GO classes) and a biological stability index (stability of the gene 

clusters’ biological relevance with one experimental condition missing) to compare 

clustering algorithms (20). Loganantharaj et al. proposed to measure both within-cluster 

homogeneity and between cluster separation of the gene clusters with respect to GO classes 

(21). Thalamuthu et al. assessed gene clusters by calculating and pooling p-values (i.e. the 

probability that random clustering generates gene clusters with a certain annotation 

abundance level) of clustering solutions with different numbers of clusters (22).

When trusted class labels are not available, internal measures serve as alternatives. Yeung et 

al. compared the prediction power of several clustering methods using an adjusted Figure of 

Merit (FOM) when leaving one experimental condition out (23). Shamir et al. used a FOM-

based homogeneity index to evaluate the separation of obtained clusters (24). Datta and 

Datta designed three FOM-based consistency measures to assess pair-wise co-assignment of 

genes, preservation of gene cluster centers, and gene cluster compactness, respectively (25). 

A resampling based validity scheme was proposed in (26).
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In this paper, we report an experimental study comparing the performance of clustering 

algorithms applied to sample clustering. Our comparison mainly used external measures and 

evaluated the algorithms’ functionality, accuracy, and stability. We also carefully chose both 

the competing algorithms and the datasets to assure an informative yet fair comparison; for 

example, we excluded cases where the algorithms either all succeed or all fail. 

Acknowledging the difficult, complex nature of the work, we focused on five clustering 

algorithms, namely distance matrix-based HC, KMC, SOM, Standard Finite Normal 

Mixture (SFNM) fitting, and VISDA, which covered all the clustering algorithm categories 

in the taxonomies discussed above. We used seven public and representative microarray 

gene expression datasets to conduct the comparison and assessed both the bias and variance 

of the clustering outcomes respective to biological ground truth. In addition to comparing 

the algorithms’ performance on common objectives, we also report the unique features of 

some algorithms, for example, hard clustering versus soft clustering, cluster number 

detection, and learning relational structure among clusters.

There are several major differences between our effort and previously reported works. First, 

our comparison focused on sample clustering rather than the heavily studied gene clustering. 

Sample clustering aims to confirm/refine known phenotypes or discover new phenotypes/

sub-phenotypes (1). Sample clustering normally has a much higher attribute-to-sample ratio 

(called “dimension ratio”) than gene clustering, even after front-end gene selection (2, 9, 

27), and imposes a unique challenge to many existing clustering algorithms (28). Second, 

instead of using internal measures (consistency) to evaluate the variance but not the bias of 

clustering outcome, our comparison used external measures to evaluate both the bias and the 

stability of the obtained sample clusters respective to the biological categories (29). We also 

compared our evaluation results with two other popular internal measures (cluster 

compactness and model likelihood) to study the characteristics and applicability of the 

internal measures being used. Third, our comparison of clustering algorithms is based on 

sample clustering against phenotype categories. It is thus more objective and reliable than 

most reported evaluations, which were based on gene clustering against gene annotations 

like GO classes. These gene annotations are prone to significant “false positive evidence” 

when used under biological contexts different from the specific biological processes that 

produced the annotations in the database. Furthermore, since most GO-like databases only 

provide partial gene annotations, the comparisons derived from such incomplete truth cannot 

be considered conclusive.

3. METHODS

Let X={x1, x2, …, xN | xi∈Rp} denote the p-dimensional vector-point sample set. The 

general clustering problem is to partition the sample set X into K clusters, such that the 

samples in the same cluster share some common characteristics or exhibit similarity as 

compared to the samples in different clusters (5). For the jth cluster in a solution with K 

clusters, we denote the cluster’s effective size (number of owned samples) by Nj. When soft 

clustering is applied, the ith sample is assigned with a Bayes posterior probability of 

belonging to the jth cluster, denoted by zij. In the following subsections, we first briefly 

review the aforementioned five clustering algorithms (5, 8,10, 30–32), and then introduce in 

detail our comparative study methodology and experimental designs.
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3.1. Competing Clustering Algorithms

3.1.1. Hierarchical clustering—As a bottom-up approach, agglomerative HC starts from 

singleton clusters, one for each data point in the sample set, and produces a nested sequence 

of clusters with the property that whenever two clusters merge, they remain together at any 

higher level. At each level of the hierarchy, the pair-wise distances between all the clusters 

are calculated, with the closest pair merged. This procedure is repeated until the top level is 

reached, where the whole dataset exists as a single cluster. See (30) for a detailed description 

of HC methodology. We used a Matlab implementation of HC with the Euclidean distance 

and average linkage function in the experiment.

3.1.2. K-means clustering—Widely adopted as a top-down scheme, KMC seeks a 

partition that minimizes the Mean Squared Compactness (MSC), the average squared 

distance between the center of the cluster and its members. Specifically, KMC performs the 

following steps. 1) Initialize K cluster centers, with K selected by the user. 2) Assign each 

sample to its nearest cluster center, and then update the cluster center with the mean of the 

samples assigned to it. 3) Repeat the two operations in step 2 until the partition converges. 

See (30) for detailed description of KMC methodology. We used a Matlab implementation 

of KMC in the experiment.

3.1.3. Self-organizing maps—SOM performs partitional clustering using a competitive 

learning scheme (32). With its roots in neural computation, SOM maps the data from the 

high dimensional data space to a low dimensional output space, usually a 1-D or 2-D lattice. 

Each node (also called a neuron) of the lattice has a reference vector. The mapping is 

achieved by assigning the sample to the winning node, whose reference vector is closest to 

the sample. Samples that are mapped to the same neuron form a cluster. In the sequential 

learning process, when a sample is input, all neurons are updated towards the input sample 

in proportion to a learning rate and to a function of the spatial distance in the lattice between 

the winning neuron and the given neuron. The function could be a constant window function 

or a Gaussian function with a width parameter that defines the spatial “neighborhood”. To 

reach convergence, the learning rate starts from a number smaller than 1 such as 0.9 or 0.5, 

and decreases linearly or exponentially to zero during the learning process. The size of the 

neighborhood also decreases during the learning process (32). We used the conventional, 

sequential SOM implemented by Matlab in the experiment.

3.1.4. SFNM fitting—The SFNM fitting method uses the Expectation Maximization (EM) 

algorithm to estimate an SFNM distribution for the data (30, 33). An SFNM model can be 

described by the following probability density function

where g(•) is the Gaussian function, and πj and θj are the mixing proportion and parameters 

associated with cluster j, respectively. The EM algorithm performs the following two steps 

alternately until convergence:
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E step:

,

M step:

,

μj and Σj are the mean and covariance matrix of cluster j, respectively. In the mixture, each 

Gaussian distribution represents a cluster. We implemented SFNM fitting based on the 

above algorithm in our experiments.

3.1.5. Visual statistical data analyzer—Based on a hierarchical SFNM model, VISDA 

performs top-down, coarse-to-fine divisive clustering as outlined in Figure 1. At the top 

level, the entire dataset is split into several coarse clusters that may contain multiple sub-

clusters; at lower levels, these composite clusters are further decomposed into finer sub-

clusters until no further substructure can be found. For each cluster in the hierarchy, various 

structure-preserving projection methods are used to visualize the data in the cluster within 2-

D projection spaces. Each such space captures distinct characteristics of the cluster’s inner 

structure. Subsequently, the user can choose the projection that best reveals the data’s 

structure, and initialize the centers of potential sub-clusters by pinpointing them on the 

computer screen. A local SFNM distribution for the purpose of decomposing the cluster is 

then trained by the EM algorithm in the projection space. This procedure is repeated for 

several competing models with different number of sub-clusters, and the number of sub-

clusters in the final model is determined by the Minimum Description Length (MDL) 

criterion, combined with human justification. Once the optimal local models of all clusters 

are determined in their projection spaces, their model parameters are transformed back to the 

original data space to initialize the full-dimensional SFNM model, which will be refined via 

the EM algorithm. See (8–10) for further description of VISDA. VISDA is freely 

downloadable from the caBIG™ website (11).

3.2. Evaluation design

Our evaluation focused on three fundamental characteristics of clustering solutions, namely, 

functionality, accuracy, and stability. Multiple cross-validation trials on multiple datasets are 

conducted to estimate the performance.

3.2.1. Functionality—Determining the number of clusters and the membership of data 

points is the major objective of data clustering. Although model selection criteria have been 

proposed for use with HC, KMC, SOM, and SFNM fitting algorithms, there is no consensus 

about the proper model selection criterion. Thus, we simply fixed the cluster number at the 

true number of classes for these methods. VISDA provides an MDL based model selection 
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module assisted by human justification. We assessed this functionality by its ability to detect 

the correct cluster number in cross-validation. Furthermore, both SFNM model fitting and 

VISDA provide soft clustering with confidence values (8); both HC and VISDA perform 

hierarchical clustering and show the hierarchical relationship among discovered clusters, 

which may contain biological meaningful information and allows cluster analysis at multiple 

resolutions, achieved by simply merging clusters according to the tree structure.

3.2.2. Accuracy—A natural measure of clustering accuracy is the percentage of correctly 

labeled samples, i.e. the partition accuracy. Furthermore, as an unsupervised learning task, 

data clustering involves both detection and estimation steps, i.e. detection targets the sample 

labels and estimation targets the class distribution. Note that different clustering solutions 

with the same partition accuracy may not recover the class distribution equally well. In our 

study, we evaluate the accuracy of the estimated parametric class distribution against ground 

truth, i.e. the biases of the estimated class mean and covariance matrix, by taking the cluster 

mean and covariance matrix as estimates of ground truth class mean and covariance matrix, 

respectively.

3.2.3. Stability—To test the stability of the clustering algorithms, we calculate the 

variation of the clustering outcomes using n-fold cross-validation (n = 9~10). In each of the 

multiple trials, only (n − 1)/n of the samples in each class are used to produce the clustering 

outcome. Stability of a clustering algorithm is reflected by the resulting standard deviations 

of partition accuracy, estimated class means, and estimated class covariance matrices.

3.2.4. Additional internal measures—Besides MSC as an internal clustering validity 

measure, Mean Log-Likelihood (MLL) for mixture model fitting or Mean Classification 

Log-Likelihood (MCLL) for the hard clustering result measure the goodness of fit between 

the estimated probability model and the soft or hard partitioned data in terms of average 

joint log-likelihood.

3.3. Quantitative performance measures

For assessing the model selection functionality of VISDA, cluster number detection 

accuracy is calculated based on doubled n-fold cross-validation trials, where a detection trial 

is considered successful if VISDA detects the correct number of clusters, given by

A prerequisite for calculating the other aforementioned performance measures is the correct 

association between the discovered clusters and ground truth classes. To assure the global 

optimality of the association, all permuted matches between the detected clusters and the 

ground truth classes are evaluated. For this purpose, after correctly detecting the cluster 

number, we calculate the consistency between the permuted cluster labels and the ground 

truth labels over all data points and choose the association whose consistency is the 

maximum among all permuted matches, given by
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where Pl is the partition accuracy in the lth cross-validation trial, α is the permutation of 

cluster indices {1, 2, …, K}, Nl is the number of samples used in the lth trial, Ll(xi) is the 

clustering label of data point xi in the lth trial, L*(xi) is the true label of xi, and 1{•, •} is the 

indicator function, which returns 1 if the two input arguments are equal and returns 0 if not. 

Using the Hungarian method, the complexity of the search is O(Nl+K3) (34). For soft 

clustering, we transform the soft memberships to hard memberships via the Bayes decision 

rule (30) to calculate the optimal association and partition accuracy.

Then, other performance measures are calculated based on 20 cross-validation trials in 

which the cluster number was correctly detected. The Bias of Class Mean Estimate (BCME) 

and the Standard deviation of Class Mean Estimate (SCME) are given by

where ‖•‖ indicates L2 norm in this paper, m̂lj is the mean of cluster j in trial l, and  is the 

true mean of class j. For soft clustering, m̂lj is calculated by

zlij is the posterior probability of sample i belonging to cluster j in trial l. The Bias of Class 

Covariance Matrix Estimate (BCCME) and the Standard deviation of Class Covariance 

Matrix Estimate (SCCME) are given by
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where Σ̂
lj is cluster j’s covariance matrix in trial l, and  is the true covariance matrix of 

class j. The subscript ‘F’ denotes the Frobenius norm of a matrix. For soft clustering, Σ̂
lj is 

calculated by

Furthermore, the MSC of hard clustering in the lth cross-validation trial is calculated by

where Nlj is the number of samples in the jth cluster in the lth cross-validation trial. The 

MLL for soft clustering with an SFNM model in the lth cross-validation trial is calculated by

where πlj is the proportion of cluster j in the lth trial. For hard clustering, the MCLL is 

calculated by

where m̂lxi and Σ̂
lxi are the mean vector and covariance matrix of the cluster that xi belongs 

to in trial l.

3.4. Additional experimental details

For the clustering algorithms that do not have a model selection function, we set the ground 

truth class number K as the input cluster number. For example, the dendrogram of HC was 

cut at a threshold that produced a partition with K clusters, and KMC, SOM, and SFNM 

algorithms were initialized by K randomly chosen samples as cluster centers. We used the 

best outcome from multiple runs of these randomly initialized clustering algorithms, 

evaluated using the aforementioned criteria. The KMC was chosen based on MSC. SOM 

was separately chosen based on both MSC and MCLL. SFNM fitting used MLL as the 

optimality criterion. Specifically, for each of the 20 cross-validation trials, the clustering 

procedure was performed 100 times, each with a different random initialization. For SOM, 

two different neighborhood functions were used 50 times in each cross-validation trial.

3.5. Datasets

We chose a total of seven real microarray gene expression datasets and one synthetic dataset 

for this ground truth based comparative study, summarized in For example, the datasets 
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cannot be too “simple” (if the clusters are well-separated, all methods perform equally well) 

or too “complex” (no method will then perform reasonably well). Specifically, each cluster 

must be reasonably well-defined (for example, not a composite cluster) and contain 

sufficient data points.

Table 3. For simplicity, Table 4 gives the performance ranks of the algorithms respective to 

BCME and SCME and Table 5 gives the performance ranks of the algorithms respective to 

BCCME and SCCME. On each dataset, rank 1 means the best performance among the 

competing methods, while rank 6 means the worst performance among the competing 

methods. Table 6 gives the average MSC and average MLL of the obtained clustering 

solutions. More details, including the exact values of the performance measures, can be 

found in the supplement.

4. RESULTS

The experimental results are summarized in tables 2–6. Cluster number detection accuracy 

of VISDA is given in table 2. The mean and standard deviation of partition accuracies are 

given in table 3. For simplicity, table 4 gives the performance ranks of the algorithms 

respective to BCME and SCME and table 5 gives the performance ranks of the algorithms 

respective to BCCME and SCCME. On each dataset, rank 1 means the best performance 

among the competing methods, while rank 6 means the worst performance among the 

competing methods. Table 6 gives the average MSC and average MLL of the obtained 

clustering solutions. More details, including the exact values of the performance measures, 

can be found in the supplement.

4.1. Cluster number detection accuracy

VISDA achieves an average detection accuracy of 97% over all the datasets. This result 

indicates the effectiveness of the model selection module of VISDA that exploits and 

combines the hierarchical SFNM model, the structure-preserving 2-D projections, the MDL 

model selection in projection space, and human-computer interaction (visualization 

selection, manual cluster center initialization, and cluster number confirmation supported by 

visualization).

4.2. Partition accuracy

Partition accuracy is considered the most important performance measure. VISDA gives the 

highest average partition accuracy -- 86.29% over all the datasets. Optimum SOM selected 

by MCLL ranked second with an average partition accuracy of 79.39%. On the synthetic 

dataset, both VISDA and SFNM fitting achieve the best average partition accuracy of 

94.89%. On SRBCTs dataset, the average partition accuracies of optimum SOM selected by 

MCLL (94.32%) and VISDA (94.23%) are comparable. Optimum KMC and SOM selected 

by MSC show similar performance on all the datasets.

On the synthetic data and the majority of the real microarray datasets, HC gives a much 

lower partition accuracy as compared to all other competing methods. HC is very sensitive 

to outliers/noise and often produces very small or singleton clusters. On the relatively easy 

case of the synthetic data, KMC, SOM, VISDA, and SFNM fitting achieve almost equally 
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good partition accuracy, with slightly better performance achieved by using soft clustering. 

On the two most difficult cases, the ovarian cancer and MMM-Cancer 2 datasets, HC 

achieves comparable partition accuracies to those of optimum KMC and SOM selected by 

MSC, while VISDA consistently outperforms all other methods. Interestingly, we have 

found that the optimum SOM selected by MCLL generally gives a higher partition accuracy 

than that of optimum SOM selected by MSC. A possible interpretation is that MCLL uses 

both the first and second order statistics to select the final partition while MSC uses only a 

first order measure. As a more complex model, SFNM clustering performs well on the 

datasets with sufficient samples, such as the synthetic dataset and UM cancer dataset. 

However, when the sample size becomes relatively small and the dimension ratio becomes 

high, its performance significantly degrades, either because of over-fitting or local optima, 

which can be seen from the MLL values in table 6.

From the standard-deviation of partition accuracy, we can see that optimum SOM selected 

by MSC has the most stable partition accuracy, followed by optimum KMC selected by 

MSC and VISDA. These three methods generate clusters with more stable biological 

relevance than the other methods.

4.3. Recovery of class distribution

In terms of BCME and BCCME, VISDA outperforms the other methods with an average 

rank of 1.50 and 1.75, respectively. The two-tier EM algorithm and soft clustering likely 

contribute to this good performance. We have observed that, on the synthetic dataset and 

UM cancer dataset, which are the two most data-sufficient cases, soft clustering leads to 

smaller BCMEs and BCCMEs than hard clustering. This result is consistent with the 

theoretical expectation that maximum likelihood fitting, which allows a data point to 

contribute simultaneously to more than one cluster, is least-biased when the clustered data 

can be well approximated by a mixture model (36). In contrast, when the dimension ratio is 

high and clusters are not sufficiently well-defined, SFNM fitting gives unsatisfactory 

clustering outcomes that are possibly due to the increased number of local optima and 

inaccurate estimation of covariance structure because of the curse of dimensionality. As a 

non-statistical procedure, HC shows once again its sensitivity to outliers/noise with a high 

BCME and BCCME.

From the SCME and SCCME, we can see that the optimum KMC and SOM selected by 

MSC generally provide more stable solutions. Such stability indicates the benefit of using 

simple optimization criterion (first order statistics) and an ensemble scheme to reduce output 

variance. VISDA and SFNM fitting utilize second order statistics in their clustering process. 

As indicated by the bias/variance dilemma (37), for a fixed sample size, with increasing 

model complexity (measured e.g. by the number of model parameters), the reliability of the 

parameter estimates decreases. It is theoretically true that some biased estimators could have 

smaller variance and clustering schemes that exploit higher-order statistics do not 

necessarily outperform simpler methods with respect to stability (29), as we also can see 

here from the ranks of SFNM fitting in table 4 and 5. VISDA has a rank of 2.63 and 3.63 for 

SCME and SCCME, respectively, which are relatively good performances among the 

competitors, possibly due to the manual model initialization guided/constrained by the 

Zhu et al. Page 10

Front Biosci. Author manuscript; available in PMC 2016 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



operator’s understanding of the data structure and the hierarchical exploration process. It is 

not surprising that HC exhibits high instability that may be again due to its sensitivity to 

outliers/noise.

4.4. Additional internal measures

MSC and MLL are two popular internal measures that we also examined (table 6). Since 

these additional measures do not have a direct relation to the ground truth, although being 

easily adopted, the conclusions drawn from their values could be misleading and should be 

used with caution. For example, optimum KMC and optimum SOM selected by MSC 

consistently achieve the smallest MSC, (somewhat unexpectedly) even smaller than the 

MSC of the ground truth. Based on the corresponding imperfect partition accuracies, this 

result indicates that solely minimizing MSC does not constitute an unbiased clustering 

approach. A similar situation was observed for the MLL criterion with additional issues of 

inaccurate estimation of the second order statistics and local optima caused by both the curse 

of dimensionality and covariance matrix singularity. VISDA generally has smaller MLL 

values than the SFNM fitting method, while VISDA has better partition accuracy and 

achieves better estimation of the class distribution.

5. SUMMARY AND DISCUSSION

We reported a ground-truth based comparative study on clustering of gene expression data. 

Five clustering methods, i.e. HC, KMC, SOM, SFNM fitting, and VISDA, were selected as 

representatives of various clustering algorithm categories and compared on seven carefully-

chosen real microarray gene expression datasets and one synthetic dataset with definitive 

ground truth. Multiple objective and quantitative performance measures were designed, 

justified, and formulated to assess the clustering accuracy and stability. The outcomes that 

we observed include both new observations and some established facts. Effort has also been 

made to interpret the results.

Our experimental results showed that VISDA, a human-data interactive coarse-to-fine 

hierarchical maximum likelihood fitting algorithm, achieved greater clustering accuracy, on 

most of the datasets, than other methods. Its hierarchical exploration process with model 

selection in low-dimensional locally-discriminative visualization spaces also provided an 

effective model selection scheme for high dimensional data. SOM optimized by the MCLL 

criterion produced the second best clustering accuracy overall. KMC and SOM optimized by 

the MSC criterion generally produced more stable clustering solutions than the other 

methods. The SFNM fitting method achieved good clustering accuracy in data-sufficient 

cases, but not in data-insufficient cases. The experiments also showed that for gene 

expression data, solely minimizing mean squared compactness of the clusters or solely 

maximizing mixture model likelihood may not yield biologically plausible results.

Several important points remain to be discussed. First, our comparative study focused on 

sample clustering (1, 9, 28), rather than gene clustering (3, 4). Sample clustering in 

biomedicine often aims to either confirm/refine the known disease categories (28) or 

discover novel disease subtypes (1). The expected number of “local” clusters of interest is 

often moderate (1, 38), e.g., 3~5 clusters as presented in our testing datasets. Compared to 
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gene clustering, sample clustering faces much higher dimension ratios and, consequently, a 

more severe “curse of dimensionality”, which can greatly affect the accuracy of many 

clustering algorithms. While most existing comparison studies have been devoted to gene 

clustering, we believe that it is equally important to assess the competence of the competing 

clustering methods on sample clustering with high dimension ratios. In our comparisons, 

even after front-end gene selection, some datasets still have much higher dimension ratios 

than for typical gene clustering. Furthermore, if the competing methods are applied to gene 

clustering, the comparison of the methods is expected to be similar to what was seen on the 

synthetic dataset, where the dimension ratio is low.

Second, although VISDA and SFNM fitting methods both utilize a normal mixture model 

and performed similarly in data-sufficient cases, VISDA outperformed SFNM fitting in the 

data-insufficient cases. A critical difference between these two methods is that, unlike 

SFNM fitting, VISDA does not apply a randomly initialized fitting process but performs 

maximum likelihood fitting guided/constrained by the human operator’s understanding of 

the data structure. Additionally, the hierarchical data model and exploration process of 

VISDA apply the idea of “divide and conquer” to find both global and local data structure.

Third, regarding the computational complexity of the competing clustering methods, the 

batch-mode KMC runs much faster than the sequential SOM and HC, especially when the 

sample size is large. For mixture model based methods, convergence of the algorithm can be 

very slow or even fail when the boundary of the parameter space is reached or when 

singularity of the covariance matrix occurs. Accordingly, in our experiments, for SFNM 

fitting and VISDA, if the boundary of the parameter space was reached, the mixture model 

was reinitialized and recomputed; adjustment of the eigenvalues of the covariance matrix 

was employed to prevent the covariance matrix from becoming singular.

Fourth, among all the compared methods, only VISDA utilizes human-data interaction in the 

clustering process. Although experienced users and domain experts tend to generate better 

clustering results, VISDA’s requirement on users’ skill is not high. With a few rounds of 

practice, all users can gain a good level of experience and produce reasonable clustering 

outcomes.

Fifth, we selected representative clustering algorithms from various algorithm categories to 

conduct our comparisons. Some of the selected algorithms may have more sophisticated 

variants; however, a more complex algorithm does not necessarily lead to stable clustering 

outcomes, as we observed in the experiments. It is also well known that clustering 

algorithms always reflect some structural bias associated with the involved grouping 

principle (5–7). Although, the purpose of this study is to assess which method is most 

effective for clustering microarray gene expression data, it is recommended that for a new 

dataset without much prior knowledge one should try several different clustering methods or 

use an ensemble scheme that combines the results of different algorithms.
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Abbreviations

VISDA visual statistical data analyzer

HC hierarchical clustering

KMC K-means clustering

SOM self-organizing maps

GO gene ontology

FOM figure of merit

SFNM standard finite normal mixture

MSC mean squared compactness

EM expectation maximization

MDL minimum description length

MLL mean log-likelihood

MCLL mean classification log-likelihood

BCME bias of class mean estimate

SCME standard deviation of class mean estimate

BCCME bias of class covariance matrix estimate

SCCME standard deviation of class covariance matrix estimate
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Figure 1. 
The flowchart of VISDA.
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Table 1

Microarray gene expression datasets used in the experiment

Dataset name Diagnostic task Biological category (number of samples in the 
category)

Number of 
classes/
selected 
genes

Source

SRBCTs Small round blue cell tumours Ewing sarcoma (29), burkitt lymphoma (11), 
neuroblastoma (18), and rhabdomyosarcoma (25)

4/60 (38)

Multiclass Cancer Multiple human tumour types Prostate cancer (10), breast cancer (12), kidney cancer 
(10), and lung cancer (17)

4/7 (39)

Lung Cancer Lung cancer sub-types and 
normal tissues

Adenocarcinomas (16), normal lung (17), squamous cell 
lung carcinomas (21), and pulmonary carcinoids (20)

4/13 (40)

UM Cancer Classification of multiple 
human cancer types

Brain cancer (73), colon cancer (60), lung cancer (91), 
ovary cancer (119, including 6 uterine cancer samples)

4/8 (41)

Ovarian Cancer Ovarian cancer sub-types and 
clear cell

Ovarian serous (29), ovarian mucinous (10), ovarian 
endometrioid (36), and clear ovarian cell (9)

4/25 (42, 43)

MMM-Cancer 1 Human cancer data from multi-
platforms and multi-sites

Breast cancer (22), central-nervous meduloblastoma (57), 
lung-squamous cell carcinoma (20), and prostate cancer 
(39)

4/15 (44)

MMM-Cancer 2 Human cancer data obtained 
multi-platforms and multi-sites

Central-nervous glioma (10), lung-adenocarcinoma (58), 
lung-squamous cell carcinoma (21), lymphoma-large B 
cell (11), and prostate cancer (41)

5/20 (44)
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