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Abstract

Targeting intracellular protein turnover by inhibiting the ubiquitin-proteasome pathway as a 

strategy for cancer therapy is a new addition to our chemotherapeutic armamentarium, and has 

seen its greatest successes against multiple myeloma. The first-in-class proteasome inhibitor 

bortezomib was initially approved for treatment of patients in the relapsed/refractory setting as a 

single agent, and was recently shown to induce even greater benefits as part of rationally-designed 

combinations that overcome chemoresistance. Modulation of proteasome function is also a 

rational approach to achieve chemosensitization to other anti-myeloma agents, and bortezomib has 

now been incorporated into the front-line setting. Bortezomib-based induction regimens are able to 

achieve higher overall response rates and response qualities than was the case with prior standards 

of care, and unlike these older approaches, maintain efficacy in patients with clinically- and 

molecularly-defined high-risk disease. Second-generation proteasome inhibitors with novel 

properties, such as NPI-0052 and carfilzomib, are entering the clinical arena, and showing 

evidence of anti-myeloma activity. In this spotlight review, we provide an overview of the current 

state of the art use of bortezomib and other proteasome inhibitors against multiple myeloma, and 

highlight areas for future study that will further optimize our ability to benefit patients with this 

disease.
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Introduction

Multiple myeloma is a neoplastic proliferation of plasma cells (1) which normally serve as 

engines for the large-scale synthesis of immunoglobulins. It is perhaps both ironic and 

fitting, therefore, that one of the most successful therapeutics against this disease disrupts 
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normal protein homeostasis by targeting the proteasome. As part of the ubiquitin-

proteasome pathway, the proteasome is the final common effector of the vast majority of 

regulated intracellular proteolysis. Proteins destined for turnover are tagged with 

polyubiquitin chains by the ubiquitin conjugation system, which was elucidated by Nobel 

laureates Aaron Ciechanover, Avram Hershko, and Irwin Rose (2, 3). Target proteins are 

subject to turnover through the 20S and 26S proteasomes, which were characterized by 

Alfred Goldberg, Marian Orlowski, and Martin Rechsteiner (4–6). Each 20S particle, which 

also serves as the core of the 26S proteasome, contains up to five proteolytic activities which 

cleave proteins after acidic, basic, branched chain, hydrophobic, and small neutral amino 

acids, generating oligopeptides and, eventually, amino acids. Peptide inhibitors of the 

proteasome were initially synthesized to probe its proteolytic functions (7, 8). Interest in 

their potential as therapeutic agents was raised by later studies which determined that they 

induced apoptosis in both in vitro (9, 10) and in vivo (11, 12) tumor model systems.

The emergence of multiple myeloma as a rational target for proteasome inhibition was in 

part supported by pioneering studies showing the prominent role of the transcription factor 

nuclear factor kappa B (NF-κB) in the biology of this disease. As detailed in several 

excellent reviews (13, 14), NF-κB promotes myelomagenesis by inducing growth and 

angiogenesis factors such as interleukin (IL)-6 and vascular endothelial growth factor; by 

activating important cell cycle regulators such as c-Myc and Cyclin D1; by promoting an 

anti-apoptotic state through intermediates such as Bcl-2, and Bcl-xL; and by enhancing 

myeloma cell adherence to the surrounding stroma such as through effects on fibronectin 

and vascular cell adhesion molecule-1. Proteasome inhibitors suppress NF-κB activity by 

stabilizing the inhibitory molecule IκB, which binds NF-κB and prevents its nuclear 

translocation, thereby down-regulating levels of its targets and producing a potent anti-

myeloma effect (15). Notably, mutations that activate the canonical or non-canonical NF-κB 

pathway predict for a better response to bortezomib therapy (16, 17). In that the proteasome 

is involved in turnover of 80% or more of cellular proteins (18), proteasome inhibition also 

has a number of other effects. Many of these contribute to anti-tumor activity, such as by 

stabilizing pro-apoptotic p53 and Bax proteins, dissipating the mitochondrial transmembrane 

potential and inducing release of cytochrome c, activating c-Jun-N-terminal kinase (JNK), 

and stimulating endoplasmic reticulum (ER) stress. The latter may be especially important, 

in that some studies have suggested that the large basal level of ER stress associated with 

high levels of immunoglobulin production makes myeloma especially sensitive to 

proteasome inhibitors (19). Other effects of proteasome inhibitors appear to promote cellular 

survival, such as activating multiple heat shock protein (HSP) family members, inducing the 

stress response protein MKP-1, and promoting activity of the protein kinase B/Akt pathway 

(Table 1)(20). Fortunately, on balance, the net effect is typically a pro-apoptotic one, as 

evidenced by the findings of the first study of PS-341, now known as bortezomib, the first-

in-class proteasome inhibitor to reach the clinic (21). All nine patients with plasma cell 

dyscrasias derived some benefit from therapy in this phase I trial, including one durable 

complete remission (CR), in part setting the stage for its further development.
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Bortezomib in the relapsed/refractory setting

The anti-myeloma activity of bortezomib was initially confirmed in two multi-center phase 

II trials (22–25), the larger of which, led by Richardson and colleagues (22), administered 

bortezomib at the most commonly used dose and schedule, 1.3 mg/m2 on days 1, 4, 8, and 

11 of every 21-day cycle. Among 193 evaluable patients, of whom 91% had disease that was 

refractory to their previous therapy, partial response (PR) or better was seen in 27%, of 

whom 10% achieved a CR or near-CR (nCR). Many of these patients had never been in CR 

previously and, indeed, achieving CR was then a rare outcome in this setting. Also of note, 

the median time to progression (TTP) after bortezomib was 7 months, compared to 3 months 

on whatever had been the previous therapy. This also was a decidedly unusual and exciting 

outcome in myeloma, where response durability typically decreases with successive salvage 

regimens (26). Adverse events that reached at least moderate severity included 

thrombocytopenia, seen in 28% of patients, fatigue, seen in 12%, peripheral neuropathy, also 

in 12%, and neutropenia, seen in 11%. Bortezomib-mediated thrombocytopenia and 

peripheral neuropathy have since been extensively characterized, with the former being 

predictable and transient (27), and both being manageable and reversible (28–30). These 

findings led to the approval of bortezomib by the Food and Drug Administration for 

relapsed/refractory myeloma in patients with at least two prior lines of therapy.

Bortezomib was then studied in a randomized phase III trial in comparison with 

dexamethasone targeting relapsed myeloma (31). Toxicities were comparable to those seen 

in phase II, though the larger accrual and randomized design allowed for the identification of 

an increased, 13% risk of herpes zoster reactivation for bortezomib-treated patients (32). 

This finding has been confirmed in other trials (33), though its occurrence can be prevented 

with acyclovir (34). The initially reported response rate to bortezomib was 38%, which 

improved to 43% with continued therapy (35), and included CRs in 9%. These compared 

favorably to dexamethasone, where a PR or better was seen in only 18% of patients, with 

less than 1% CRs. Moreover, these improvements translated into superior durability, with a 

TTP of 6.22 months on bortezomib, and only 3.49 months with dexamethasone. As a result, 

median survival improved from 23.7 months for dexamethasone to 29.8 months for 

bortezomib (35). This was especially impressive in light of the fact that almost two-thirds of 

patients crossed over to bortezomib after a planned interim analysis showed it’s superiority. 

On the basis of these findings, bortezomib was approved for patients with relapsed and/or 

refractory myeloma who had received at least one prior therapy. Moreover, these data 

suggested that earlier bortezomib use was associated with a greater benefit, and pointed 

toward its adoption into front-line therapy.

Subsequent analyses of the data from these trials, as well as further clinical experience, 

revealed additional important findings that have guided bortezomib development, and 

informed our use of this drug. While the day 1, 4, 8, and 11 schedule remains the most 

commonly used, limited studies suggest that bortezomib given weekly, either alone at 1.6 

mg/m2 (36), or at 1.3 mg/m2 with methylprednisolone (37), can be effective. Novel 

toxicities have been described in a minority of patients, including tumor lysis syndrome (38–

40), and pulmonary complications (41, 42), the latter of which may be reduced with 

dexamethasone (43), as well as rare skin toxicity (44) and hepatitis (45). More common 
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drug-related toxicities, especially thrombocytopenia and peripheral neuropathy, appear to 

not be cumulative, allowing for extended dosing (46). Peripheral neuropathy may be due to 

the accumulation of aggresomes in dorsal root ganglia (47, 48), which may provide a 

mechanism-based approach to reduce its development. Other studies have suggested a 

possible contribution from increased tubulin polymerization and stabilization (49) and, in 

some cases, of immune-mediated mechanisms (50). Bortezomib was found to be safe and 

effective in patients with clinically-defined high-risk disease, including older patients (51), 

those with an elevated β2-microglobulin (52), and those with renal failure (53–55). Indeed, 

bortezomib can be effective in contributing to a reversal of acute renal failure (56–58). Also, 

bortezomib can overcome molecularly-defined high-risk myeloma, especially disease 

characterized by deletion of chromosome 13 (59), and possibly by the 4;14 translocation 

(60, 61). Finally, a number of studies have shown the beneficial effects of bortezomib or 

bortezomib-based combinations on bone metabolism (62–66), including its ability to 

activate osteoblasts. Indeed, one analysis suggested that increases in bone alkaline 

phosphatase levels were a predictor of bortezomib response (67).

Bortezomib-based combination regimens

In addition to the efficacy of bortezomib as a single agent, proteasome inhibition is a 

rational approach to overcome chemoresistance, and achieve chemosensitization. Multiple 

mechanisms contribute to these endpoints, including suppression of chemotherapy-mediated 

NF-κB activation, inhibition of maturation of the P-glycoprotein multi-drug resistance 

pump, and induction of phosphorylation and cleavage of anti-apoptotic Bcl-2 into pro-

apoptotic fragments, among others (Table 2)(20, 68, 69). A large number of bortezomib-

based combinations have been tested pre-clinically, many of which have made their way 

into the clinic. Dexamethasone is one of the most common agents to be combined with 

bortezomib, based in part on pre-clinical studies showing that it increased anti-myeloma 

activity (15, 70). Several clinical trials have documented that dexamethasone addition 

improves the response rate and response quality in up to 34% of patients after a suboptimal 

benefit from single-agent bortezomib (22, 71, 72). Higher response rates have also been seen 

when this two-drug regimen is used initially (66, 73), as is the case for bortezomib with 

other corticosteroids (37), though randomized trials comparing these have not been 

performed.

One regimen for which randomized data are available is bortezomib with pegylated 

liposomal doxorubicin (Doxil®; PLD), which was designed based on studies showing 

anthracyclines suppressed induction of anti-apoptotic HSP and stress response proteins (74–

76). A phase I trial showed this regimen was tolerable and active (77), with a greater 

response rate than that expected of bortezomib alone, and a better response durability, with a 

TTP of 9.3 months (78). These findings led to a pivotal randomized, phase III international 

study of bortezomib/PLD compared to bortezomib. This trial showed that addition of PLD 

significantly enhanced the response quality, with a 42% increase in the proportion of 

patients achieving a CR or very good partial remission (VGPR); the median duration of 

response, which increased from 7.0 months to 10.2; the median TTP, which rose from 6.5 to 

9.3 months (79); and showed an early trend towards an improved overall survival (OS). 

Shah and Orlowski Page 4

Leukemia. Author manuscript; available in PMC 2016 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Bortezomib/PLD was also active in patients whose disease was refractory to other anti-

myeloma agents (80), and was safe and effective in patients with renal compromise (81).

Other bortezomib-based combinations that have been studied for relapsed and/or refractory 

myeloma (Table 3) have included regimens incorporating alkylators, anthracyclines, HSP-90 

inhibitors, histone deacetylase (HDAC) inhibitors, and monoclonal antibodies. Many of 

these have been rationally designed based on findings that proteasome inhibition suppresses 

DNA damage repair pathways (70), supporting combinations with DNA damaging agents; 

activates the anti-apoptotic HSP and stress responses (82, 83), as well as the pro-survival 

protein kinase B/Akt (84, 85), supporting regimens with HSP inhibitors such as 

tanespimycin and the anti-IL-6 monoclonal antibody CNTO 328 (83); and induces 

aggresome formation as an alternative means to remove misfolded proteins (86, 87), 

supporting the use of HDAC inhibitors which block this pathway. Studies of these regimens 

have generally found that bortezomib can be delivered at, or very near its standard dose and 

schedule, even with the addition of other drugs, typically with little, if any, overlapping 

toxicities. Several of these have suggested that bortezomib-based combinations are 

associated with lower rates of neuropathy (79), in some cases possibly due to decreased 

aggresome formation (88) in dorsal root ganglia. In addition, these studies have generally 

shown encouraging signs of activity, including response rates approaching 100% in some 

cases (89, 90), and in others the ability to induce responses in patients whose disease was 

previously bortezomib-refractory (91–95). Pivotal trials that could lead to regulatory 

approvals are underway or planned with several of these, including bortezomib with CNTO 

328, perifosine, tanespimycin, and vorinostat.

Bortezomib for previously chemotherapy-naïve multiple myeloma

Validation of the activity of bortezomib against myeloma quickly prompted investigators to 

incorporate it into the front-line setting to improve the efficacy of induction therapy. The 

first such study, led by Jagannath and colleagues, evaluated bortezomib alone at the 

relapsed/refractory dose and schedule, to which dexamethasone was added at 40 mg on each 

day of bortezomib therapy, and the day after, if less than a PR was achieved after two cycles 

(96). Common adverse events of at least grade 2 severity included sensory neuropathy, seen 

in 31% of patients, constipation, seen in 28%, myalgias, also in 28%, and fatigue, seen in 

25%. Bortezomib alone produced an overall response rate of 40% in 32 patients, including 

12% who achieved a CR or nCR, and after addition of dexamethasone, the response rate 

improved to 88%, including 25% with CR/nCR. Activity of the bortezomib/dexamethasone 

regimen was confirmed by a later phase II study, which found a response rate of 66% using 

lower corticosteroid doses (97). A large number of other bortezomib-based combinations 

have since been evaluated (Table 4), and response rates of 90% or better, and CR rates of 

30% or more prior to transplantation have been achieved. Notable examples include 

regimens that have added anthracyclines, including bortezomib with infusional doxorubicin 

and dexamethasone (PAD; (98, 99)), or bortezomib with PLD/dexamethasone (100, 101); 

combinations that have added immunomodulatory drugs, including bortezomib with 

thalidomide and dexamethasone (TD; (102)) or lenalidomide and dexamethasone (103); and 

groupings with cytotoxic agents, such as bortezomib with cyclophosphamide (104, 105), and 

bortezomib with dexamethasone, continuous-infusion cisplatin, doxorubicin, 
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cyclophosphamide, etoposide, and daily thalidomide (DT-PACE; (106)), or with DT-PACE 

in the setting of Total Therapy III (107).

Phase III trials of these regimens are underway, or in some cases have been completed, 

comparing modern induction therapy with older standards of care (Table 4). Harousseau and 

colleagues have reported on their study randomizing patients to bortezomib/dexamethasone 

or infusional vincristine and doxorubicin with oral dexamethasone (VAD; (108)). Patients 

receiving bortezomib/dexamethasone had a better overall response rate and response quality, 

with 39% achieving at least a VGPR, compared to only 16% after VAD. This edge was 

maintained after transplantation, with 61% reaching a VGPR or better if bortezomib/

dexamethasone was used, versus only 44% after VAD. Moreover, since a second transplant 

was added to patients who did not reach a VGPR after their first transplant, more patients 

induced with VAD required this additional therapy. Despite this, the early follow-up data 

indicate a superior progression-free survival (PFS) and fewer deaths among the group 

induced with bortezomib/dexamethasone. Important findings have also been reported by 

Cavo and colleagues, who have compared bortezomib with thalidomide and dexamethasone 

(VTD) to TD (109). Induction therapy with VTD provided a 62% VGPR or better rate 

compared to only 29% for TD, and after transplantation this benefit was maintained, with 

76% having VGPR or better if they started with VTD, compared to only 58% of those who 

had received TD. Notably, both studies found no impact on stem cell mobilization, 

collection, and later engraftment by the addition of bortezomib, as has been the case for 

other pre-transplant trials. Also, both found that the bortezomib-based therapy remained 

superior in patients with high-risk disease, including patients with an elevated β2-

microglobulin (108), deletion of chromosome 13 (108, 109), the 4;14 translocation (109), or 

deletion of p53 (109).

For transplant-ineligible patients, bortezomib-based therapies that have been studied include 

bortezomib with MP (110, 111), with thalidomide and prednisone (112), and with MP and 

thalidomide (113), among others (Table 4). Mateos and colleagues reported the results of a 

phase I/II trial of bortezomib with melphalan and prednisone (VMP), whose principal 

toxicities included thrombocytopenia, seen in 51% of patients, neutropenia in 43%, 

peripheral neuropathy in 17%, and diarrhea in 16% of this older population (110). A 

response rate of 89% was noted, including 32% with immunofixation-negative CR, half of 

whom were also in remission by immunophenotyping. Longer-term follow-up showed a 

median TTP of 27.2 months, which was not influenced by poor-risk features such as an 

elevated β2-microglobulin or adverse cytogenetics (111). These findings provided the 

rationale for an international, randomized phase III study comparing VMP with MP, which 

revealed the three-drug regimen induced a 71% overall response rate and CRs in 30%, 

compared to only 35% and 4%, respectively, for MP (114). Time to progression was the 

primary study endpoint, and proved to be 24.0 months for VMP, compared with 16.6 

months for MP, while the median response duration was prolonged from 13.1 months for 

MP, to 19.9 for VMP. Importantly, though the median OS had not been reached on either 

arm, a significant trend was emerging favoring VMP, with a hazard ratio of 0.64 after a 

median follow-up of 25.9 months.
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Bortezomib in other myeloma-related settings

A number of investigators have begun to use bortezomib or a bortezomib-based combination 

as a consolidation or maintenance strategy. One such study found that bortezomib/

dexamethasone after a response to salvage therapy for relapsed and/or refractory disease 

converted six PRs into either VGPRs or CRs, and decreased M-protein values in 11/40 

patients (115). Median TTP was 23 months with a PFS of 69% at 1-year, and an OS of 63% 

at 1-year, though four patients died of infectious complications. Another trial focused on 

high risk patients who received both induction with bortezomib as a single-agent, providing 

a 48% PR rate, and then followed this with maintenance bortezomib, which upgraded one 

patient to a CR (116). Among fifteen patients who received maintenance, the median PFS 

was 19.8 months though, notably, among seven who progressed on maintenance and were 

reinduced with bortezomib, none responded.

In the transplant setting, several investigators have evaluated incorporating bortezomib into 

the conditioning regimen. At the University of Arkansas, bortezomib was dosed at 1.0–1.3 

mg/m2 on days −4 and −1 prior to melphalan, which was administered at up to 250 mg/m2 

in fractionated doses (117). This approach was safe, with non-hematologic toxicities of at 

least grade 3 including mucositis, diarrhea, febrile neutropenia, pneumonia/sepsis, and 

fatigue. Of 27 evaluable patients, which consisted of a high-risk population with poor risk 

cytogenetic features and up to 75% having had prior transplantation, PR was obtained in 9 

(39%), including 6 (26%) who achieved a CR. Another study focusing on high-risk patients 

treated those with primary refractory myeloma and plasma cell leukemias with two cycles of 

bortezomib, then high dose melphalan and bortezomib conditioning, and finally tandem 

transplantation (118). No dose-limiting toxicities (DLTs) were seen, and an overall response 

rate of 90% was noted, including 53% in VGPR or better. In lower risk patients with 

relapsed myeloma, bortezomib provided an even higher VGPR or better rate of 87% in 15 

patients (119). More intense dosing of bortezomib was studied by L’Intergroupe 

Francophone du Myelome, who added 1.0 mg/m2 of bortezomib on days −6, −3, +1 and +4 

to high-dose melphalan on day −2 (120). Among 57 patients, this resulted in mucositis in 

39%, erythroderma in 30%, headache in 20%, hallucinations in 9%, and grade 2 peripheral 

neuropathy in 3 cases, as well as five serious adverse events, including pulmonary embolism 

in one patient, seizure in one, acute cholecystitis in one, and two cases of pneumonia. 

Twenty patients (36%) achieved a CR and another 17 (30%) a VGPR, and further studies of 

this regimen are planned. Importantly, the impact of bortezomib scheduling may require 

further study, since one trial evaluated giving bortezomib 24 hours before or after high-dose 

melphalan (121). While there were no differences in toxicities or engraftment, bortezomib 

after melphalan produced higher levels of apoptotic indexes in the marrow, suggesting the 

possibility of a greater myeloma cell kill.

Greater experience has been garnered using bortezomib in maintenance or consolidation 

after prior transplantation. One common finding is that bortezomib produced a higher rate of 

reactivation of herpes zoster (122–126) than in the relapsed and/or refractory setting, 

indicating a definite need for prophylaxis. Several single-arm studies have shown that 

bortezomib produced high overall response rates (123, 125, 127), an improvement in 

response quality (124, 126), and an increased PFS (123, 125, 127). In one notable trial, 62 
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patients received induction therapy with VAD, followed by VTD, and then bortezomib 

maintenance after autologous transplantation. Complete remission or nCR was seen in 68% 

of patients, who had a 98% 1-year OS (127). Another interesting approach applied VTD as a 

consolidation in 40 patients who were in CR or VGPR after transplantation, and were 

thalidomide- and bortezomib-naïve (128). Six converted into a molecular remission based 

on studies of an immunoglobulin heavy chain gene rearrangement. Notably, none showed 

evidence of clinical relapse with a median follow-up of 26 months, while eight relapses were 

seen in the group that did not achieve molecular remission with a median of 12 months.

Control of graft-versus-host disease (GVHD) may be another potential application for 

bortezomib. This is supported by pre-clinical studies showing bortezomib’s ability to inhibit 

in vitro mixed lymphocyte responses and promote apoptosis of alloreactive T cells, resulting 

in protection from acute GVHD without reducing graft-versus-leukemia effects (129). 

Interestingly, this depended on the timing of bortezomib administration, and was seen if it 

was given immediately after transplantation (129), whereas delayed administration 

exacerbated GVHD (130). The latter is supported by clinical data from one report showing a 

mild aggravation of existing acute or chronic GVHD in several patients, and appearance of 

de novo GVHD in one, when bortezomib was used after allogeneic transplantation (126). 

Other studies, however, have reported bortezomib could be safely given after prior 

allografting without exacerbating GVHD, and showed the ability to improve survival in 

responding patients (131), and to even control chronic GVHD (132).

Retreatment with, and resistance to bortezomib

The incorporation of bortezomib into the up-front setting will provide significant benefits to 

patients requiring induction chemotherapy. However, most of the data in the relapsed and/or 

refractory setting were obtained in bortezomib-naïve patients, and these findings may 

therefore be less applicable to cohorts who have been previously proteasome inhibitor-

exposed. Fortunately, there are some data on retreatment in patients who have been 

previously bortezomib-exposed. One retrospective study of 22 patients who had achieved a 

68% response rate with bortezomib alone or with dexamethasone on the phase II or III trials 

targeting relapsed and/or refractory disease, found that retreatment produced a 50% response 

rate (133). A second, larger study of 82 patients who had achieved an initial response rate of 

59%, found that retreatment induced a 22% overall response rate (134). Notably, patients 

who had achieved at least a VGPR previously were more likely to respond on rechallenge, 

and had a 44% response rate. An interesting approach may be to start with bortezomib alone, 

and then to add other drugs if the response is less than brisk, such as dexamethasone, or MP, 

which resulted in a 73% response rate in one study (135).

While retreatment, especially with combination regimens, appears to be an attractive option, 

the decreased responses rate seen on rechallenge indicates the emergence of resistance. 

Elucidation of these mechanisms is an important goal to identify approaches to subvert them 

and resensitize myeloma to bortezomib, and to possibly find approaches to prevent them 

from arising altogether. Early reports indicate that increased and/or altered proteasome 

subunit expression may play a role (136, 137). This appears to be especially the case for the 

β5 proteasome subunit, which contains the chymotrypsin-like activity and is the major target 

Shah and Orlowski Page 8

Leukemia. Author manuscript; available in PMC 2016 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for bortezomib. Its overexpression (137–139) and mutation (139, 140) has induced 

bortezomib resistance in several in vitro-derived models, and studies to determine if similar 

mechanisms may be relevant in the clinical arena are underway. These findings suggest that 

proteasome inhibitors that bind irreversibly, and/or to a greater number of proteasome 

subunits with a more profound impact on proteolysis, could be of interest. Some support has 

been obtained for this in studies of NPI-0052 (141) and carfilzomib (142), both of which are 

irreversible inhibitors that have overcome bortezomib resistance in pre-clinical models. 

Other investigators have reported the presence in primary cells of proteasome inhibitor-

resistant pathways of NF-κB activation (143, 144), suggesting that combination regimens 

with other strategies to suppress NF-κB, such as with IκB kinase inhibitors (145), may 

prove fruitful. Finally, knockdown of multi-drug resistance mechanisms, including the P-

glycoprotein (146), and mitochondria-mediated anti-apoptotic pathways (147), have also 

been noted to overcome bortezomib resistance pathways, providing many attractive avenues 

for further research.

Interactions between bortezomib and dietary supplements

Most proteasome inhibitors are based on peptides, which serve as active site analogues that 

bind the proteasome subunits, and also contain a chemical entity, or “warhead,” which binds 

to the active site threonine. Julian Adams presciently selected boronic acid as the 

bortezomib warhead due to its ability to greatly enhance potency and specificity in 

comparison with older agents such as peptidyl-aldehydes (148, 149). However, boronates 

also interact with compounds that contain 1,2- or 1,3-diols to form cyclic moieties (150) in 

which the boronic acid is no longer free to bind the proteasome. Consistent with this 

possibility, vitamin C, a 1,2-diol, has been described to bind and inactivate bortezomib, 

thereby reducing its pre-clinical anti-cancer activity (151). Similarly, epigallocatechin 

gallate (EGCG), a polyphenolic green tea component, has comparable capabilities (152). 

These findings have led to recommendations that patients receiving bortezomib should limit 

their intake of vitamin C, EGCG, and related anti-oxidants (153). This advice is likely to be 

especially applicable for patients who take pharmacologic doses of such supplements (154, 

155), highlighting the importance for health-care providers to make a careful and regular 

inventory of the agents being used by their patients. Finally, any maneuvers that increase 

reactive oxygen species (ROS) levels could contribute to the oxidative deboronation of 

bortezomib mediated by cytochrome P450 (156), and therefore potentially reduce anti-

myeloma activity, though this could be negated by the pro-apoptotic activities of ROS (157). 

Notably, proteasome inhibitors with different chemistries, such as epoxyketones, would be 

expected to not be affected in this fashion (153).

Novel proteasome inhibitors

With validation of the proteasome as a target for myeloma therapy, interest was enhanced in 

the development of inhibitors that could have novel, attractive features. A number of such 

agents have been validated in the pre-clinical setting, most notably NPI-0052 (141, 158) and 

carfilzomib (142, 159). NPI-0052, also known as salinosporamide A, is related to one of the 

first proteasome inhibitors identified in nature, lactacystin (160). This agent was found to 

bind irreversibly to the subunits responsible for the chymotryptic and tryptic proteasome 
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activities, thereby inducing apoptosis through activation of caspase-8 with enhanced potency 

compared to bortezomib (141). Perhaps due to these properties, NPI-0052 was able to 

overcome bortezomib resistance and, interestingly, acted synergistically with bortezomib 

(158). Preliminary findings of a phase I study of this agent targeting myeloma patients have 

shown it to be well tolerated using weekly intravenous injection for three consecutive weeks 

out of four (161). Toxicities were comparable to those of bortezomib, but notable for an 

apparent lack of neurotoxicity, though one patient did develop reversible renal insufficiency. 

Stable disease was seen as the best response in several patients with previously progressing 

myeloma, and further studies are underway.

Carfilzomib is a peptide epoxyketone derived from epoxomicin (162) which, like NPI-0052, 

binds irreversibly to the chymotrypsin-like activity, and may be more proteasome-targeted 

than bortezomib (163). Preclinical studies showed that carfilzomib was more potent in its 

ability to induce caspase-8 and caspase-9 than bortezomib, and could overcome bortezomib 

resistance in cell line and primary plasma cell models (142). Moreover, carfilzomib could be 

dosed on consecutive days in pre-clinical in vivo models without enhanced toxicity, and 

proteasome inhibition in excess of 80% could be achieved (159), distinguishing this agent 

from bortezomib. Starting with the hypothesis that carfilzomib could therefore achieve more 

prolonged, and perhaps more profound proteasome inhibition, and that this could result in 

enhanced efficacy, two phase I studies targeting B-cell-derived malignancies have now been 

completed. One of these used a regimen of daily dosing for five consecutive days followed 

by nine days off (164), while the other dosed carfilzomib daily for two days of three 

consecutive weeks, followed by twelve days off (165). The maximum tolerated dose (MTD) 

for the five consecutive day regimen proved to be 15 mg/m2, with DLTs consisting of 

febrile neutropenia and grade 4 thrombocytopenia, while other grade 3–4 events were 

primarily hematologic. Stable disease or better was achieved by six myeloma patients, 

including one who experienced a PR after having previously bortezomib-refractory disease 

(164). When carfilzomib was dosed on days 1, 2, 8, 9, 15, and 16 every 28-days, the MTD 

was 20 mg/m2, with a hypoxic event noted as the DLT above this level. In addition, three of 

five patients dosed at 27 mg/m2 experienced an increase in creatinine of up to grade 2 

severity that was typically associated with a rapid decline in M-protein, but without 

evidence of tumor lysis syndrome, and which did not recur after repeat dosing. Four 

myeloma patients achieved at least a PR (165), including some whose disease had been 

previously refractory to bortezomib-based combinations.

Phase II studies of carfilzomib are currently underway using the latter dosing schedule 

targeting patients with relapsed and refractory (166) or refractory myeloma (167). In the 

former group, common adverse events included fatigue, nausea, upper respiratory infection, 

and diarrhea, while worsening of hematologic parameters was predominantly of grade 1 or 2 

severity. An increased creatinine was seen in 15/46 patients, including four with acute renal 

failure, which in some patients may have been associated with tumor lysis, but led to dose 

discontinuation in only three patients. Among 39 evaluable patients, all of whom had 

received prior bortezomib, ten (26%) achieved at least a minor response or better, including 

five with PRs, and sixteen additional patients had stable disease (166). In relapsed patients, 

non-hematologic and hematologic toxicities were similar, and an increased creatinine was 
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seen in 5 patients (16%), with two cases of possible tumor lysis that led to one patient 

discontinuing therapy and one death (167). Of note, after modification of both trials to 

incorporate tumor lysis prophylaxis, renal events have become rare. Also, despite a high rate 

of baseline neuropathy in both patient populations, reports of worsening neuropathic 

symptoms were uncommon. Carfilzomib was active in patients with bortezomib-naïve 

disease, inducing a PR or better in at least 54% of thirteen evaluable patients, including one 

CR, and also in bortezomib-exposed patients, among whom 3/16 (19%) achieved a PR. 

Time to progression was 169 days in the latter group, and the median had not yet been 

reached for the former.

Conclusions and future directions

Inhibition of the proteasome as a strategy against multiple myeloma has revolutionized the 

care of patients afflicted with this malignancy, and contributed significantly to the increasing 

overall survival that is now seen in comparison with historical controls (168, 169). Use of 

bortezomib, the first-in-class proteasome inhibitor, as a single agent, and of bortezomib with 

dexamethasone, is a standard of care and widely accepted strategy, respectively, against 

relapsed and/or refractory myeloma. The regimen of bortezomib with PLD has been 

validated in a phase III trial as being superior to bortezomib alone, and other pivotal trials of 

bortezomib-based combinations are underway (Table 6). Thus, it is very likely that, in the 

near future, we will have several doublet regimens to select from in the relapsed and/or 

refractory setting. Studies will then be needed comparing these combinations to determine 

their relative risks and benefits, and to evaluate the possibility that baseline molecular 

aspects of each patient’s disease would help to predict which could be most effective. 

Bortezomib has now been moved into the up-front setting, and received regulatory approval 

as an induction therapy in combination with MP for transplant-ineligible patients. Moreover, 

completed and ongoing studies (Table 6) in transplant-eligible populations will probably 

lead to additional approvals by proving bortezomib-based therapies to be superior to 

previous standards such as VAD and TD. Attractive features of bortezomib in all these 

settings include its efficacy and safety in clinically- and molecularly-defined high risk 

disease, its beneficial effects on bone metabolism, and especially its ability to augment the 

efficacy of other anti-myeloma agents in an additive to synergistic manner with an 

acceptable toxicity profile.

Despite these advances, much remains to be learned about the role of proteasome inhibitors 

in multiple myeloma. Bortezomib has been shown to be safe for consolidation or 

maintenance after prior standard- or high-dose therapy, for incorporation into pre-transplant 

conditioning, and for treatment of GVHD. However, appropriately powered, randomized 

studies with long-term followup are needed to validate the early parameters of efficacy that 

have been obtained. Of greatest concern is the possibility that, with the use of bortezomib-

based induction therapy, patients at relapse will have disease that is less responsive to 

rechallenge with bortezomib-containing combinations. Early studies of retreatment 

strategies after prior therapy of relapsed/refractory disease (Table 5) are somewhat 

reassuring, in that they show that there is definitely a subgroup of patients who can benefit 

from the reuse of bortezomib. Moreover, it is possible that in a first-relapse setting, 

myeloma will be more responsive to bortezomib-based therapy after induction with 
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bortezomib than is the case in the relapsed/refractory setting, where patients have received 

multiple prior lines of therapy. Some support for this is provided by initial data of the results 

of bortezomib use in the salvage setting after prior induction with VMP (170), showing that 

the overall and CR rates are comparable to those seen in the bortezomib-naïve relapsed/

refractory setting. Again, however, appropriately powered, randomized studies with long-

term follow-up will be needed to validate these approaches. Moreover, the fact that response 

rates at rechallenge in patients with previously bortezomib-sensitive disease are typically 

lower than in the previous line, indicates the emergence of resistance to bortezomib in at 

least a subpopulation. A greater understanding of the mechanisms behind this phenomenon 

at the clinical level is urgently needed to help identify strategies that may be successful in 

overcoming such resistance. Since multiple mechanisms are likely to contribute to this 

phenotype, by studying which pathways are activated in their particular myeloma, it may be 

possible to individualize therapy for such patients. In that bortezomib in combination with 

Akt (91), HDAC (94, 171), or HSP-90 (93) inhibitors has in some cases been effective in 

patients with previously bortezomib-refractory disease, it is possible that we already have 

some of the necessary agents at our disposal to resensitize myeloma to bortezomib.

Another successful approach in this setting may be to switch to a different proteasome 

inhibitor, in analogy with data on the use of immunomodulatory agents against myeloma 

(172–174), which show that, for example, lenalidomide can be effective despite prior 

thalidomide use (175). Encouraging pre-clinical data have been obtained in this regard with 

NPI-0052 and carfilzomib, which utilize different chemistries than bortezomib, bind the 

proteasome irreversibly, and may inactivate more proteasome activities in vivo. Both of 

these have entered clinical trials and are showing good tolerability, as well as early 

suggestions that they may induce a lower rate of peripheral neuropathy. Carfilzomib in 

particular, which has advanced further in development, is showing encouraging activity as a 

single agent in both bortezomib-naïve and bortezomib-exposed populations. However, the 

former have generally shown a better response rate, supporting the possibility that there may 

be at least some cross-resistance between all proteasome inhibitors. Moreover, as is the case 

for bortezomib, combination regimens based on carfilzomib and NPI-0052 will probably 

prove most effective against myeloma. It is likely that additional proteasome inhibitors with 

novel properties may yet find applicability as part of our chemotherapeutic armamentarium 

against multiple myeloma. Several inhibitors that will be dosed using the oral route are now 

entering the clinical arena, including both boronic acid (176, 177) and epoxyketone-based 

agents (178). Also, immunoproteasome-specific inhibitors (179) that would be likely to have 

less associated non-hematologic toxicity due to the relatively restricted expression of the 

immunoproteasome subunits to hematopoietic tissues, may represent another attractive class 

of agents. In conclusion, it is likely that proteasome inhibitors will form an increasingly 

important part of our attack against multiple myeloma, and will contribute prominently to 

our ultimate endpoint of curing patients of this malignancy.
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Abbreviations

CR complete remissions

D-PACE dexamethasone, continuous-infusion cisplatin, doxorubicin, 

cyclophosphamide, and etoposide

DT-PACE dexamethasone, continuous-infusion cisplatin, doxorubicin, 

cyclophosphamide, and etoposide with daily thalidomide

DLTs dose-limiting toxicities

EBMT European Group for Blood & Marrow Transplantation

ECOG Eastern Cooperative Oncology Group

EGCG epigallocatechin gallate

GVHD graft-versus-host disease

HDAC histone deacetylase

HSP heat shock protein

IL interleukin

JNK c-Jun-N-terminal kinase

MTD maximum tolerated dose

nCR near-complete remission

NF-κB nuclear factor kappa B

NMSG Nordic Myeloma Study Group

NR not reported

ORR overall response rate

OS overall survival

PAD bortezomib with infusional doxorubicin and dexamethasone

PETHEMA Programa para el Estudio de la Terapéutica en Hemopatía Maligna

PFS progression-free survival

PLD pegylated liposomal doxorubicin

PR partial remissions

ROS reactive oxygen species

SWOG Southwest Oncology Group

TD thalidomide and dexamethasone

TTP time to progression

VAD infusional vincristine and doxorubicin with dexamethasone

VBAD vincristine with BCNU, Adriamycin, and dexamethasone
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VBMCP vincristine with BCNU, melphalan, cyclophosphamide, and prednisone

VGPR very good partial remission

VMP bortezomib with melphalan and prednisone

VTD bortezomib with thalidomide and dexamethasone
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Table 1

Overview of Some of the Molecular Effects of Proteasome Inhibitors That Contribute to Their Anti-myeloma 

Activity

Target Mechanism Consequence References

α4 integrin Downregulate expression of VLA-4 Overcome adhesion-mediated drug resistance (180)

BH3 proteins Stabilize BIK, NOXA and BIM Contribute to activation of Bax and Bak (181–183)

Calcium Dysrupt mitochondrial calcium uniporter Dysregulate intracellular calcium storage; induce caspase 
activation

(184)

Caveolin 1 Inhibit VEGF-triggered caveolin 
phosphorylation; decrease caveolin 

expression

Reduce myeloma cell migration and survival (185)

Cdkis Stabilize Cdkis such as p21 and p27 Arrest the cell cycle (15)

HIF-1α Stimulate FIH Inhibit tumor angiogenesis and tumor adaptation to hypoxia (186)

HLA Down-regulate surface expression of class I 
molecules

Enhance natural killer cell- mediated lysis of myeloma cells (187)

HSP-90 Induce HSP-90 expression and cell surface 
exposure

Enhance dendritic cell-mediated induction of immunity (188)

IL-6 Reduce stromal cell production of IL-6 
through NF-κB

Also down-regulate gp130 through caspase-
mediated process

Suppress IL-6-mediated growth and survival signals (189, 190)

IGF-1 Down-regulate IGF-1 and IGF-1R 
expression

Suppress IGF-1-mediated growth and survival signals (82)

JNK Activate JNK Upregulate Fas and activate caspase-8 and caspase-3 (82)

Mcl-1 Induce Mcl-1 cleavage Reduce anti-apoptotic Mcl-1; induce, pro-apoptotic Mcl-1 
fragments

(183, 191)

MKP-1 Induce MKP-1 expression Inhibit p44/42 MAPK-mediated growth and survival signals (74, 76)

NF-κB Stabilize IκB Multiple mechanisms; please see text for more details (70, 192)

p53 Cause accumulation and phosphorylation of 
p53

Induce downstream targets such as p21, NOXA, and Bax (193)

ROS Induce reactive oxygen species production Promote mitochondrial injury with release of pro-apoptotic 
factors

(157)

UPR Induce pro-apoptotic UPR genes; suppress 
anti-apoptotic UPR responses

Activate caspase-mediated apoptosis (86, 194, 195)

VEGF Suppress stromal cell production of VEGF Reduce myeloma cell migration and marrow angiogenesis (196)

Abbreviations: Bak, Bcl-2 homologous antagonist/killer; Bax, Bcl-2–associated X protein; BH3, Bcl-2 homology domain 3; BIK, Bcl-2 interacting 
killer; Cdkis, cyclin-dependent kinase inhibitors; Fas, tumor necrosis factor receptor superfamily, member 6; FIH, factor inhibiting HIF-1α; HLA, 
human leukocyte antigen; HIF, hypoxia-inducible factor; HSP, heat shock protein; IGF, insulin-like growth factor; IGF-1R, IGF-1 receptor; IκB, 
inhibitor of NF-κB; IL, interleukin; JNK, c-Jun-N-terminal kinase; MAPK, mitogen-activated protein kinase; Mcl, myeloid cell leukemia; MKP, 
mitogen-activated protein kinase phosphatase; NF-κB, nuclear factor kappa B; ROS, reactive oxygen species; UPR, unfolded protein response; 
VEGF, vascular endothelial growth factor; VLA, very late antigen
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Table 2

Overview of Additional Mechanisms of Action of Proteasome Inhibitors That Add to the Anti-myeloma 

Activity of Other Chemotherapeutics

Target Mechanism Consequence References

Bcl-2 Induce Bcl-2 phosphorylation and cleavage Sensitize to multiple cytotoxic agents (157, 197)

DNA-PK Suppress expression, and induce cleavage, of DNA 
PK and other DNA damage repair enzymes

Sensitize to DNA damaging agents such as alkylators 
and anthracyclines

(70, 193)

NF-κB Stabilize IκB Sensitize to multiple cytotoxic agents (70, 192)

PgP Inhibit normal maturation of precursor forms of PgP Reduce multi-drug resistance to chemotherapeutics 
subject to PgP

(146, 198, 199)

Survivin Reduce survivin levels in combination with 
cytotoxics

Sensitize to DNA damaging drugs (200)

Topo-I Prevent tumor-induced degradation of Topo-I Sensitize to agents that inhibit topoisomerase I (201)

Topo-IIα Stabilize Topo-IIα Sensitize to agents that inhibit topoisomerase IIα (202)

Abbreviations: Bcl-2, B-cell CLL/lymphoma-2; DNA-PK, DNA-dependent protein kinase; IκB, inhibitor of NF-κB; NF-κB, nuclear factor kappa 
B; PgP, P-glycoprotein; Topo, topoisomerase
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Table 3

Bortezomib-based Combination Regimens in the Treatment of Relapsed and/or Refractory Multiple Myeloma*

Regimen Study Phase Response Rates‡,§ Reference

Two-drug regimens

Bortezomib + pegylated liposomal doxorubicin I 73% (n=22) (77)

Bortezomib + melphalan I/II 47% (n=34) (203, 204)

Bortezomib + samarium lexidronam I 13% (n=24) (205)

Bortezomib + perifosine I/II 16% (n=57) (91)

Bortezomib + tanespimycin (cremophor formulation) I/II 46%‡ (n=40) (92)

Bortezomib + tanespimycin (suspension formulation) II NRˆ (n=63) (93)

Bortezomib + vorinostat I 26% (n=34) (94)

Bortezomib + panobinostat I 36%† (n=14) (171)

Bortezomib + CNTO 328 II 57% (n=21) (206)

Three-drug regimens

Bortezomib + thalidomide, dexamethasone II 53% (n=18) (207)

Bortezomib + thalidomide, dexamethasone I/II 63% (n=85) (208)

Bortezomib + ascorbic acid, arsenic trioxide I 9% (n=22) (209)

Bortezomib + cyclophosphamide, dexamethasone II 66% (n=50) (210)

Bortezomib + cyclophosphamide, dexamethasone II 95%‡ (n=37) (90)

Bortezomib + doxorubicin, dexamethasone II 67% (n=64) (211)

Bortezomib + lenalidomide, dexamethasone II 67% (n=63) (95)

Bortezomib + vorinostat, dexamethasone I 43% (n=21) (94)

Four-drug regimens

Bortezomib + melphalan, prednisone, thalidomide I/II 67% (n=30) (212)

Bortezomib + melphalan, dexamethasone, thalidomide II 66% (n=62) (65)

Bortezomib + liposomal doxorubicin, thalidomide, dexamethasone II 81% (n=42) (89)

Other regimens

Bortezomib + intermediate-dose melphalan (100 mg/m2), thalidomide, dexamethasone, 
and stem cell support

II 65% (n=26) (213)

*
Due to space limitations, the authors have chosen to emphasize those studies that have appeared in peer-reviewed format, and we apologize in 

advance to our many colleagues who have reported excellent work in abstract form that has not yet been published which was omitted.

‡
Response rates shown are overall responses, including complete + partial responses, unless otherwise indicated by‡, in which case the response 

rate includes minor responses.

§
The study evaluable population is indicated in parentheses.

ˆ
NR, not reported

†
The responders included a total of five patients, three of whom also received dexamethasone.
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Table 4

Bortezomib-based Combination Regimens in the Treatment of Newly Diagnosed Multiple Myeloma*

Regimen Phase ORR†/CR (%)‡,§ Reference

Unselected patients

Bortezomib −/+ dexamethasone II 88%/6% (n=32) (96)

Bortezomib + cyclophosphamide, dexamethasone II 88%/39% (n=33) (104)

Bortezomib + cyclophosphamide, dexamethasone I/II 77%/10% (n=33) (105)

Bortezomib + liposomal doxorubicin, dexamethasone II 93%/43% (n=40) (100, 101)

Bortezomib + lenalidomide, dexamethasone I/II 100%/45% (n=68) (103)

Bortezomib + thalidomide, cyclophosphamide, dexamethasone II 96%/35% (n=44) (214)

Bortezomib + lenalidomide, cyclophosphamide, dexamethasone I/II 100%/56% (n=25) (215)

Transplant-eligible patients

Bortezomib + dexamethasone II 66%/21% (n=48) (97)

Bortezomib + dexamethasone vs.
VAD

III 82%/15% (n=214)
65%/7% (n=210)

(108)

Bortezomib alternating with dexamethasone II 65%/13% (n=40) (216)

Bortezomib + infusional doxorubicin, dexamethasone (PAD) I/II 95%/24% (n=21) (98, 99)

Bortezomib + doxorubicin, dexamethasone vs.
VAD

III 83%/5% (n=150)
59%/1% (n=150)

(217)

Bortezomib + thalidomide, dexamethasone Pilot 87%/16% (n=33) (102)

Bortezomib + thalidomide, dexamethasone vs.
Thalidomide + dexamethasone

III 94%/32% (n=226)
79%/12% (n=234)

(109)

Bortezomib + VBMCP/VBAD vs.
Bortezomib + thalidomide, dexamethasone vs.
Thalidomide + dexamethasone

III 72%/28% (n=64)
80%/41% (n=56)
66%/12% (n=63)

(218)

Bortezomib + DT-PACE I 83%/NR (n=12) (106)

Bortezomib + Total Therapy III II NR/83%! (n=303) (107)

Transplant-ineligible patients

Bortezomib + melphalan, prednisone I/II 89%/43% (n=60) (110, 111)

Bortezomib + melphalan, ascorbic acid II 74%/16% (n=35) (219)

Bortezomib + melphalan, prednisone vs.
Melphalan, prednisone

III 71%/30% (n=337)
35%/4% (n=331)

(114)

Bortezomib + melphalan, prednisone vs.
Bortezomib + prednisone, thalidomide

III 81%/41% (n=98)
81%/37% (n=108)

(112)

Bortezomib + melphalan, prednisone vs.
Bortezomib + melphalan, prednisone, thalidomide

III 82%/21% (n=177)
87%/39% (n=177)

(113)

*
Due to space limitations, the authors have chosen to emphasize those studies that have appeared in peer-reviewed format, or phase III trials that 

have been presented as abstracts. We apologize in advance to our many colleagues who have reported excellent work from phase I/II studies in 
abstract form that has not yet been published which was omitted.

†
Abbreviations: CR, complete response rate; DT-PACE, dexamethasone, continuous-infusion cisplatin, doxorubicin, cyclophosphamide, and 

etoposide with daily thalidomide; NR, not reported; ORR, overall response rate; PAD, bortezomib with doxorubicin and dexamethasone; TD, 
thalidomide and dexamethasone; VAD, vincristine with doxorubicin and dexamethasone; VBAD, vincristine with BCNU, Adriamycin, and 
dexamethasone; VBMCP, vincristine with BCNU, melphalan, cyclophosphamide, and prednisone.
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‡
Response rates shown are overall responses, including complete + partial responses. Complete response rates shown incorporate CR and near-CR, 

where these were reported.

§
The study evaluable population is indicated in parentheses.

!
Data are at 24 months after the entire Total Therapy III treatment program.
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Table 5

Retreatment Using Bortezomib in Patients Previously Exposed to Bortezomib-based Therapy for Multiple 

Myeloma*

Regimen Study Type Initial Response Rate Retreatment Response Rate‡,§ Reference

Bortezomib Prospective 100% 33% (n=6) (220)

Bortezomib + dexamethasone Retrospective 100% 100% (n=3) (221)

Bortezomib −/+ dexamethasone Phase IV 44% 50% (n=10) (222)

Bortezomib −/+ dexamethasone Retrospective 68% 50% (n=22) (133)

Bortezomib −/+ dexamethasone Retrospective 100% 63% (n=60) (223)

Bortezomib −/+ dexamethasone Retrospective 59% 22% (n=82) (134)

Bortezomib −/+ dexamethasone Phase II 100% 27% (n=97) (224)

Bortezomib −/+ dexamethasone −/+ melphalan/
prednisone

Phase II NR† 73% (n=47) (135)

†
Abbreviations: NR, not reported

‡
Response rates shown are overall responses, including complete + partial responses.

§
The study enrollment is indicated in parentheses.
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Table 6

Ongoing Randomized Phase II and Phase III Trials of Bortezomib-based Therapy for Multiple Myeloma*

Regimen Study Type

Relapsed and/or refractory multiple myeloma

Bortezomib + dexamethasone vs. thalidomide + dexamethasone NMSG‡

Bortezomib + melphalan + dexamethasone vs. bortezomib + thalidomide + dexamethasone for patients relapsing 
after Total Therapy II

University of Arkansas

Bortezomib + CNTO 328 vs. bortezomib + placebo Industry-sponsored

Bortezomib + vorinostat vs. bortezomib + placebo Industry-sponsored

Bortezomib intravenously vs. bortezomib subcutaneously Industry-sponsored

Newly diagnosed multiple myeloma

Bortezomib + thalidomide + dexamethasone vs. thalidomide + dexamethasone EBMT

Bortezomib + lenalidomide + dexamethasone vs. bortezomib + dexamethasone ECOG

Bortezomib + VBMCP/VBAD vs. thalidomide + dexamethasone vs. bortezomib + thalidomide + dexamethasone PETHEMA

Bortezomib + melphalan + prednisone vs. bortezomib + thalidomide + prednisone; subsequent randomization to 
maintenance with bortezomib + thalidomide vs. bortezomib + prednisone

PETHEMA

Bortezomib + lenalidomide + dexamethasone vs. lenalidomide + dexamethasone SWOG

Bortezomib + thalidomide + dexamethasone + D-PACE with tandem transplantation vs. tandem transplantation with 
D-PACE

University of Arkansas

Total Therapy III incorporating bortezomib + DT-PACE vs. Total Therapy III-Lite with one cycle of bortezomib + 
DT-PACE for low risk myeloma patients

University of Arkansas

Bortezomib + dexamethasone vs. bortezomib + thalidomide + dexamethasone vs. bortezomib + melphalan + 
prednisone

Industry-sponsored

Bortezomib + lenalidomide + dexamethasone vs. bortezomib + lenalidomide + dexamethasone + cyclophosphamide 
vs. bortezomib + cyclophosphamide + dexamethasone

Industry-sponsored

Consolidation

Bortezomib after stem cell transplantation vs. no consolidation NMSG

Bortezomib after stem cell transplantation vs. no consolidation Industry-sponsored

Maintenance

Bortezomib vs. observation for patients who remain event-free after Total Therapy II University of Arkansas

Bortezomib after stem cell transplantation vs. no consolidation Industry-sponsored

*
Source: http://www.clinicaltrials.gov accessed on May 2, 2009.

‡
Abbreviations: D-PACE, dexamethasone, continuous-infusion cisplatin, doxorubicin, cyclophosphamide, and etoposide; DT-PACE, D-PACE 

with daily thalidomide; EBMT, European Group for Blood & Marrow Transplantation; ECOG, Eastern Cooperative Oncology Group; NMSG, 
Nordic Myeloma Study Group; PETHEMA, Programa para el Estudio de la Terapéutica en Hemopatía Maligna; SWOG, Southwest Oncology 
Group; VBAD, vincristine with BCNU, Adriamycin, and dexamethasone; VBMCP, vincristine with BCNU, melphalan, cyclophosphamide, and 
prednisone.
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