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We have previously discussed the importance of estimating uncertainty in our measurements 

and incorporating it into data analysis1. To know the extent to which we can generalize our 

observations, we need to know how our estimate varies across samples and whether it is 

biased (systematically over- or underestimating the true value). Unfortunately, it can be 

difficult to assess the accuracy and precision of estimates because empirical data are almost 

always affected by noise and sampling error, and data analysis methods may be complex. 

We could address these questions by collecting more samples, but this is not always 

practical. Instead, we can use the bootstrap, a computational method that simulates new 

samples, to help determine how estimates from replicate experiments might be distributed 

and answer questions about precision and bias.

The quantity of interest can be estimated in multiple ways from a sample—functions or 

algorithms that do this are called estimators (Fig. 1a). In some cases we can analytically 

calculate the sampling distribution for an estimator. For example, the mean of a normal 

distribution, μ, can be estimated using the sample mean. If we collect many samples, each of 

size n, we know from theory that their means will form a sampling distribution that is also 

normal with mean μ and s.d. σ/√n (σ is the population s.d.). The s.d. of a sampling 

distribution of a statistic is called the standard error (s.e.)1 and can be used to quantify the 

variability of the estimator (Fig. 1).

The sampling distribution tells us about the reproducibility and accuracy of the estimator 

(Fig. 1b). The s.e. of an estimator is a measure of precision: it tells us how much we can 

expect estimates to vary between experiments. However, the s.e. is not a confidence interval. 

It does not tell us how close our estimate is to the true value or whether the estimator is 

biased. To assess accuracy, we need to measure bias—the expected difference between the 

estimate and the true value.
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If we are interested in estimating a quantity that is a complex function of the observed data 

(for example, normalized protein counts or the output of a machine learning algorithm), a 

theoretical framework to predict the sampling distribution may be difficult to develop. 

Moreover, we may lack the experience or knowledge about the system to justify any 

assumptions that would simplify calculations. In such cases, we can apply the bootstrap 

instead of collecting a large volume of data to build up the sampling distribution empirically.

The bootstrap approximates the shape of the sampling distribution by simulating replicate 

experiments on the basis of the data we have observed. Through simulation, we can obtain 

s.e. values, predict bias, and even compare multiple ways of estimating the same quantity. 

The only requirement is that data are independently sampled from a single source 

distribution.

We’ll illustrate the bootstrap using the 1943 Luria-Delbrück experiment, which explored the 

mechanism behind mutations conferring viral resistance in bacteria2. In this experiment, 

researchers questioned whether these mutations were induced by exposure to the virus or, 

alternatively, were spontaneous (occurring randomly at any time) (Fig. 2a). The authors 

reasoned that these hypotheses could be distinguished by growing a bacterial culture, plating 

it onto medium that contained a virus and then determining the variability in the number of 

surviving (mutated) bacteria (Fig. 2b). If the mutations were induced by the virus after 

plating, the bacteria counts would be Poisson distributed. Alternatively, if mutations 

occurred spontaneously during growth of the culture, the variance would be higher than the 

mean, and the Poisson model—which has equal mean and variance—would be inadequate. 

This increase in variance is expected because spontaneous mutations propagate through 

generations as the cells multiply. We simulated 10,000 cultures to demonstrate this 

distribution; even for a small number of generations and cells, the difference in distribution 

shape is clear (Fig. 2c).

To quantify the difference between distributions under the two mutation mechanisms, Luria 

and Delbrück used the variance-to-mean ratio (VMR), which is reasonably stable between 

samples and free of bias. From the reasoning above, if the mutations are induced, the counts 

are distributed as Poisson, and we expect VMR = 1; if mutations are spontaneous, then 

VMR >> 1.

Unfortunately, measuring the uncertainty in the VMR is difficult because its sampling 

distribution is hard to derive for small sample sizes. Luria and Delbrück plated 5–100 

cultures per experiment to measure this variation before being able to rule out the induction 

mechanism. Let’s see how the bootstrap can be used to estimate the uncertainty and bias of 

the VMR using modest sample sizes; applying it to distinguish between the mutation 

mechanisms is beyond the scope of this column.

Suppose that we perform a similar experiment with 25 cultures and use the count of cells in 

each culture as our sample (Fig. 3a). We can use our sample’s mean (5.48) and variance 

(55.3) to calculate VMR = 10.1, but because we don’t have access to the sampling 

distribution, we don’t know the uncertainty. Instead of plating more cultures, let’s simulate 

more samples with the bootstrap. To demonstrate differences in the bootstrap, we will 
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consider two source samples, one drawn from a negative binomial and one from a bimodal 

distribution of cell counts (Fig. 3b). Each distribution is parameterized to have the same 

VMR = 10 (μ = 5, σ2 = 50). The negative binomial distribution is a generalized form of the 

Poisson distribution and models discrete data with independently specified mean and 

variance, which is required to allow for different values of VMR. For the bimodal 

distribution we use a combination of two Poisson distributions. The source samples 

generated from these distributions were selected to have the same VMR = 10.1, very close to 

their populations’ VMR = 10.

We will discuss two types of bootstrap: parametric and nonparametric. In the parametric 

bootstrap, we use our sample to estimate the parameters of a model from which further 

samples are simulated. Figure 3a shows a source sample drawn from the negative binomial 

distribution together with four samples simulated using a parametric bootstrap that assumes 

a negative binomial model. Because the parametric bootstrap generates samples from a 

model, it can produce values that are not in our sample, including values outside of the range 

of observed data, to create a smoother distribution. For example, the maximum value in our 

source sample is 29, whereas one of the simulated samples in Figure 3a includes 30. The 

choice of model should be based on our knowledge of the experimental system that 

generated the original sample.

The parametric bootstrap VMR sampling distributions of 10,000 simulated samples are 

shown in Figure 3b. The s.d. of these distributions is a measure of the precision of the VMR. 

When our assumed model matches the data source (negative binomial), the VMR 

distribution simulated by the parametric bootstrap very closely approximates the VMR 

distribution one would obtain if we drew all the samples from the source distribution (Fig. 

3b). The bootstrap sampling distribution s.d. matches that of the true sampling distribution 

(4.58).

In practice we cannot be certain that our parametric bootstrap model represents the 

distribution of the source sample. For example, if our source sample is drawn from a 

bimodal distribution instead of a negative binomial, the parametric bootstrap generates an 

inaccurate sampling distribution because it is limited by our erroneous assumption (Fig. 3b). 

Because the source samples have similar mean and variance, the output of the parametric 

bootstrap is essentially the same as before. The parametric bootstrap generates not only the 

wrong shape but also an incorrect uncertainty in the VMR. Whereas the true sampling 

distribution from the bimodal distribution has an s.d. = 1.59, the bootstrap (using negative 

binomial model) over estimates it as 4.35.

In the nonparametric bootstrap, we forego the model and approximate the population by 

randomly sampling (with replacement) from the observed data to obtain new samples of the 

same size. As before, we compute the VMR for each bootstrap sample to generate bootstrap 

sampling distributions. Because the nonparametric bootstrap is not limited by a model 

assumption, it reasonably reconstructs the VMR sampling distributions for both source 

distributions. It is generally safer to use the nonparametric bootstrap when we are uncertain 

of the source distribution. However, because the nonparametric bootstrap takes into account 

only the data observed and thus cannot generate very extreme samples, it may underestimate 
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the sampling distribution s.d., especially when sample size is small. We see some evidence 

of this in our simulation. Whereas the true sampling distributions have s.d. values of 4.58 

and 1.59 for the negative binomial and bimodal, respectively, the bootstrap yields 2.61 and 

1.33 (43% and 16% lower) (Fig. 3b).

The bootstrap sampling distribution can also provide an estimate of bias, a systematic 

difference between our estimate of the VMR and the true value. Recall that the bootstrap 

approximates the whole population by the data we have observed in our initial sample. 

Therefore, if we treat the VMR derived from the sample used for bootstrapping as the true 

value and find that our bootstrap estimates are systematically smaller or larger than this 

value, then we can predict that our initial estimate is also biased. In our simulations we did 

not see any significant sign of bias—means of bootstrap distributions were close to the 

sample VMR.

The simplicity and generality of bootstrapping allow for analysis of the stability of almost 

any estimation process, such as generation of phylogenetic trees or machine learning 

algorithms.
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Figure 1. 
Sampling distributions of estimators can be used to predict the precision and accuracy of 

estimates of population characteristics. (a) The shape of the distribution of estimates can be 

used to evaluate the performance of the estimator. The population distribution shown is 

standard normal (μ = 0, σ = 1). The sampling distribution of the sample means estimator is 

shown in red (this particular estimator is known to be normal with σ = 1/√n for sample size 

n). (b) Precision can be measured by the s.d. of the sampling distribution (which is defined 

as the standard error, s.e.). Estimators whose distribution is not centered on the true value 

are biased. Bias can be assessed if the true value (red point) is available. Error bars show s.d.
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Figure 2. 
The Luria-Delbrück experiment studied the mechanism by which bacteria acquired 

mutations that conferred resistance to a virus. (a) Bacteria are grown for t generations in the 

absence of the virus, and N cells are plated onto medium containing the virus. Those with 

resistance mutations survive. (b) The relationship between the mean and variation in the 

number of cells in each culture depends on the mutation mechanism. (c) Simulated 

distributions of cell counts for both processes shown in a using 10,000 cultures and mutation 

rates (0.49 induced, 0.20 spontaneous) that yield equal count means. Induced mutations 

occur in the medium (at t = 4). Spontaneous mutations can occur at each of the t = 4 

generations. Points and error bars are mean and s.d. of simulated distributions (3.92 ± 2.07 

spontaneous, 3.92 ± 1.42 induced). For a small number of generations, the induced model 

distribution is binomial and approaches Poisson when t is large and rate is small.
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Figure 3. 
The sampling distribution of complex quantities such as the variance-to-mean ratio (VMR) 

can be generated from observed data using the bootstrap. (a) A source sample (n = 25, mean 

= 5.48, variance = 55.3, VMR = 10.1), generated from negative binomial distribution (μ = 5, 

σ2 = 50, VMR = 10), was used to simulate four samples (hollow circles) with parametric 

(blue) and nonparametric bootstrap (red). (b) VMR sampling distributions generated from 

parametric (blue) and nonparametric (red) bootstrap of 10,000 samples (n = 25) simulated 

from source samples drawn from two different distributions: negative binomial and bimodal, 

both with μ = 5 and σ2 = 50, shown as black histograms with the source samples shown 

below. Points and error bars show mean and s.d. of the respective sampling distributions of 

VMR. Values beside error bars show s.d.
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