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Abstract

Here we examine a new task to assess working memory for visual arrays in which the participant 

must judge how many items changed from a studied array to a test array. As a clue to processing, 

on some trials in the first two experiments, participants carried out a metamemory judgment in 

which they were to decide how many items were in working memory. Trial-to-trial fluctuations in 

these working memory storage judgments correlated with performance fluctuations within an 

individual, indicating a need to include trial-to-trial variation within capacity models (through 

either capacity fluctuation or some other attention parameter). Mathematical modeling of the 

results achieved a good fit to a complex pattern of results, suggesting that working memory 

capacity limits can apply even to judgments that involve an entire array rather than just a single 

item that may have changed, thus providing the expected conscious access to at least some of the 

contents of working memory.

In the past few years, we have seen an explosion of research on visual working memory, 

following an article by Luck and Vogel (1997) that introduced a procedure in which, on 

each trial, a briefly-studied array of objects is followed by a probe display testing memory of 

one or more features of at least one object from the studied array (see also Phillips, 1974; 

Sperling, 1960). The recent research has addressed a variety of interlocking issues, including 

the basis of individual and group differences in capacity (e.g., Cowan, Morey, AuBuchon, 

Zwilling, & Gilchrist, 2010; Gold et al., 2006; Vogel, McCollough, & Machizawa, 2005), 
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the role of feature binding in working memory (e.g., Allen, Hitch, Mate, & Baddeley, 2012; 

Cowan, Blume, & Saults, 2013; Logie, Brockmole, & Jaswal, 2011; Oberauer & 

Eichenberger, 2013), the sharing of capacity between different modalities and codes (e.g., 

Fougnie & Marois, 2011; Morey & Mall, 2012; Saults & Cowan, 2007; Stevanovski & 

Jolicoeur, 2007; Vergauwe, Barrouillet, & Camos, 2010), the proper expression of capacity 

limits in terms of discrete items versus a continuous resource (e.g., Anderson, Vogel, & 

Awh, 2011; Bae & Flombaum, 2013; Bays & Husain, 2008; Cowan, 2001; Donkin, 

Nosofsky, Gold, & Shiffrin, 2013; Rouder et al., 2008; Thiele, Pratte, & Rouder, 2011; van 

den Berg, Shin, Chou, George, & Ma, 2012; Zhang & Luck, 2008), and processes that are 

used to manage the information in one’s working memory (Barrouillet, Portrat, & Camos, 

2011; Camos, Mora, & Oberauer, 2011).

Most tests of working memory for arrays have involved memory probes with at most one 

change in an item compared to the studied array (but see Gibson, Wasserman, & Luck, 

2011; Wilken & Ma, 2004, Experiments 4–6). This limitation in method, however, has been 

for convenience rather than as a reflection of what is supposedly most interesting or 

important in the world. Many real-world comparisons of two displays do involve multiple 

differences between them; this is the case, for example, when one compares two paintings 

by the same artist to discern their similarities and differences, compares two mobile phones 

to determine which one has better features, or compares before-and-after pictures.

As an initial foray into the topic of multi-change detection, we examine relatively small 

displays with 5, 7, or 9 objects; a real-world analogue might be the comparison of two 

recipes to estimate how many of their ingredients they have in common. After describing 

our task and theoretical analysis of it, but before reporting data, we discuss additional 

background concerning two topics: 1) literature on change detection for scenes, and 2) 

literature related to auxiliary tasks that we used to assess some individual differences in 

memory and metamemory (in particular, awareness of one’s working memory) in the 

present study.

The Present Multi-Change-Detection Task

Our basic procedure was as shown in Figure 1. A probe array of N colored squares was 

presented (in Experiments 1 and 2, N=5 and 7, respectively; in Experiment 3, N=5, 7, or 9). 

This was followed by a masking display to eliminate any contribution of lingering sensory 

memory (cf. Saults & Cowan, 2007). The mask was sometimes accompanied by a cue for a 

metamemory task that we will discuss shortly. Last, a test array was presented that was 

identical to the first or included 1 to N changes in color compared to the squares in the 

original array. The task following the test array was to indicate the number of changes from 

the first array.

To analyze data from such a procedure we introduce a new method that is a spinoff of what 

has been done with change-detection procedures (Cowan, 2001; Pashler, 1988). These 

investigators introduced mathematical models in which the participant either answers 

correctly because the queried or changed item is present in working memory, or else guesses 

randomly. The model of Cowan (2001) is appropriate when one item is singled out for the 
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test, and the model of Pashler (1988) is appropriate when all items in the original array must 

be compared with a test array for which it is not indicated which item may have changed 

(Rouder, Morey, Morey, & Cowan, 2011). The models yield an estimate of k, the number of 

items held in working memory for a particular array size. If these estimates approach an 

asymptotic level as the array size increases, the asymptote is said to approximate the 

individual’s working memory capacity.

Zhang and Luck (2008) introduced a procedure from which one supposedly can estimate not 

only k, but also the precision of the working memory representation, based on a task in 

which a variable stimulus property has to be reproduced as precisely as possible (cf. Wilken 

& Ma, 2004). We, however, circumvent the need for that by using stimuli with colors that 

differ categorically, for which failure to detect a difference seems unlikely to be due to 

imprecision of the representation (Awh, Barton, & Vogel, 2007). In this regard we also wish 

to emphasize that the difficult issue of whether capacity might be best described as a 

continuous resource limit that can be spread out among all items, rather than as a discrete 

item limit, will not be addressed here in detail, and need not be addressed, though we favor 

the discrete item limit. (To read about this debate see, for example, Anderson et al., 2011; 

van den Berg, Awh, & Ma, 2014; Suchow, Fougnie, Brady, & Alvarez, 2014; Zhang & 

Luck, 2011.) When we find that participants have X items in working memory, or when we 

find that participants think they have Y items in working memory, this could reflect the 

number of items that are remembered with a precision high enough to detect a change from 

one color to a categorically different one. Performance for categorically different colors is 

known to be almost as high as when one tests a change from one type of object, such as a 

face, to another type of object, such as a cube (Awh et al., 2007; Scolari, Vogel, & Awh, 

2008); that is, almost the largest possible change, requiring minimal precision. Thus, one can 

benefit from our k measure to examine working memory in multi-change-detection 

situations even if a commitment to a discrete-item capacity ultimately proves to be 

unwarranted. Similarly, Gibson et al. (2011, p. 980) suggested the following: “It is important 

to note that this model assumes that observers store high-quality representations of all K 

items and have no information about the remaining items…However, it is possible to avoid 

this assumption by treating K as the number of items’ worth of information stored in VSTM 

[visual short-term memory] (Vogel, Woodman, & Luck, 2001).”

The studies with the manipulations closest to ours were conducted by Gibson et al. (2011) 

and Wilken & Ma (2004). As in our study, anywhere between none and all of the items in an 

array could change between the studied array and the following probe array. In these studies, 

however, the task was to determine whether there was at least one change, a task that 

became easier as the number of changes increased. Wilken & Ma also collected confidence 

ratings. In contrast, our task was to estimate how many items changed, which of course 

affords more information about the number of changes detected. We also measured 

awareness of one’s own memory with a judgment of number of array items in mind, rather 

than using confidence ratings.
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Multi-change Detection and Working Memory for Scenes

Unlike the finding of a fixed capacity measured on an item-by-item basis in single-change-

detection procedures (e.g., Anderson, Vogel, & Awh, 2011; Cowan, 2001; Luck & Vogel, 

1997; Rouder et al., 2008), there has been other work on whole-field working memory, 

some of which suggests broad judgment in which the items are not just examined separately 

in working memory. For example, Hollingworth (2004) presented natural scenes with a dot 

indicating which item should be fixated. Memory for the last few items fixated was 

especially good, but there was also a long-term memory component that did not diminish 

with interpolated material. Chong and Treisman (2005) probed memory for characteristics 

of the array taken as a whole, such as the average size of items. Such averages can be 

abstracted from arrays of many items at once, even though capacity appears limited to just a 

few items. Other work has shown that information about any one object in a large array is 

remembered in a way that is biased by the statistics of the ensemble (Brady & Alvarez, 

2011), and Brady and Tenenbaum (2013) showed how it will be necessary to combine item-

level information with higher-level conceptual structural information to explain memory for 

natural scenes.

The present work is not designed to examine scenes, but the methods developed here could 

be modified in the future to gain a better understanding of the role of item information in 

working memory for scenes. It remains possible that an item capacity limit applies to large 

ensembles; for example, the average size of an item in a large array might be abstracted not 

from all items in the scene, but from a random subsample of items or groups of items that 

are few enough to be held in working memory. Consistent with the general suggestion that 

perception of scenes requires active encoding of elements into working memory, Cohen, 

Alvarez, and Nakayama (2011) showed that distraction during perception of a scene resulted 

in inattentional blindness for items in the scene.

We do not attempt to deal with scenes but note that a characteristic of scenes is that 

comparisons between them generally reveal multiple differences. We develop methods to 

examine the role of a limited-capacity working memory in relatively small arrays of separate 

items. Subsequent research then could seek to determine whether similar processes operate 

in the case of large arrays or scenes.

An Auxiliary, Metamemory Measure in the Multi-Change-Detection Task

Although metamemory, or knowledge of what information is in one’s own memory, has 

been extensively investigated in long-term memory procedures (e.g., Koriat & Helstrup, 

2007; Lachman, 1979; Maki, 1999), it has hardly been investigated in working memory 

procedures (though see Bunnell, Baken, & Richards-Ward, 1999; and for subjective 

judgments about the efficacy of participants’ working memory see Kane et al., 2007). 

Rademaker, Tredway, and Tong (2012) investigated it with confidence ratings and found 

that more confident ratings corresponded to trials with more precise memory. Instead of 

asking for confidence ratings, we sometimes asked for direct estimates of the number of 

items in working memory and, importantly, did so before rather than after an objective 

judgment was made. This is important because participants’ subjective ratings collected 
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after an objective probe is presented could be influenced by the participant’s ability or 

inability to retrieve the information to respond to that probe.

We did not know in advance whether subjective ratings would correspond to objective 

responses. One could imagine that participants might make a judgment about the number of 

items that have changed on the basis of a holistic stance in which the array is perceived 

without individuating the items in memory. That is, multi-item patterns and regularities 

might be found (Brady & Tenenbaum, 2013; Jiang, Chun, & Olson, 2004) and used to 

encode the array in such a way that the judged number of changes in the array would have 

little to do with knowledge of the individual items.

We added the metamemory task on half of the trials in Experiments 1 and 2, yielding an 

auxiliary measure of working memory, namely the number of items the participant thought 

he or she had in mind during the retention interval. On trials in which the metamemory 

response was to be made, the masking array included a question mark as shown in Figure 1. 

The participant was to indicate the number of items’ colors that she (or he) thought she had 

in mind. There was a fixed time for this activity that did not lengthen the time between the 

original studied array and the test array. The participant was then to go on to indicate how 

many items changed, as in the trials with no metamemory judgment.

The metamemory judgments are useful for examining several issues. First, they can be used 

to assess whether individuals have knowledge of trial-to-trial fluctuations in the number of 

items in working memory. There has been some suggestion that an individual’s number of 

items in working memory is not always fixed (van den Berg, Awh, & Ma, 2014) or that 

attention to the array varies between trials (Rouder et al., 2008), and this general hypothesis 

of variability would be strengthened if it could be shown that trial-to-trial fluctuation in the 

participant’s conception of how many items are known correlates with objective 

performance. A positive result would also suggest that at least some faculties used to 

remember arrays are open to introspection, as one would expect if the attention system is 

used for retention of information in one way or another (e.g., Baars & Franklin, 2003) as a 

number of investigators have suggested (e.g., Cowan, 1995, 2001; Cowan, Saults, & Blume, 

2014; Barrouillet et al., 2011; Oberauer, 2013).

On the other hand, an individual’s apparent failure of insight on a particular trial could occur 

for reasons other than insufficient capacity. For example, an individual who is especially 

vulnerable to interference might have been correct that he or she had all of the array items in 

working memory during the retention interval, but might lose them due to interference from 

the probe array (cf. Wheeler & Treisman, 2013; Woodman & Luck, 2003). According to at 

least one view, visual working memory may operate on the basis of a mechanism that does 

not tax attention as measured, in particular, by the efficiency of visual search (Woodman, 

Vogel, & Luck, 2001). Cowan, Saults, and Blume (2014) acknowledged that information in 

working memory may be off-loaded and held outside of attention during at least part of the 

maintenance period which might result in a tenuous relationship between awareness and 

working memory.
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Second, the metamemory judgments could be used to assess whether individuals know 

something about the capacity of their own working memory relative to other people. A good 

knowledge of one’s own cognitive strengths and weaknesses, including one’s working 

memory capability, seems important because it could be relevant to career choices. 

Understanding of the cognitive demands of a particular working memory task seems 

important because it is relevant to how one manages the task; one might choose to devote 

more attention control for a task that one expects to be more demanding. A correlation 

between metamemory judgments and array memory across individuals would seem likely 

only if participants have some understanding of both the task demands and their own level 

of capability on this kind of task relative to other individuals in the participant pool. Given 

the complex reasons why a correlation could fail, this issue can be examined here only for 

exploratory purposes.

Modeling of working memory capacity in change-detection tasks

One contribution of the present work is to show how it is possible to model capacity limits 

in working memory in the multi-change-detection task. As a preview, the task yielded an 

intricate pattern of results and modeling of that pattern provided insight into processes that 

may be involved in multi-change detection.

Our initial model in an earlier draft of this article was based on the assumption that a 

separate decision was made by the participant about each item in the array, based either on 

information in working memory or, for those items not included in the working memory 

representation, on guessing. That model did a good job of fitting the mean judged number of 

changes as a function of the actual number changed; mean responses within both the model 

and the data were at least approximately related to the number of array changes in a linear 

manner, with a slope approaching 1 as the number of items in working memory approached 

the number of items in the array. However, this sort of model did a poor job of fitting the 

more detailed pattern of data. Specifically, for trials with x changes out of n array items 

(0<x<n), the number of times that the participants judged that 0, 1, 2…n items changed was 

not well predicted. The obtained patterns included much more use of the extremes of the 

judgment scale than the model predicted.

In our final models of performance, the participant is said to observe c changes and must 

make a decision about what actual states of affairs could produce this observed number of 

changes.1 This class of models assumes that the participant is aware of how many items he 

or she has in working memory. The participant also is assumed to use the knowledge that, in 

the experiment, there is an equal likelihood of receiving 0, 1, 2…n changes. As an example 

of why that assumption is important, suppose a participant with a capacity of 3 items (k=3) 

saw a 5-item array (n=5) and detected 3 changes in the comparison array (c=3). This 

outcome could occur in several ways according to these models. It could be that there 

actually were 3 changes and none of them was missed; 4 changes and 1 of them was missed; 

or 5 changes and 2 of them were missed (x=3, 4, or 5). Given that there were equal numbers 

1We are indebted to Wei Ji Ma, who made us aware of this possible basis of modeling and formulated both the basic model that 
assumes continuous resources and the rudimentary slots model upon which we elaborated (by adding probability matching and a 
perceived k distribution based on the metamemory results) to form what we term the winning model.
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of trials in the experiment with each possible number of changes, the last possibility is most 

likely because it should happen on all, and not just some, of the 5-change trials. In contrast, 

for example, when there are only 4 changes out of 5 items, a participant with k=3 will 

sometimes detect only 2 changes.

The model can take the form of either a discrete slot model or a continuous resource model. 

For 5-item lists, a continuous resource model with variable precision fit the data well, but so 

did a discrete slots model with two assumptions added. One was the assumption that after 

the participant implicitly computed the probabilities of various numbers of changes, the 

response did not consistently reflect the most probable case, but rather a probability match to 

the various possible cases. Probability matching has been well supported in previous 

research on human judgment and decision-making (e.g., Shanks, Tunney, & McCarthy, 

2002; Vulkan, 2000). Second, we allowed the estimate of the number of items in working 

memory to conform to a distribution rather than being identical across trials.

For 7- and 9-item lists, there was an asymmetry in the data that caused an important misfit to 

even these models. Specifically, people were a lot more willing to indicate that no or few 

items changed than they were to indicate that many or all items changed. We were able to fit 

these data, with the added assumption that participants did not know how many items they 

truly had in working memory, but judged the number of items in working memory in a 

manner that was estimated from our metamemory judgments of the number of items in 

mind. When the number of detected changes surpassed the number of items the participant 

thought to be in working memory, the estimate was assumed to be revised upward. It might 

have been possible to form a comparable model for continuous resources based on the 

assumption that the distribution of precisions that participants think they have does not 

match the distribution that they actually have, and instead matches the metamemory results. 

That endeavor, however, seemed complex enough to be outside of the scope of our 

modeling effort. It is our aim simply to begin to make sense of the processes taking place in 

multi-change procedures, and we leave it for follow-up work to adjudicate between discrete 

and continuous models or to try out additional alternative possibilities. Both discrete and 

continuous models predict the data by estimating the number of items that are present in 

working memory with enough precision to allow discrimination between a changed and an 

unchanged item. We delay the more detailed presentation of the model until results from 

three experiments have been presented.

Other Auxiliary Tasks

In the first two experiments (with 5 and 7 array items, respectively), we collected two other, 

independent measures of capacity that have been useful in that they have been shown to 

correlate with one another and with array memory: the running span and operation span 

tasks. Both tasks provide estimates in a range similar to what is obtained with array memory 

tasks. They involve sequential presentations of verbal and symbolic items, a method quite 

different from the simultaneous presentation of nonverbal objects that occurs within visual 

arrays; yet they are not very amenable to covert verbal rehearsal (Cowan et al., 2005). They 

may draw on partly different faculties (e.g., Shipstead, Redick, Hicks, & Engle, 2012) and 

correlations between them are based at least partly on rather general, attention-related 
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components of working memory maintenance (e.g., Kane et al., 2004). We included them in 

order to compare array multi-change detection and metamemory to very different, but often-

used, measures of working memory functioning. In the third experiment, to allow for the 

inclusion of 3 set sizes (5, 7, and 9), we omitted the metamemory measure and the running 

and operation spans.

Experiment 1: 5-Item Arrays

Method

Participants—Participants were introductory psychology students who received course 

credit for their participation. There were 69 participants (48 female) but 9 were eliminated: 7 

because they did not make storage judgments or only made them on 1 or 2 trials, and 1 

because of experimenter error. An additional participant always gave a storage judgment of 

5 and in fact performed well, with a slope of change responses across actual changes of .88. 

This participant was excluded from further analysis because it was impossible to appraise 

the participant’s awareness of fluctuations from trial to trial. The 60 participants used in the 

analyses included 43 females and 17 males, and each used 3 or more of the storage judgment 

categories.

Apparatus, stimuli, and procedure—All tests were completed in a sound-attenuated 

booth with computer-controlled stimuli. We carried out a running span procedure, an 

operation span procedure, and the array change-detection task that included storage 

judgments on half of the trials.

Running span: In the running span procedure (taken from Cowan et al., 2005), on every 

trial 12 to 20 spoken, digitally-compressed digits were presented through loudspeakers at the 

rapid rate of 4 digits per second. The digits were easily intelligible. The determination of list 

length was random so the list ended at a point that was unpredictable to the participant. 

When the list ended, the task was to use the number keys to enter the last seven digits from 

the list, or as many of these digits as the participant believed he or she could recall, in the 

presented order. The response was right-justified so that the last digit entered by the 

participant was considered to be the recall of the final list item. Guessing was allowed. 

Credit was given for the number of digits that were recalled in the correct serial position 

within the right-justified response.

Operation span: Next, each participant completed the operation span procedure using a 

program described by Unsworth, Heitz, Schrock, and Engle (2005). On every trial, sets of 

arithmetic equations were shown, with the correctness of each equation to be verified by the 

participant, and each equation was followed by a letter to be remembered. After a list of 

equation-letter pairs was completed, all of the letters in the list were to be recalled. The list 

length varied randomly between 3 and 7 equation-letter pairs, with three lists per set size. 

Operation span was defined as the total number of letters recalled within all perfectly-

recalled lists (the first measure described by Unsworth et al., p. 501, which is their 

traditional measure).
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Array memory: Finally, each participant completed the array-memory multi-change-

detection task illustrated in Figure 1. A special keyboard was used that only included the 

needed keys. Participants made responses with their right hand by pressing one of 6 keys 

arranged in two rows, with the keys labeled 0, 1, 2, 3, 4, and 5. On each trial, a screen 

indicated whether there would be a storage judgment. When ready, the participant would 

press the Enter key to begin each trial. A fixation cross was presented for 1000 ms followed 

by the array of 5 colored squares for 500 ms. A blank screen then appeared for 500 ms, 

followed by the mask display that also contained a prompt indicating whether a storage 

judgment should be made (?) or not (X). The mask and storage judgment response period 

lasted 4000 ms. A probe array was then presented in which 0 to 5 of the items’ colors 

differed from those in the otherwise identical first array. (The items did not change 

locations.) The task was to indicate how many of the colored squares on the second array 

had changed, again by key press. Following the participant-paced response, two feedback 

screens were provided. The first indicated memory accuracy (including the response as well 

as the correct response, i.e., how many colored squares actually had changed). The second 

feedback screen provided storage judgment feedback. It was made clear in the instructions 

that each possible color could appear only once in an array and that any change between the 

studied and probe arrays would be changes of one or more items to colors that had not been 

in the studied array.

When a storage judgment was to be made the participant was to indicate, before the mask 

ended, the number of colors from the target array (0–5) that were still held in mind. It was 

emphasized that it was the color, not the location, of an object that had to be remembered in 

order for that object to be included in this judgment of the number of items in mind. It was 

further pointed out that it was not the number of colors presented (always 5) that was to be 

reported, but the number remembered.

The spatial arrangement of the experimental materials was as follows. Participants were 

seated about 50 cm away from the computer screen. The 5 squares in the target array were 

drawn on a grey background. They were differently colored, with the square colors 

randomly drawn without replacement from the set black, white, red, blue, green, yellow, 

brown, cyan, purple, and dark-blue-green. These colors are defined by RGB values in the 

in-line object 'DefineColorsAsRGB' in the E-Prime program. Standard RGB values for the 

colors in every experiment are shown in Table 1. The target squares were each 6 mm on a 

side (0.7 degrees of visual angle), arranged within a 74 mm wide × 56 mm high area (8.5 × 

6.4 degrees of visual angle). The locations of squares were restricted so that there was at 

least 17.5 mm between their centers and they were at least 17.5 mm from the center of the 

display area. The mask array included 5 multicolored squares in the same spatial 

arrangement as the target array, overwriting the colors while preserving location 

information.

The session began with 12 practice trials followed by 13 blocks of 12 test trials. Within each 

block, 6 trials were designated as “Storage Judgment” while the rest were “No Storage 

Judgment” trials. Within the 6 trials of each designation per block, one of each of the 

possible number of changed items (0–5) was selected. Thus, each block of 12 trials 

consisted of exactly one example of all possible trial types.
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Results

The included participants erroneously made judgments on how much information was in 

working memory on 4% of trials when they had not been instructed to do so, and they 

erroneously omitted judgments on 6% of trials in which they had been instructed to make 

them. These trials were excluded from the analyses.

Mean response function—Figure 2 shows the mean number of reported changes for 

each number of actual changes. To give a rich picture of performance, these means were 

calculated separately for the thirds of the participants with the poorest performance, 

intermediate performance, and best performance. The figure also shows perfect or veridical 

performance, for which the slope would be 1.0.

Performance levels—Mean performance in terms of the discrimination slopes and 

metamnemonic judgments are shown in Table 2. The discrimination slopes based on the 

mean judgments shown were slightly but significantly higher on trials without storage 

judgments (M=.66, SD=.16) than on trials with them (M=.62, SD=.17), F(1,56)=4.84, p<.05, 

ηp
2=.08, The metamnemonic judgment mean (2.71) is roughly comparable to capacity 

estimates from limited capacity models meant for single-change tasks (e.g., Cowan, 2001; 

Rouder et al., 2008) and from production tasks (Anderson et al, 2011; Luck & Vogel, 2008), 

typically about 3 items. It is even closer to the capacity estimate for the present study (2.69) 

that is based on our best mathematical model of the results, to be described after Experiment 

3.

Trial-to-trial metamnemonic awareness—We asked whether participants were aware 

of remembering fewer items on some trials and more items on others. Inspection of Table 2 

informally illustrates such a trend in terms of participants with data at each possible 

metamemory storage judgment. These data could not be analyzed statistically given that 

different participants used different judgment categories. In order to ask whether participants 

were aware of remembering fewer items on some trials and more items on other trials, we 

examined the proportion correct for every participant separately for trials in which each 

metamnemonic category was used. We calculated the regression slope of discrimination 

slopes across the five categories. A mean slope greater than zero indicates an improvement 

in performance across increasing numbers of items judged to be in working memory. The 

mean regression slope (M=.06, SEM=.02) was indeed significantly above zero, t(59)=3.31, 

p<.01, indicating metamnemonic awareness.

Individual differences—As shown in Table 3, there was a very high correlation between 

discrimination slopes obtained from trials with versus without metamemory judgments but, 

otherwise, the different indices of working memory and knowledge of it did not correlate. 

One concern with these results is that there was an outlier who had a discrimination slope 

near zero, yet had a metamemory judgment mean of nearly 4 items. Without that misguided 

outlier, there was a significant correlation of metamemory judgments with discrimination 

slope on trials with no storage judgments, r=.44, and on trials with storage judgments, r=.40. 

It appears, then, that many participants do have some idea of where they stand in terms of 

array memory information relative to other individuals. Still, the absence of correlation 
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between discrimination slope and the working memory composite based on other tasks 

persisted, suggesting that array memory here does not necessarily tap the same 

characteristics as the other working memory tasks. This issue will be revisited in Experiment 

2.

Discussion

A priori, it might have been expected that the assessment of working memory capacity in 

terms of number of items in working memory (Cowan, 2001; Luck & Vogel, 1997; Pashler, 

1988) might be irrelevant when the judgment pertains to the entire array. Indeed, 

participants seem able to make conjoint judgments based on the average of a feature value 

(e.g., size) across an entire array of many items (Chong & Treisman, 2005). The present 

experiment shows, however, that the new, multi-change-detection method of determining 

the used capacity of working memory is viable. Our modeling result will show that it yields 

estimates rather comparable to the standard, single-change-detection method. This result 

shows that the limited capacity of working memory appears to be an important factor in 

understanding responses even when they pertain to the entire array rather than a single item 

that may have changed from the studied array to the test array.

One possible problem with this experiment is that participants appeared to do rather well. A 

difference between a capacity of 4 and a perfect score might be difficult to observe. Perhaps 

this functional ceiling limited the individual-score reliabilities, in which case the multi-

change-detection task could be more reliable with a larger set size. Accordingly, in 

Experiment 2, we retested the multi-change-detection model with 7 items per array.

Experiment 2: 7-item Displays

Method

Participants—We ran 65 college students (36 female). We excluded the data from 10 

participants who had incomplete data or almost always failed to make storage judgments, 2 

others who used only two storage judgment categories (described below), and 1 other who 

appears to have reversed the scale, indicating how many items stayed the same rather than 

how many changed. The final sample of 52 included 29 females.

The participants who used only 2 storage judgment categories were excluded from most 

analyses because it was considered difficult to compare trial-to-trial fluctuations in memory 

with metamemory. One of them used metamnemonic categories 2 and 3 (M=2.34) and had 

near-average performance, with a slope of reported changes across actual changes of .52. 

The other used categories 3 and 4 (M=3.60) and did very well, with a slope of .93.

Apparatus, stimuli, and procedure—The method was similar to Experiment 1 

(including the auxiliary tasks) except that, in the main task, there were 7 items in each array 

instead of 5, and the response scales were adjusted accordingly. Participants completed a 

total of 160 experimental trials: 10 blocks of 16 (with storage judgments in 8 of the 16 per 

block). Each of the possible array change values (0–7) occurred once in each block for 

storage-judgment trials, and once for no-storage-judgment trials. The color set was expanded 

to include those in the former set of 10 except for dark-blue-green (excluded in order to split 
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up the green category), and also included fluorescent green, dark green, navy, violet, and 

orange.

Results

The included participants erroneously made judgments of how much information was in 

working memory on 2% of trials when they had not been instructed to do so, and they 

erroneously omitted judgments on 3% of trials in which they had been instructed to make 

them. These trials were excluded from the analyses.

Mean response function—Figure 3 shows the mean response function for Experiment 2, 

separately for individuals in the bottom, middle, and top third of performance. It can be seen 

that even the top third of the participants was further from the veridical line than was the 

case in Experiment 1 (Figure 2), indicating that increasing the set size from 5 to 7 items 

successfully removed any problem of ceiling effects in some participants.

Performance levels—Mean performance in terms of discrimination slopes and 

metamnemonic judgments are shown in Table 4. These means are generally similar to 

Experiment 1. One difference is that the discrimination slope for trials with no 

metamnemonic judgment (M=.49, SD=.20) did not significantly differ from trials with a 

metamnemonic judgment (M=.46, SD=.19), F(1,51)=3.19, p=.08, ηp
2=.06. The 

metamnemonic judgment mean (2.76 items) was somewhat higher than the mean number of 

items in working memory according to the winning mathematical model (2.28 items).

Trial-to-trial metamnemonic awareness—Once again we asked whether participants 

were aware of remembering fewer items on some trials and more items on other trials. 

Inspection of Table 4 informally illustrates such a trend in terms of all participants who had 

data for each possible storage judgment (0–7). Once more in a more formal measure, a mean 

regression slope across judgment categories greater than zero indicates awareness. The mean 

slope (.06, SEM=.02) was indeed significantly above zero, t(51)=2.74, p<.01, indicating that 

participants again did show some metamnemonic awareness of their trial-to-trial knowledge, 

as in the other experiments.

Individual differences—The present experiment shows a stronger pattern of correlations 

(Table 4) than we obtained in Experiment 1. Not only is there a strong correlation between 

the two measures of discrimination slope; there also are strong correlations between these 

measures of items in working memory and the working memory composite score. Thus, 

there seems to be some evidence in favor of the need to use larger set sizes for the multi-

change-detection task in order to obtain an ideal set of correlations, probably because of 

ceiling effects for some participants in 5-item arrays. The change in the function of 

discrimination slope across storage judgments, indicating trial-by-trial knowledge of the 

contents of working memory, also was correlated with the working memory composite score 

in this experiment, so that higher-span individuals seem to have more knowledge of their 

current mental state.

As in Experiment 1, metamemory storage judgments were not correlated with discrimination 

slope. Unlike Experiment 1, this lack of correlation was not the result of an outlier. Instead, 
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it appears that with this more difficult task, participants are unable to assess reliably how 

good their memory capacity is overall.

Discussion

The present experiment, like Experiment 1, showed that there is considerable usefulness in a 

method in which any number of items in the field can change. The use of a larger array set 

size in the present experiment (7 instead of 5 colored items) produced results that did not 

suggest any ceiling effect, but still are similar to those of Experiment 1 in key ways. The 

estimates of discrimination slope were similar though slightly higher in the present 

experiment, probably because there is no longer a ceiling effect for the more capable 

participants.

Both experiments also produced similar evidence that participants are aware of trial-to-trial 

fluctuations in the number of items in working memory. Specifically, in both experiments, 

the slope of performance (items in working memory) as a function of the assigned storage 

judgment was positive, indicating awareness of trial-to-trial differences. There were mixed 

indications of the presence or absence of between-individual correlations between working 

memory tasks and metamnemonic knowledge, indicating that there was not very consistent 

awareness of the quality of one’s own working memory compared to other participants.

Experiment 3

In this experiment we tested the generality of the pattern of results obtained in the first two 

experiments by examining 5-, 7-, and 9-item arrays intermixed in the same trial blocks. In 

order to allow time for this broader set of trials in an experiment, we omitted the storage 

judgments and the auxiliary working memory tasks. This experiment therefore should 

provide a pure measure of multi-change detection unaffected by any additional task 

requirements. It also serves as a good basis for mathematical modeling of the results.

Method

Forty-six introductory psychology students participated (27 male, 19 female). The stimulus 

set was expanded to 18 colors, chosen to be maximally discriminable from one another 

(Table 1). In order for the objects to fit in the display, they could be separated by only 13.7 

mm, compared to 17.5 mm in Experiments 1 and 2. Ten practice trials were followed by 216 

test trials, with an equal number of trials for each combination of set size and number of 

changes. Given that there were 6 trial types for 5-item trials (0–5 changes), 8 trial types for 

7-item trials, and 10 trial types for 9-item trials, there were 24 experimental conditions. Each 

condition occurred 3 times within a block of 72 trials, and there were 3 of these 

experimental trial blocks with breaks in between the blocks. Because there were no storage 

judgments, we were able to reduce the retention interval from 4s previously to 1s in this 

experiment, decreasing the test time.

Results and Discussion

The left-hand panel of Figure 4 shows the mean performance function (mean reported 

number of changes as a function of the actual number of changes) for each set size. 
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Interestingly, the functions stay separate by set size up to 4 changes and then converges, 

suggesting that sensitivity to the number of changes may have a different basis after this 

point.

Mathematical Models of Performance

The usefulness of the multi-change-detection procedure may hinge in part on whether the 

appropriate model of performance in that procedure can be developed. We do not claim to 

have the final word on that issue but have had considerable success in finding at least one 

model that appears to account for a complex pattern of results.

So far, the results of the experiments have been presented in terms of mean reported number 

of changes for each actual number of changes (Figures 2, 3, & 4). We have found that it is 

fairly easy for a variety of models to fit these means, whereas a more detailed pattern of 

responding is harder to fit and provides much better discrimination between possible 

models. The detailed pattern involves the entire distribution of responses for each actual 

number of changes.

Failure of an independent-decisions model

In the first model that fit the linear shape of the means rather well, but failed in modeling the 

detailed pattern, was one in which a decision was made independently for each item in the 

array. The decision was made based on the item’s representation in working memory or, if 

that representation was not present, on guessing. For a given set size a given change would 

have the same probability of being detected regardless of how many other items changed; 

thus, the reported number of changes increased as a linear function of the actual number of 

changes, the slope of the function was determined by the number of items in working 

memory, and the intercept was determined by the guessing rate. This kind of model failed, 

however, in explaining the detailed pattern of results, which is shown for Experiments 1 and 

2 in the left-hand panels of Figure 5 and for Experiment 3 in the left column of panels in 

Figure 6. Whereas the pattern increases at the extreme responses, the model just described 

showed a dramatic downturn at the extreme responses.

Success of overall-decision models

In the remaining models, which were compared more formally, the general shape of the 

detailed pattern of responses was reproduced better. These models were based on the 

premise that performance involves several components. First, a number of changes is 

detected. The number detected on a particular trial depends on chance but also on the current 

capacity of working memory. Second, the participant has and employs beliefs about what his 

or her working memory capability is. Third, based on these first two components and some 

mental, undoubtedly implicit use of the laws of probability, the participant constructs a 

distribution of probabilities for the various scenarios (0 changed, 1 changed, etc.). Fourth, a 

response is determined based on the application of a decision rule to this distribution of 

probabilities.

Given limitations in the amount of data per individual, we modeled group data. In the first 

model we tried, capacity was set to a fixed number of items, k, and it was supposed that c 
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changes were detected on a trial. The participant was assumed to be aware of the k value 

and, therefore, the rules of probability yielded the likelihood of observing c changes given 

various numbers of actual changes, according to a hypergeometric distribution. The decision 

rule was to select the most likely scenario to produce the observed number of changes. This 

model failed badly because when all items changed, k changes were observed and the 

participant should always indicate that the most likely basis of this result was that all items 

changed. Similarly, when no changes were detected, the most likely option should always be 

that no items changed. It can be seen in Figures 5 and 6 that participants were not so severe 

in their judgments.

Formal modeling

In Figure 5, one can see the modified models that were formally considered, as applied to 

Experiments 1 and 2. Table 5 shows the outcomes of various models according to 4 fit 

indices: log likelihood of the fit (Fisher, 1922), the residual sum of squares (Draper, 1998), 

AIC (Akaike, 1974), and BIC (Schwarz, 1978). In the first model that was considered, the 

only change that was made was that capacity (k) was said to vary from trial to trial. The 

proportion of trials with 0, 1, 2…n items in working memory were allowed to vary 

independently as parameters of the model (Nelder & Mead, 1965). As shown in Panel B of 

the top and bottom rows of Figure 5, the result was encouraging though still a bit severe at 

the extremes. Moreover, for the 7-item arrays of Experiment 2, there was an asymmetry in 

the results that was not picked up by the model.

Different modifications of the model were found to overcome these two limitations. In many 

studies of behavior, as mentioned earlier, participants do not consistently select the optimal 

choice from a distribution, but rather probability match (Shanks et al., 2002; Vulkan, 2000). 

For example, if the participant must choose which of two responses yields a reward and 

Response A yields the reward 60% of the time in an unpredictable manner, winnings would 

be optimized by always choosing Response A but, instead, participants tend to choose 

Response A only about 60% of the time. Use of a probability-matching principle to select 

the response made the pattern of predictions much more gradual, like the actual results.

What probability matching did not do was produce the asymmetry seen for the 7-item arrays 

in Experiment 2 (later replicated in the 7- and 9-item arrays of Experiment 3). We found that 

what did produce the asymmetry was a situation in which the participant misjudged his or 

her own working memory capacity. At first, we despaired because of the large number of 

ways in which capacity could be misperceived. Then we realized that a theoretical 

description of that misperception was not needed, given that we had actual data on 

participants’ metamnemonic judgments in Experiments 1 and 2. We assumed that the 

distribution of metamnemonic judgments reflected the distribution of perceived values of 

capacity. To model Experiment 3, we applied the metamnemonic judgments for the same set 

sizes in Experiments 1 and 2. The metamnemonic judgment almost never went up to 7, so to 

model 9-item arrays we assumed probabilities of 0 for believing that there were 8 or 9 items 

in memory, as well.
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Winning model

Figure 5 and Table 5 show that both of these innovations, probability matching and 

metamnemonic judgments, are needed in order to produce the gradual and asymmetric 

patterns that were obtained. For 5-item arrays the asymmetry was not very severe, so the use 

of metamnemonic judgments was not very important for them, but these judgments were 

essential for a good account of the 7- and 9-item array results. Thus, the model depicted as 

Panel E in the top and bottom rows of Figure 5 was the winning model. Figure 6 shows that 

this model provides an excellent fit to the results of Experiment 3, as well. In the model, it is 

assumed that the belief about k that is used in the inferential process is generally the one 

yielded by the metamnemonic process, distributed as that process is over trials. Whenever 

the detected number of changes is higher than the belief about k, the assumption is that the 

belief is modified upward. (For example, one might think something like the following, 

implicitly or explicitly: “I believed that I knew only 2 of the items but I have detected three 

changes, so now I know that I must have had 3 items in working memory.”) Appendix A 

provides a formal expression of this model.

Discrepancies between k and the beliefs about k produce the asymmetry in the detailed 

pattern of data. The likely reason can be gleaned from Figure 7, which depicts the 

distribution of metamemory judgments in Experiment 2 along with the theoretical 

distribution of items in working memory according to the best model. Participants on many 

trials observe few or no changes in part because they have few opportunities to observe 

changes (because they only remember 3 items), but think they have more opportunities 

(because they think they remember 4 or 5 items). On these trials, too much weight is then 

placed on the absence of detected changes, and the inference is made that there must have 

been few or no items that changed. The converse is not true because the model is based on 

the assumption that items must be in working memory in order for a change to be observed; 

detecting few no-changes (i.e., many changes) presumably happens only with a large 

number of items in working memory, but there are rarely more than 4 items in working 

memory according to the model.

Precision-based models

It is also possible to account for some key aspects of the results under the assumption that all 

of the array items are represented in working memory, but that some of them are represented 

at a level that is too imprecise to allow the participant to notice a change from one color to 

another (e.g., Bays & Husain, 2008; van den Berg et al., 2012). As explained in Appendix 

A, the two parameters of that model determine a probability distribution of precisions for 

various items in the arrays, assuming a gamma distribution. This kind of approach elegantly 

produces the gradually changing patterns that we have observed. If the precision model is 

allowed to use a probability-matching rule rather than always choosing the optimal response 

within the confines of the observed changes in the array, the fit generally improves further 

(see Table 5 and the rightmost two panels of both rows in Figure 5).

What the precision approach cannot easily do is produce the asymmetry that we see in the 

data, especially at the larger set sizes. In the slot models, we have not used a theoretical 

principle to create the discrepancy between the actual and assumed number of items in 
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working memory; we have used the metamnemonic judgments. To implement a precision 

approach with this discrepancy included, it would be necessary to make an assumption about 

the believed distribution of precisions that differs from the real distribution. That would be 

possible and might well produce the desired result, but we see little point in carrying out the 

exercise. If we failed to find a satisfactory solution we would still wonder whether we had 

just not hit upon the best distribution, so in any case we cannot claim that the slot approach 

outweighs the precision approach for these data. We claim only to have found a reasonable 

account of the data making explicit the inferential process, based on the number of items in 

working memory; the account could be modified to be based on the number of items in 

working memory with sufficient precision.

General Discussion

Our new multi-change-detection procedure addresses a question that at least potentially is 

ecologically different from the more conventional one of single-change detection, reflecting 

a different collection of real-world concerns. For example, the single-change-detection 

procedure might be like comparing a set list of objects on a table, such as wares to be sold, 

to the same set a moment later to make sure that no item has been moved or stolen and there 

has been no substitution. In contrast, the multi-change-detection procedure might be like 

comparing one peddler’s collection of goods on display to another’s, to decide which one to 

do business with. The data from three experiments show that participants carry out multiple-

change detection as if they base their responses on a limited memory for some of the items 

in the array. Figures 4–6 show that the results are similar to a simple model based on the 

notion of comparing the number of detected changes to the different scenarios that could 

result in that kind of detection and responding with probability matching between the 

observed and to-be-expected probabilities. It is unclear if the same psychological processes 

would operate for arrays of a very large numbers of items, as in the comparison of 

photographs of scenes from a geographic setting before and after a natural disaster has hit.

Despite task differences, both tasks can be assessed to determine whether they display the 

properties desired of working memory tasks. Previous results indicate that array change-

detection task results correlate well with other measures of working memory, including the 

presently-used operation span and running span measures (Cowan et al., 2005). It is true of 

the new multi-change-detection procedure also, but only if the number of items in the array 

is sufficiently beyond the capacity limit. The correlations between performance and 

composite working memory scores were substantial in Experiment 2, in which 7-item arrays 

were used, but not in Experiment 1 with its 5-item arrays.

We also collected informative data on participants’ knowledge of their own working 

memories. It is theoretically important that we found metamemory that correlates with actual 

memory in terms of trial-to-trial fluctuations. Participants appear to know something about 

how good or bad their working memory contents are on a particular trial, as one would 

predict, for example, if the relevant contents of working memory were at least partly held in 

the focus of attention (Cowan, 1988, 1995). If it turns out that all items are in working 

memory but just not at sufficient precision, the metamemory judgments still tell us about 
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participants’ manner of converting their precision to a likely number of items usefully 

precise for the task.

Regardless of the reason for the correlation between working memory performance and 

metamemory, it provides evidence of trial-to-trial fluctuations that are due not to chance, but 

to variation in memory or attention from trial to trial that can be indexed to some extent by 

the storage judgment response. This fluctuation does not occur in most extant models, 

though it has been included as a fluctuation in memory resources (van den Berg et al., 2012) 

or attention (Rouder et al., 2008). Most importantly, the metamnemonic results proved to be 

important in providing a possible reason for the asymmetries in the detailed pattern of 

responding especially for the large (7- and 9-item) arrays; participants often overestimated 

the items in working memory according to the model, and this discrepancy accounted for the 

asymmetries.

It has been difficult in the working memory literature to discriminate between slots and 

resources as a basis for working memory, in our opinion, because alternative assumptions 

can make either model viable. A parallel exists in the literature on multi-object tracking. 

Tripathy, Narasimham, and Barrett (2007) varied the number of moving dots that changed 

direction and found that the ability to determine whether they turned clockwise or counter-

clockwise varied with the angle of the change. Ma and Huang (2009) found that these data 

were best fit with a model in which there is no attentional capacity limit, but rather a fluid 

resource that monitors all dots. We note that the slots model might have an improved fit, 

though, if attention is shifted at least once during the display period and smaller angles of 

change require more time for a change to be noticed. According to this revised limited-slots 

explanation, participants may sample certain dots and then shift to other dots, sometimes 

shifting too soon to observe small-angle changes. Alternative versions of models will 

undoubtedly likewise prove relevant to finding the best account of multi-object-change 

detection in working memory.

In sum, the present results and analyses generalize the notion of same-different comparisons 

based on working memory, to situations in which the extent of change in an array is to be 

assessed. It remains to be seen how the model suggested here might be modified to account 

for more complex data sets (e.g., objects that can change in more than one feature), and 

whether the model can be applied in any form to very large set sizes or natural scenes. The 

research also combines objective and subjective measures of working memory as a way to 

understand the capacity of working memory and the processing of its contents. Finally, the 

study illustrates the importance of examining converging measures across working memory 

tasks, which induce different processing biases and require different theoretical models.
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Appendix A

Definitions of the Models

Slots Models

The losing slots models form the basis of the winning slots model, so the losing model will 

be described first, followed by the final adjustment that creates the winning model out of the 

losing model. The slot models assume that on each trial, a participant loads k items from the 

sample array into WM. Therefore, k represents the number of items in WM on a given trial, 

not an asymptotic capacity for items. We assume that k follows some distribution, but we do 

not specify a shape for the distribution but rather freely estimate the proportion of time that k 

took on each value from 0 to the array size. Due to limited data at the individual participant 

level, the k were estimated based on the data from all participants, so it is impossible to tell 

whether the distribution of k represents within-participant variability, between-participant 

variability, or some combination of the two. When the test array is shown, the participant 

compares the k items that are in WM to the corresponding items in the test array, with the 

correspondence determined by item location. In this comparison process, all of the k items 

that are in WM that changed from sample to test will be detected, resulting in the participant 

knowing that there were D detected changes. It is natural to use a hypergeometric 

distribution to describe this process. The hypergeometric distribution applies to a case in 

which there is a finite population, the members of which have one of two possible states, 

and a sample is taken from that population and the number of sampled items with each of 

the states counted. In our case, the finite population is the array of items, with size N, the 

sample is the contents of WM, with size k, and D is the number of changes detected in the 

sample. Because changes are detected without error, we can speak as though the N members 

of the population are changes or non-changes, k of which are sampled.

At this point, a participant has all of the information they are able to obtain. They know how 

many changes they have observed, but now they must make an inference about the number 

of changes in the population in order to make their response. This can be done by 

hypothesizing various numbers of changes in the population, denoted C, and using the 

hypergeometric distribution to calculate the probability of having observed D changes out of 

k sampled items from a population of size N for each hypothesized C. The resulting 

distribution gives the relative probability of each C having given rise to the observed 
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number of changes. For example, if N=5, k=3, and D=2, the participant would hypothesize 

that there were 0 to 5 changes in the population. Because 2 changes were detected, both C=0 

and C=1 are impossible, so they have 0 probability. Similarly, 1 non-change was detected, 

so C=5 is impossible. Finally, by the hypergeometric distribution, the probability of 2, 3, or 

4 changes are 0.2, 0.4, and 0.4, respectively.

In a rudimentary model that was unsuccessful, we assumed that the most likely response 

would be used, in this case the participant makes a random choice between 3 and 4 changes. 

This model was clearly inadequate (Figure 5, top-B and bottom-B) so, in a subsequent 

model that still is not the winning model, the participant was said to assume a probability 

match (Figure 5-C). In our example, they would respond that 2, 3, or 4 changes occurred 

with probability 0.2, .0.4, and 0.4, respectively.

A final adjustment to the model allows us to incorporate the metamemory judgments and 

reach the winning slots model (when applied along with probability matching as in Figure 5, 

top and bottom Panel E, and in Figure 6). Instead of assuming that participants know that 

they have k items in mind, we will have the model say that participants have a subjective 

belief about how many items they have in mind (in a task that occurred on some trials, 

before the probe array), denoted B. In this version of the model, when calculating the 

probability of each true number of changes, the participant uses B instead of k. On each trial, 

B is initially sampled from the distribution of metamemory judgments given by participants, 

with the probability of sampling each B dependent of how often participants endorsed the 

belief that they had that amount of information in WM. That B is independent of k and D, 

with one exception. It was assumed that a participant who observed more changes than the 

initially-believed number of items in working memory would adjust their belief upward, 

resulting in B=D on those trials. In this version of the model, it must be assumed that 

participants do not detect non-changes, as otherwise they would know k exactly by adding 

up the number of detected changes and non-changes. There is previous evidence of this 

asymmetry in which participants dwell on changes in a change-detection task (Gilchrist & 

Cowan, 2014; Hyun, Woodman, Vogel, Hollingworth, & Luck, 2009).

Variable Precision Models

The variable precision models take a different approach. They assume that all of the items in 

the sample array are encoded with some variable precision. Each item in the array is either a 

non-change, in which case it has a true value of 0, or a change, in which case it has a true 

value of 1. The participant observes these true values for all of the items in the array, but 

with error. This error is assumed to follow a normal distribution with mean 0 and variance 

equal to the inverse of the precision. The precision of measurement (i.e. the inverse of how 

much error there is in the measurement) is assumed to follow a gamma distribution 

parameterized as having a mean and a scale. In this model, only two parameters are 

estimated: the mean and scale of the gamma distribution of precisions, which are assumed to 

be the same across all participants and trials. This was done because we had limited data per 

participant, not because we believe that all participants and trials are the same.

Given that participants have measured the change state of each of the items in the array, they 

must then decide how many changes they believe to have occurred. If they measured the 
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items without error, this would be trivial because they have information about all of the 

items. However, because of the measurement error, they are not easily able to come to an 

unambiguous decision about how many changes they believe to have occurred. Like the 

slots models, in the variable precision model, the participants are assumed to hypothesize a 

true number of changes, C, which varies from 0 to N. For each C, each possible 

configuration of which items could have changed is enumerated and the observed 

measurements are compared with each possible configuration. The likelihood of obtaining 

the observed measurements given each configuration and knowledge of the precision of 

each measurement is calculated by the participant. Note that it is assumed that participants 

know on an item-by-item basis the precision with which that item’s state was measured. 

These likelihoods are then averaged across all configurations that have the same number of 

changes. This results in a distribution of belief about the probability of each number of 

changes producing the observed measurements.

In one version (Figure 5, top and bottom F), participants always choose the most likely 

response. In a further version of the model that proved to be slightly superior (Figure 5, top 

and bottom G), participants were assumed to probability-match rather than choosing the 

optimal solution. They were assumed to respond that each number of changes occurred with 

some probability that depended on the distribution of probabilities.

The parameters of the models were estimated using the Nelder-Mead simplex (Nelder and 

Mead, 1965), a numerical search algorithm, as implemented by the “optim” function in R (R 

Core Team, 2014). The R code is available from the authors.
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Figure 1. 
Schematic illustration of the method of Experiment 1. Patterns shown on the squares 

represent colors in the actual experiment. The participant responds to the question mark 

within the display of multicolored masks by estimating by keypress the number of items 

stored in mind. The response to the probe in this experiment is to indicate by keypress how 

many items changed color from the original array. In this example, 2 items changed; across 

trials, from 0 to all 5 items could change. In half the trials, the question mark seen here was 

replaced by an X and no storage judgment was to be made.
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Figure 2. 
For performance thirds of the sample in Experiment 1, the mean reported number of changes 

in the array for each number of actual changes in the array. The functions approximate 

straight lines and the reported slopes are the average individual slopes for these performance 

thirds. Error bars are standard errors. Veridical performance (thick line) would yield a slope 

of 1.0.
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Figure 3. 
For performance thirds of the sample in Experiment 2, the mean reported number of changes 

in the array for each number of actual changes in the array. The functions approximate 

straight lines and the reported slopes are the average individual slopes for these performance 

thirds. Error bars are standard errors. Veridical performance (thick line) would yield a slope 

of 1.0.
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Figure 4. 
In Experiment 3, the mean number of reported changes for each number of actual changes, 

separately for each set size (graph parameter). Veridical performance (thick line) would 

yield a slope of 1.0. Left panel, actual data (error bars are standard errors); right panel, 
winning model.
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Figure 5. 
Pattern of responding in Experiment 1 (top left figure) and Experiment 2 (bottom left figure) 

along with the predictions of a number of viable or nearly-viable models. Each panel shows 

the proportion of responses with each reported number of changes (x axis) for each actual 

number of changes (graph parameter). The models differ in whether they are based on 

limited slots (B–E) or precision (F–G), whether the decision basis is optimal (B, D, F) or 

according to probability matching (C, E, G), and whether the belief about the number or 

precision of items in working memory is virtual (B, C, F, G) or based on the metamnemonic 

judgments (D, E). We did not develop precision models with an alternative belief so the 

results do not rule out precision models. For the data, the maximum standard error of the 

mean for any one data point shown is 0.02 in Experiment 1 (top left panel) and 0.03 in 

Experiment 2 (bottom left panel).
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Figure 6. 
In Experiment 3, the proportion of trials yielding each reported number of changes (x axis) 

for each actual number of changes (graph parameter). Left panels, data; right panels, 

winning model. The top, middle, and bottom rows of panels represent arrays with 5, 7, and 

9 items, respectively. The maximum standard error of the mean for any given data point 

shown (left-hand panels) is 0.04, with the same maximum found for each set size examined 

separately.
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Figure 7. 
For Experiment 2, the distribution of metamemory judgments in the data (error bars are 

standard errors) and the distribution of items in working memory according to the best 

model.
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Table 1

Names and RGB Values of the Colors Used in the Arrays in Each Experiment

Color RGB Values Experiments

brown* 204,102,0 1

dark-blue-green* 0,102,102 1

black 0,0,0 1,2,3

white 255,255,255 1,2,3

red 255,0,0 1,2,3

lime 0,255,0 1,2,3

blue 0,0,255 1,2,3

magenta 255,0,255 1,2,3

yellow 255,255,0 1,2,3

cyan 0,255,255 1,2,3

fluorescent green* 0,230,115 2

orange* 255,128,0 2

navy 0,0,128 2,3

purple 128,0,128 2,3

dark green 0,100,0 2,3

saddle brown 139,69,19 2,3

light pink 255,182,193 3

burly wood 222,184,135 3

dark orange 255,140,0 3

silver 192,192,192 3

olive drab 107,142,35 3

teal 0,128,128 3

Note. All color names are standard in HTML code except for the ones marked with an asterisk.
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Table 2

Number of Participants (N), Mean Performance Levels, and Standard Errors of the Mean (SEM) for Various 

Measures in Experiment 1 (5-item Arrays)

N Mean SEM

Trials with no Metamemory Judgment Task

    Judged changes when 0 changed 60 0.84 0.11

    Judged changes when 1 changed 60 1.53 0.08

    Judged changes when 2 changed 60 2.19 0.06

    Judged changes when 3 changed 60 2.88 0.07

    Judged changes when 4 changed 60 3.45 0.06

    Judged changes when 5 changed 60 3.93 0.07

Trials with Metamemory Judgment Task

    Judged Items Stored 60 2.71 0.08

    Judged changes when 0 changed 60 1.06 0.11

    Judged changes when 1 changed 60 1.82 0.09

    Judged changes when 2 changed 60 2.49 0.08

    Judged changes when 3 changed 60 2.96 0.07

    Judged changes when 4 changed 60 3.57 0.08

    Judged changes when 5 changed 60 3.97 0.08

    Slope with storage judgment 0 15 .47 .17

    Slope with storage judgment 1 47 .45 .05

    Slope with storage judgment 2 54 .56 .04

    Slope with storage judgment 3 60 .62 .03

    Slope with storage judgment 4 48 .59 .05

    Slope with storage judgment 5 29 .66 .07

Auxiliary Tasks

    Operation Span Score 60 39.47 2.15

    Running Span Score 60 2.70 0.12

Note. Slope refers to increases in the reported number of changes in the array as a function of increases in the actual number of changes. The 
estimate of items in working memory based on the winning model, summed over the probabilities of different numbers of items in working 
memory, was 2.69. The proportions of trials with 0 through 5 items in working memory according to the model are .03, .08, .18, .58, .13, and .00, 
respectively.
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Table 4

Number of Participants (N), Mean Performance Levels, and Standard Errors of the Mean (SEM) for Various 

Measures in Experiment 2 (7-item Arrays)

N Mean SEM

Trials with no Metamemory Judgment Task

    Judged changes when 0 changed 52 1.31 0.11

    Judged changes when 1 changed 52 1.89 0.08

    Judged changes when 2 changed 52 2.33 0.08

    Judged changes when 3 changed 52 2.96 0.11

    Judged changes when 4 changed 52 3.36 0.12

    Judged changes when 5 changed 52 3.97 0.10

    Judged changes when 6 changed 52 4.32 0.13

    Judged changes when 7 changed 52 4.66 0.14

Trials with Metamemory Judgment Task

    Judged Items Stored 52 2.76 0.09

    Judged changes when 0 changed 52 1.56 0.12

    Judged changes when 1 changed 52 2.07 0.13

    Judged changes when 2 changed 52 2.61 0.11

    Judged changes when 3 changed 52 2.97 0.11

    Judged changes when 4 changed 52 3.43 0.10

    Judged changes when 5 changed 52 3.92 0.11

    Judged changes when 6 changed 52 4.33 0.13

    Judged changes when 7 changed 52 4.81 0.14

    Slope with storage judgment 0 11 .40 .17

    Slope with storage judgment 1 38 .41 .05

    Slope with storage judgment 2 50 .41 .04

    Slope with storage judgment 3 52 .50 .04

    Slope with storage judgment 4 44 .48 .04

    Slope with storage judgment 5 12 .57 .16

    Slope with storage judgment 6 4 .67 .22

    Slope with storage judgment 7 3 .00 .00

Auxiliary Tasks

    Operation Span Score 52 41.81 2.34

    Running Span Score 52 3.13 0.09

Note. Slope refers to increases in the reported number of changes in the array as a function of increases in the actual number of changes. The 
estimate of items in working memory based on the winning model, summed over the probabilities of different numbers of items in working 
memory, was 2.28. The proportions of trials with 0 through 7 items in working memory according to the model are .04, .04, .51, .40, .00, .00, .00, 
and .00, respectively.
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