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Abstract

Early detection of oral cancer and its curable precursors can improve patient survival and quality 

of life. Hyperspectral imaging (HSI) holds the potential for noninvasive early detection of oral 

cancer. The quantification of tissue chromophores by spectral unmixing of hyperspectral images 

could provide insights for evaluating cancer progression. In this study, non-negative matrix 

factorization has been applied for decomposing hyperspectral images into physiologically 

meaningful chromophore concentration maps. The approach has been validated by computer-

simulated hyperspectral images and in vivo tumor hyperspectral images from a head and neck 

cancer animal model.
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1. INTRODUCTION

Around half a million patients receive the diagnosis of oral cancer worldwide each year, thus 

creating a significant worldwide health problem [1]. Oral cancer often goes undiagnosed 

until late stages of development when treatment is more expensive and less successful than 

early interventions, resulting in high mortality and morbidity rate. The overall 5-year 

survival rates for oral cancer have remained low at approximately 30% for the advanced 

disease. Early detection of oral cancer and its curable precursors remains the best way to 

ensure patient survival and improved quality of life. White light examination, which is the 

current approach to screening and identification of oral cancer, has low sensitivity and 

specificity for detecting precancerous or early cancerous lesions [2]. If a suspicious lesion is 
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identified, biopsy and histological examination are required to assess its type and cancerous 

potential. Biopsy is an invasive, painful, expensive, and time-consuming procedure which 

relies heavily on the familiarity and skills of the clinicians.

Hyperspectral imaging (HSI) has emerged as a promising technique for noninvasive early 

detection of oral cancer [3]. When tissue is illuminated, light undergoes multiple scattering 

and absorption, the amount of which depends on the tissue structure and its pigment 

contents. As biochemical and morphological changes associated with pre-cancer perturb 

tissue absorption, scattering and fluorescence properties, the spectral fingerprint of the light 

emitted from the tissue is likely to change, thus enabling hyperspectral imaging to probe pre-

cancerous changes. In our previous studies, we were able to distinguish cancer from healthy 

tissue in animal models using advanced image classification methods [4–9], which are 

indirect ways to link physiological parameters to disease states. While spectral unmixing can 

directly link the chromphore concentrations to cancerous states by decomposing the 

spectrum of each pixel into its constituent spectrum and corresponding abundances.

By capturing optical information at a large area of tissue across a wide range of narrow 

wavebands of light, hyperspectral imaging extends the capacities of spectroscopy and 

conventional color imaging. Quantitative analysis of the spectral information at each image 

point allows hyperspectral imaging to evaluate the spatial distribution of chromophores in 

tissue for diagnostic purposes. For example, hyperspectral imaging has been used to image 

blood perfusion in tissue [10] and to create maps of hemoglobin saturation in blood vessels 

[11]. Non-negative matrix factorization (NMF) is a blind source separation (BSS) algorithm 

that has been recently applied for spectral unmixing in medical hyperspectral imaging to 

estimate skin concentrations of hemoglobin and melanin [12] and to recover macular 

pigment spectra of retina [13]. The spatial distribution of hemoglobin concentration and 

oxygen saturation can be used to analyze the angiogenesis and hypoxic states of tissues, both 

of which are important hallmarks of carcinogenesis [14].

In this paper, we propose to apply non-negative matrix factorization for spectral unmixing of 

hyperspectral dataset and the quantification of the main chromophores in tissue. We present 

experimental results on simulation images, blood vessel phantoms, and tumor vascularity 

visualization.

2. MATERIALS AND METHODS

2.1 Instrumentation

A CRI Maestro in-vivo imaging system was used to acquire hyperspectral images. This is a 

wavelength-scanning system consisting of a Xenon light source, a solid-state liquid crystal 

filter and a 16-bit high-resolution charge-coupled device (CCD). Details about this system 

has been described in previous papers [5, 6]. This system is capable of obtaining reflectance 

images over the range of 450 nm – 950 nm with various wavelength intervals, including 2 

nm, 5 nm, 10 nm, etc.
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2.2 Pre-processing

The purpose of pre-processing is to remove the spectral nonuniformity of the illumination 

device and the influence of the dark current. The white reference cube Iwhite(x, y, λi) was 

acquired by placing a standard white reference board in the field of view, with white 

excitation source, interior IR source. The dark reference cube Idark(x, y, λi) was captured by 

keeping the camera shutter closed. Hyperspectral raw dataset I(x, y, λi) was converted into 

the so-called apparent absorption A(x, y, λi) by the following equation:

(1)

2.3 Spectral unmixing

The absorbance spectrum A(x, y, λi) depends on the absorbing components in the tissue. 

According to the modified Beer-Lambert law, the absorbance can be estimated with the 

following equation [11] [15]:

(2)

where C (x, y) is a molar concentration [mol/L] at the coordinate (x, y), and ε(λ) is a spectral 

molar extinction coefficient [cm−1/(mol/L)]. “oxy” and “deoxy” refer to oxyhemoglobin 

(HbO2) and deoxyhemoglobin (Hb), which are the primary chromophores responsible for 

absorption of visible light. The mean-free path L [cm] is the average distance traveled by a 

photon within the tissue before it is diffusely reflected due to multiple scattering within the 

tissue. The term G accounts for the light scattering effect. The spectral molar extinction 

coefficients εoxy(λi) and εoxy(λi) can be found from [16]. The mean free path L was 

unknown, so the products Coxy(x, y) L and Cdeoxy(x, y) L were denoted by unitless effective 

concentrations aoxy and adeoxy, respectively. Oxygenation saturation (SO2) can be computed 

by the following equation:

(5)

Based on this fundamental linear model, we apply NMF in order to retrieve the unknown 

parameters aoxy, adeoxy and G at each location (x, y). The main goal of NMF is to 

approximate the matrix A by the product of two matrices W and H, enforcing the constraint 

that all matrices are non-negative [17]:

(3)

Where An×m (n is the total number of pixels and m is the total number of wavelength bands 

in the hyperspectral images) is the absorbance data, each column in the matrix Wn×k is the 

estimated non-negative spatial abundance at each pixel of the region of interest (ROI), and 

each row of Wk×m is the constituent positive spectral component. The positivity constraints 

on the spectra component and spatial abundance images are consistent with physical reality, 
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which allows a physically meaningful interpretation of the spatio-spectral hyperspectral 

dataset.

NMF finds W and H by minimizing the difference between A and WH [17]:

(4)

The most popular approach to solve equation (4) is the multiplicative updated algorithm 

[18], which lacks convergence results. The multiplicative update starts from non-negative 

initial conditions for W and H, and follows iteration of update rules to find an approximate 

factorization A ≈ WH by converging to a local maximum of the objective function. In this 

study, we applied the projected gradients method proposed by Lin [17] to solve the 

optimization problem in equation (4). This method has shown strong optimization properties 

and faster convergence than the multiplicative update method [17].

In the following section, we only used a two chromophore (HbO2 and Hb) absorption model 

to estimate the absorbance and to validate the use of NMF for unmixing hyperspectral 

dataset. The initial inputs are the molar extinction coefficients of HbO2 and Hb [16], and 

they are allowed to vary during the update of the NMF algorithm to achieve the best fit and 

the most realistic spectra. This method can be applied to extract other physiological 

parameters as well.

3. RESULTS AND DISCUSSION

3.1 Validation of Parameter Extraction with Synthetic Data

The ability of NMF to recover correct parameter values from the image spectra was tested 

on computer-generated data. The input data was in the form of 100×100×61 parametric cube 

formed of five regions of different combinations of oxyhemoglobin and deoxyhemoglobin 

concentrations. The data cube was contaminated with Gaussian noise to match the mean 

SNR of the real image data of 20 dB. Figure 1 shows the input spectral components (the 

extinction coefficients of oxy- and deoxy-hemoglobin) and the recovered spectral 

components. The recovered spectra was accurate in spite of noise. Figure 2 shows the 

unmixing results for the simulated data. The difference between the gold standard 

parameters and the model-based estimation is small.

3.2 Blood Vessel Phantom

To further validate the algorithm, we created a blood vessel phantom consisted of a glass 

capillary tube, 10% Intralipid (Sigma-Aldrich) and horse blood (Innovative Research Inc.) 

inside a container. The glass capillary tube with an inside diameter of 1.15 mm is used to 

mimic the blood vessels and the intralipid strongly scattered incident light to simulate the 

living tissue around blood vessel [19]. Deoxyhemoglobin solutions were created by adding 

to every 5 mg of Sodium Dithionite per 1 ml of blood to achieve a sample with oxygen 

saturation of 0% [11]. As shown in Figure 3 (a), the first spectral component by the dotted 

line has the characteristic peaks of oxygenated hemoglobin, and the second spectral 
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component by the solid line has a similar peak as deoxygenated hemoglobin. (b) and (c) 

shows the RGB composite image of blood phantom and the distribution of oxygen saturation 

in this phantom. The decomposition result is consistent with the oxygen saturation of 0%.

3.3 Tumor Vascularity Visualization

We applied the NMF method to in vivo tumor hyperspectral images in order to extract the 

HbO2 and Hb concentration as well as the oxygen saturation maps. The hyperspectral 

images were acquired from a tumor-bearing mouse with head and neck cancer. Figure 4 

shows the absorption extinction coefficient of HbO2 and Hb, and the estimated their 

extinction coefficients. Figure 5 shows the absorbance images at the wavelength 542 nm, 

554 nm and 576 nm. The absorption peaks of HbO2 are at the wavelength 542 nm and 576 

nm, and the absorption peak of Hb is at 554 nm. Figure 5 also shows the recovered HbO2 

and Hb concentration maps, which well match the absorbance images at absorption peaks. 

The blood vessel regions could be clearly visualized on the concentration maps. The HbO2 

concentration map shows higher concentration in the lower right shaded region. This may be 

due to the intensity variation caused by tumor curvature. In addition, the oxy- and 

deoxygenated hemoglobin spectra in the in vivo environment of mice tumors may not be 

exactly the same as the spectra of purified hemoglobin of human in vitro. In the future study, 

we plan to measure the pure spectra from mouse blood with HSI first and then use these for 

computing the hemoglobin concentration and oxygen saturation.

4. CONCLUSIONS

In this paper, we presented a spectral unmxing framework for hyperspectral images. Non-

negative matrix factorization is used to decompose the hyperspectral dataset into 

chromphore concentration maps. The method was validated with simulated hyperspectral 

images and in vivo tumor hyperspectral images. The decomposed HbO2 and Hb 

concentration and oxygen saturation maps may provide useful information for potential use 

in early detection of oral cancer.
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Fig. 1. 
Input spectra components and recovered spectral components.
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Fig. 2. 
Parameter recovery results and the comparison of noise-free input data and the recovered 

data using NMF. (a) the 20th spectral image of the input data cube. (e) the noise-

contaminated spectral image corresponding to the 20th spectral image. (b), (c), and (d) are 

the input HbO2 and Hb concentration maps, and the oxygen saturation maps, respectively. 

(f), (g), and (h) are the corresponding concentration maps recovered from the noisy input 

data. (i), and (j) compare the noise-free input parameters (x-axis) and the recovered 

parameters (y-axis) for the five regions in the simulated images. The mean value with 

standard deviations of HbO2 and Hb concentrations and SO2 are shown in (i) (j) and (k), 

respectively, where the standard deviations are quite small and not obvious in the figures.
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Fig. 3. 
Blood oxygen saturation map calculated by NMF from phantom data set. (a) the 

decomposed pure spectrum. (b) the RGB composite image of the blood phantom. (c) the 

decomposed blood oxygen saturation map.
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Fig. 4. 
Recovered spectral components from in vivo tumor images.
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Fig. 5. 
In vivo imaging experimental results of the unmixing method. Images (a), (b) and (c) are the 

absorbance images at the wavelength 542, 554 and 576 nm. Images (d) and (e) are the 

recovered HbO2 and Hb concentration map and oxygen saturation map of hyperspectral 

tumor images.
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