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Abstract

RNA editing is a process that alters DNA-encoded sequence and is distinct from splicing, 5′ 

capping and 3′ additions. In thirty years since editing was discovered in mitochondria of 

trypanosomes, several functionally and evolutionary unrelated mechanisms have been described in 

eukaryotes, archaea and viruses. Editing events are predominantly post-transcriptional and include 

nucleoside insertions and deletions, and base substitutions and modifications. Here, we review the 

mechanism of uridine insertion/deletion mRNA editing in kinetoplastid protists typified by 

Trypanosoma brucei. This type of editing corrects frameshifts, introduces translation punctuation 

signals, and often adds hundreds of uridines to create protein coding sequence. We focus on 

protein complexes responsible for editing reactions and their interactions with other elements of 

the mitochondrial gene expression pathway.
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Is there an adaptive advantage in complexity?

In 1986, Rob Benne and co-workers described the insertion of four uridines into cytochrome 

c oxidase subunit 2 (CO2) mRNA from Trypanosoma brucei as means of correcting the 

encoded frameshift at the RNA level [1]. Astutely named “RNA editing,” this phenomenon 

later came to symbolize massive U-insertions [2] and U-deletions [3] that create open 

reading frames in transcripts of cryptic mitochondrial genes in kinetoplastid protists. This 

paradigm-shifting discovery stimulated researchers to look closer at discrepancies between 

DNA and RNA sequences in other organisms and ultimately led to identification of several 

divergent and largely unrelated editing mechanisms, such as A to I [4] and C to U base 

deamination [5], 3′-to-5′ polymerization [6], and others. The narrow phylogenetic 

distribution of editing systems suggests their derived character within lineages in which they 
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currently exist rather than editing being a primordial trait retained from a common 

evolutionary ancestor in some organisms and lost in others [7]. The sheer mechanistic and 

component complexity, and the lack of apparent adaptive advantage of having one, positions 

trypanosomal editing as a fruitful platform for evolutionary debate on the origins of 

macromolecular assemblies. The constructive neutral evolution (CNE) hypotheses argues 

that the functional editing machinery may evolve in the absence of positive selection and, 

importantly, prior to the actual need for the editing process [8]. By virtue of extant proteins 

forming neutral mutation-driven interactions, e.g., an enzyme with an RNA binding protein, 

such assembly may acquire a novel capacity. Without pressure from purifying selection, the 

neutral capacity can persist with no essential cellular function until a mutation arises that can 

be corrected by such pre-existing activity. Thus, the detrimental impact of a gene mutation 

may not be compensated unless a functional system to correct the sequence at the RNA level 

is already in place. It follows that editing is an intrinsically mutagenic process: once 

evolved, the editing system allows accumulation of mutations that otherwise would be 

eliminated by the purifying selection [9,10]. Likewise, accumulation of multiple mutations 

would make reverse changes all but impossible, and render editing an essential pathway. In 

this context, the composition of the enzymatic core editing complex proved most instructive: 

catalytic modules implicated in fundamental cellular functions, such as DNA repair and 

RNA interference, along with proteins likely acquired by horizontal gene transfer, operate as 

stable protein complex that cleaves mRNA, adds or removes Us, and re-ligates fragments. 

Finally, when editing becomes an indispensable process, such as generation of a protein 

coding sequence, it must be incorporated into the overall gene expression pathway. It could 

be expected that interactions of the editing machinery with RNA processing and translation 

complexes would be as unique as editing systems themselves. Selection of correctly edited 

mRNA by the ribosome in a background of partially edited and unedited transcripts is 

among the most obvious problems that require additional levels of control. These 

considerations do not rule out possible adaptive advantage of editing once it evolved–indeed 

two reports indicate that alternative editing may generate protein diversity [11,12]. Editing-

dependent protein diversity, both the fact and the function, remain to be firmly established 

leaving the question wide open to future investigation and hypothesis building. Here, we 

review the complexity of trypanosomal insertion/deletion editing in terms of underlying 

biochemistry and potential origins of editing effectors, as well as determinants that direct 

position-specific insertion and deletion of uridines.

Elemental editing reactions are catalyzed by modular RNA editing core 

complex (RECC)

Trypanosoma brucei, the causative agent of African sleeping sickness, and most other 

representatives of Kinetoplastea, such as Leishmania spp., are characterized by the presence 

of the kinetoplast (see Glossary). This disc-shaped, high-density nucleoprotein structure is 

located in the mitochondrial lumen adjacent to the flagellar base. The kinetoplast encloses 

the mitochondrial genome (kDNA), which is composed of two types of catenated circles. 

Relatively few maxicircles (~25 kb) encode genes typically found in mitochondrial 

genomes, such as rRNAs, ribosomal protein RPS12 and subunits of respiratory complexes, 

while thousands of ~1-kb minicircles constitute the bulk of kDNA. In T. brucei, six of the 18 
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annotated mRNAs encode predicted polypeptides while the remaining 12 transcripts must 

undergo editing to acquire open reading frames and translation punctuation signals. The 

product of trypanosomal mRNA editing is not collinear with DNA as it contains extra 

nucleotides compared to the gene sequence, and sometime lacks encoded uridines. 

Historically, the determinants of position-specific U-insertions and deletions have been 

discovered as short patches of complementarity between edited mRNA and maxicircle DNA 

in Leishmania tarentolae [13]. By allowing for wobble G-U, in addition to canonical 

Watson–Crick base-pairing, short (50–60 nt) mitochondrial RNAs transcribed from 

maxicircles have been recognized as carriers of genetic information and termed guide RNAs 

(gRNAs). Further work established that most gRNAs are encoded in minicircles [14]. The 

predicted secondary structure of gRNA-mRNA hybrid instantly suggested a mechanism by 

which the editing site and the extent of U-insertions/deletions are determined without 

invoking template-dependent polymerization of nucleic acids [13]. The initial site selection 

is accomplished via a short (5–10 nt) region of complementarity between gRNA’s 5′ anchor 

and pre-edited mRNA. The rest of gRNA forms an imperfect duplex (3′ anchor)with mRNA 

which results in bulging of single-stranded uridines in mRNA (deletion sites) or purine 

nucleotides in gRNA (insertion sites, Figure 1). At either site, the mRNA is cleaved at the 

first unpaired nucleotide adjacent to the 5′ anchor duplex. The resultant deletion and 

insertion intermediates are quite distinct: single-stranded uridines become exposed to a 

3′-5′exonucleolytic attack in the former while a gap is created in the latter. Upon trimming 

uridines to the first paired base in the deletion site, or adding gRNA-specified number of 

uridines to a 5′ cleavage fragment in the insertion site, the fragments are joined to restore 

mRNA continuity, which extends the double-stranded anchor region.

It has been proposed that within the editing domain overlapping guide RNAs bind 

sequentially in a 3′–5′ polarity along the mRNA, just as sequence changes directed by the 

initiating gRNA create binding site for the next one [15]. However, recent deep sequencing 

studies demonstrated that gRNA coverage of virtually all edited sequences is highly 

redundant albeit uneven (100–100,000 per nucleotide in mRNA)[16,17]. This observation 

suggests that multiple overlapping gRNAs may compete for pre-edited and partially-edited 

sequences and entreats the question whether the full editing potential of each gRNA is 

indeed realized. Most gRNAs can theoretically direct editing at several closely spaced sites, 

but as editing progresses within editing block, the tethering interaction between gRNA and 

mRNA 5′ cleavage fragment (3′ anchor) is supported by fewer base pairs (Figure 1). 

Stabilizing such interaction in vitro by introducing additional base pairing greatly stimulates 

the efficiency of U-insertion/deletion and RNA ligation reactions [18–20]. Thus the problem 

of editing at distal sites may be solved by displacing gRNA with diminishing “3′ anchor” 

bya molecule capable of directing the same changes while forming a more stable hybrid. 

The tethering role of the gRNA’s U-tail has been proposed based on purine-rich nature of 

pre-edited mRNA sequences [21], but the experimental evidence for such function is still 

lacking.

The asymmetrical U-deletion and U-insertion sites are recognized by RNase III-type 

endonucleases, KREN1 [22] and KREN2 [23], respectively. The third endonuclease 

(KREN3) apparently targets the CO2 mRNA that contains a cis-acting guide RNA-like 
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element in its 3′ untranslated region (UTR) [24,25]. In contrast to canonical RNase III 

enzymes that form functional dimers with two active sites and cut both strands in a double-

stranded RNA, editing endonucleases cleave only the mRNA. It seems plausible that a 

single cleavage is caused by KREN1 and KREN2 forming heterodimers with catalytically-

inactive degenerate RNase III-like domains in the T. brucei RECC subunits KREPB4 and 

KREPB5, respectively (Table 1) [24]. A mutually exclusive binding of KREN1, KREN2 

and KREN3 with common set of proteins that contain U-deletion, U-insertion and ligase 

activities highlights RECC’s modular nature (Figure 1) [24–27]. Apparently, an 

endonuclease module, e.g., an endonuclease associated with a specific protein(s) such as 

KREN1/KREX1/KREPB8, KREN2/KREPB7 or KREN3/KREPB6, bind to a common 

particle conferring a specificity for U-deletion, U-insertion or cis-edited sites, respectively 

(Figure 1). The interactions responsible for mutually exclusive binding to the core complex 

are unclear, but may involve dimerization of editing endonucleases with degenerate RNase 

III motifs in KREPB4 and KREPB5. Alternatively, convergent binding sites for accessory 

proteins KREPB6, 7 and 8 may enable docking of endonuclease modules to the common 

core.

Within the common set of proteins, the U-deletion and U-insertion cascades are spatially 

separated by virtue of editing enzymes binding to distinct zinc finger proteins, KREPA2 and 

KREPA1, respectively (Figure 1) [28–31]. KREX1 and KREX2 proteins possess 

exonuclease-endonuclease-phosphatase (EEP) catalytic domains and display single-stranded 

uridine-specific 3′–5′ exonuclease activity in vitro [27,32]. However, their interaction 

networks are remarkably distinct: the essential KREX1 is part of the KREN1 endonuclease 

module, and likely constitutes the main U-deletion activity; the dispensable KREX2 

probably represents a structural component of the U-deletion sub-complex [32,33]. Fittingly, 

KREX2 lacks a catalytic domain, but remains associated with the U-deletion sub-complex in 

Leishmania tarentolae [32,34,35]. In the U-insertion sub-complex, KRET2 RNA terminal 

uridyltransferase (TUTase) binds to KREPA1, which results in a mutual stabilization and 

stimulation of TUTase activity [31,36–39]. Selectivity of uridine incorporation is 

determined by KRET2’s intrinsic specificity for UTP [38]; therefore both adenosines and 

guanines in guiding positions may direct U-insertion editing with equal efficiency. KRET2’s 

RNA binding properties play a critical role during insertion of multiple Us in the same 

editing site: a single uridine may be added to the mRNA 5′ cleavage fragment irrespective of 

potential base pairing with gRNA. However, if a mismatch occurs between the newly added 

+1U and the gRNA, addition of the +2U would be blocked because of enzyme’s strong 

preference for the double stranded RNA [36]. The processivity of RET2-catalyzed reaction 

depends on the chemical nature of the mRNA-gRNA base pair. A distributive +1 addition is 

predominant when the mRNA 5′ cleavage fragment terminates with a purine base, which is 

the most common outcome of the endonucleolytic cleavage. Conversely, if the dsRNA 

substrate terminates with uridine, KRET2 processively fills the gap of up to 12 nucleotides, 

as specified by the number of guiding nucleotides. U-deletion and U-insertion reactions 

produce a double-stranded RNA in which nicked mRNA fragments are tethered by gRNA, 

an optimal substrate for ligation [20]. RNA editing ligases 1 and 2 (KREL1 and KREL2) 

have been identified as components of U-deletion and U-insertion sub-complexes, 

respectively [29,31,35]. Although spatial separation [28,30,34,40] is consistent with their 
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specialized roles, only KREL1 is essential for cell viability [41–45]. Remarkable structural 

similarity between trypanosomal editing ligases and T4 phage RNA ligase 2 (Rnl2) [46–48] 

indicates that a horizontal gene transfer may be a potential source of editing activities.

RNA editing substrate binding complex (RESC): toward definition of the 

RNA editing holoenzyme

The ‘editosome’ concept has been constantly redressed since detection of RNA ligase-

containing heterogeneous macromolecular complexes [49–51]. Studies of the enzymatic 

RNA editing core complex (RECC) revealed a minimal set of proteins required for the 

editing cascade, but also highlighted low in vitro efficiency of the purified ~20S RECC 

[52,53]. Conversely, RECC subunits have been detected in particles with apparent 

sedimentation coefficient exceeding 40S [54]; sensitivity of these particles to RNase 

treatment provided initial indication for the ribonucleoprotein nature of RECC-containing 

supercomplexes. In a parallel line of inquiry, several laboratories pursued guide RNA 

binding proteins as it is generally held that short unstructured RNAs are maintained in a 

protein-bound form. Although several candidate proteins have been identified [55–62], only 

two paralogous proteins initially purified from L. tarentolae [62] fulfilled the expected 

criteria: 1) gRNA loss upon genetic repression; 2) ensuing inhibition of editing for all but 

cis-edited CO2 mRNA and 3) RNA binding capacity. Termed gRNA binding complex 

(GRBC) subunits 1 and 2, these polypeptides lack annotated motifs and similarity to any 

protein outside Kinetoplastida [63]. GRBC1 and GRBC2, also referred to as GAP2 and 

GAP1 [64], respectively, form a stable α2β2 heterotetramer which binds gRNA in vitro and 

participates in a higher order assembly [65], also known as the mitochondrial RNA binding 

complex 1 (MRB1) [66]. Extensive studies by affinity cross-tagging and yeast two hybrid 

screens are converging to define a modular RNA editing substrate binding complex (RESC) 

that is responsible for several critical functions in mitochondrial RNA processing.

In contrast to RECC, the RESC particle does not contain enzymes and all but one subunits 

lack discernible motifs or significant similarities to non-kinetoplastid proteins. Since 

sequence-based predictions are of limited value in asserting functions of specific RESC 

subunits, a rather uniform RNAi-based approach has been adapted to assess the impact of 

respective protein depletion on cell viability, gRNA abundance, mRNA editing and the 

overall complex integrity (Table 2). In conjunction with the proposed tripartite architecture 

of the RESC particle [17], these studies brought some surprising results. It appears that 

GRBC1/2 tetramer constitutes a core of the seven-member gRNA binding complex 

(GRBC), which interacts tightly with a set of proteins clustered around RGG2 RNA binding 

protein. The RGG2 cluster has been termed RNA editing mediating complex (REMC) to 

reflect its role in interaction with RECC (Figure 2). Remarkably, GRBC1/2 remain the only 

subunits essential for gRNA maintenance while knockdowns of most other proteins causes 

inhibition of RNA editing accompanied by gRNA accumulation [17]. A more detailed 

analysis of mRNA processing intermediates proved instructive in few cases. For example, 

gRNA loss in GRBC1/2 knockdown inhibited the editing process and led to accumulation of 

pre-edited mRNAs [17,63] while depletion of RGG2 from the REMC complex interfered 

with processivity of editing and exerted particularly strong effect on pan-edited mRNAs 
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[67]. Still another protein module appears to be responsible for RESC’s interaction with the 

kinetoplast polyadenylation complex [17,68]. Accordingly, RNAi knockdown of 

polyadenylation mediator complex subunit 1 (PAMC1) within the polyadenylation mediator 

complex (PAMC) inhibited post-editing polyadenylation/uridylation of edited mRNAs, but 

had no effect on editing per se [17]. For most other RESC subunits, loss of function studies 

produced rather generic outcomes (Table 2) and yielded little in terms of exact biological 

function or mechanism of action.

Although potential RNA binding motifs are found in many RECC subunits (Table 1), a 

preferential association of RNA editing substrates and products with the RESC (MRB1) 

complex has been found in two independent studies. By using rapid affinity pulldowns 

combined with Northern blotting and deep sequencing analyses of bound RNAs, it has been 

established that RNA editing substrates (gRNAs and pre-edited mRNAs), intermediates and 

products are held predominantly by the RESC complex [17]. Enrichment of gRNAs, pre-

edited and edited mRNAs in immunopurified material was also detected by RT-PCR 

analysis [69]. These findings rationalized previous observations of RNA-mediated 

interactions that draw the well-defined ~ 1 MDa RECC complex into heterogeneous 

particles exceeding 2 MDa. Indeed, a hypothesis has been put forward that RECC and RESC 

particles represent catalytic and RNA binding components, respectively, of the RNA editing 

holoenzyme [17,69,70]. In this setting, gRNAs and pre-edited mRNAs likely remain bound 

to RESC during the editing process whereas the U-insertion and U-deletion isoforms of the 

enzymatic core complex engage transiently to target individual editing sites. Elucidating the 

mRNA binding pathway through the RESC and defining functions of specific subunits 

remains the work of the future, but there is a high likelihood that contacts with several 

proteins are responsible for maintaining cleaved mRNA intermediates in a close proximity.

RESC is responsible for orchestrating pre-and post-editing mRNA 

processing events

RNA editing is a critical, but one of many mRNA processing steps in mitochondria of 

trypanosomes. In a striking contrast between the catalytic (RECC) and substrate binding 

(RESC) components of the editing machinery, it is the latter that appears to be responsible 

for coordinating pre-and post-editing processing events via RNA-mediated contacts with 

respective protein complexes.

Mitochondrial pre-mRNAs are believed to originate from multicistronic precursors that span 

both strands of the maxicircle DNA. Although the nature of mitochondrial promoters and 

molecular mechanism of precursor partitioning remain a mystery, the pre-edited and 

unedited mRNAs are characterized by short monophosphorylated 5′ UTRs without apparent 

ribosome binding sites. Conversely, modifications of the 3′ end are critical for mRNA 

stability and translation, and are intertwined with the editing process. Kinetoplast poly(A) 

polymerase KPAP1 adds 20–25 nt A-tail to the 3′ end of pre-edited mRNA and this short A-

tail is maintained for the duration of the editing process. Remarkably, presence of a short A-

tail does not affect the steady state levels of pre-edited mRNAs, but becomes essential for 

mRNA stability after very few initial editing events take place adjacent to the 

polyadenylation site [68,71]. This ‘stability switch’ phenomenon most likely ensures that 
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mRNA editing products are 3′ adenylated and competent for the post-editing 3′ A/U-tailing. 

The 200–300 nt-long A/U heteropolymers composed of stretches of As interspersed by few 

Us are added to the pre-existing 3′ A-tails upon completion of the editing process at the 5′ 

region [68]. This selective reaction requires KPAP1, RET1 TUTase and a heterodimer of 

pentatricopeptide RNA binding proteins, kinetoplast polyadenylation/uridylation factors 

(KPAFs) 1 and 2 [72] (Table 3). Remarkably, edited transcripts bearing 200–300 nucleotide-

long A/U-tails, but not short A-tails, are found in translating ribosomal complexes [72–74]. 

Existing evidence points out interactions between key 3′ mRNA modification factors 

andRESC. Thus, GRBC1 and GRBC2 were detected in the polyadenylation complex [68] 

while KPAP1, RET1 and KPAF1 were clearly enriched in affinity purified components of 

the PAMC complex ([17], Figure 2). To that end, edited mRNAs isolated from affinity 

purified RESC variants possessed mostly short A-tails while the PAMC1 knockdown 

triggered a loss of long A/U-tails, but not short A-tails [17]. It seems plausible that the A/U-

tailing may be coupled with edited mRNA release from the RESC complex which, in turn, 

implies that the post-editing 3′ modification eventis probably orchestrated by PAMC protein 

cluster within RESC.

Editing reactions inevitably produce double-stranded mRNA-gRNA hybrids that must be 

resolved to enable sequential gRNA binding during pan-editing and probably before fully 

edited mRNAs are translated. This basic premise led to identification of REH1 (Hel61) 

DEAD/H-box helicase [75], which was found to be essential for editing mediated by two or 

more overlapping gRNAs [76] (Table 3). Proteomic studies of GRBC1/2-associated proteins 

in L. tarentolae [63] and MRB1 complex in T. brucei also identified REH2 helicase [66], a 

large polypeptide representing RHA sub-group within the superfamily 2 of DEAH/RHA 

RNA helicases [69,70]. A protein essential for cell viability, REH2 is composed of dsRNA 

binding, DEXDc, HA2 and OB-fold domains and displays an ATP-dependent dsRNA 

unwinding activity [77]. Although the RNA-mediated nature of a relatively stable REH2-

RESC interaction is apparent, initial indications of REH2’s participation in gRNA 

biogenesis [64,77] have been questioned by more recent study [69]. Nonetheless, the steady-

state levels of several edited mRNAs decline in both REH1 and REH2 knockdowns, which 

justifies further efforts to understand molecular functions of RNA helicases in editing.

Another enigmatic factor, an essential Nudix hydrolase MERS1 was identified via a 

relatively stable RNA-mediated interaction with the GRBC complex [63]. Nudix hydrolases 

catalyze a wide range of reactions on polyphosphates including nucleoside di-and 

triphosphates, such as those found on gRNA’s 5′ end. However, MERS1 repression causes 

downregulation of edited mRNAs without affecting gRNA population. It is generally 

assumed that polycistronic precursors are divided into pre-edited and unedited mRNA by an 

endonucleolytic cleavage that leaves monophosphorylated 5′ UTRs. Although such nuclease 

remains unidentified, the processed mRNA 5′ end constitutes an unlikely target for a Nudix 

hydrolase. Further investigation of MERS1’s in vivo RNA binding sites and possible binding 

partners is clearly required to resolve the function of this intriguing mRNA stability factor.
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Concluding remarks

Current definition of the RNA editing holoenzyme, albeit most likely still incomplete (see 

Outstanding Questions Box), provides a fruitful ground for understanding molecular details 

of this process and a plethora of potential targets for developing trypanocides. However, the 

state-of-the-art techniques adapted by the field have arguably reached their limits. Further 

progress in elucidating the structure and dynamic interactions of editing complexes requires 

application of cryoelectron microscopy of purified complexes, assessment of transient 

protein-protein interactions in vivo, and high resolution mapping of in vivo RNA binding 

sites for RECC and RESC subunits. The complexity of editing protein assemblies is 

exacerbated by their interactions with pre- and post-editing mRNA 3′ end modification, and 

translation complexes. Because of low overall fidelity of the editing process, partially-edited 

or miss-edited transcripts constitute the bulk of the mRNA population. This raises the 

problem of how correctly edited mRNAs are selected for ribosome binding and translation. 

To this end, the signaling mechanism between the completion of the mRNA editing and 

addition of the long 3′ A/U tail remains to be established. Perhaps the most glaring 

knowledge gap lies in the origins of RNA editing substrates, which brings into focus the 

mechanisms of maxicircle and minicircle transcription, and the pathways for processing of 

primary mitochondrial transcripts. Studies of U-insertion/deletion editing introduced the 

fundamental concepts, such as guide RNA-directed targeting of protein complexes to 

mRNA, and discovered the new enzymes, such as TUTases. There remains, however, an 

intrinsic value in exploring unusual gene expression mechanisms beyond the realm of 

conventional model organisms.

Outstanding questions

• Significant progress in understanding of mRNA editing and polyadenylation 

underscores the lack of knowledge about mechanisms of mitochondrial 

transcription and initial processing events. What is the nature of mitochondrial 

promoters, the composition of transcription complex, and the structure of 

primary maxicircle-encoded transcripts? How are they processed into pre-edited 

and unedited mRNAs, and rRNAs?

• Many RESC (MRB1) subunits lack apparent functional motifs, but are essential 

for editing. Do they bind editing substrates, intermediates or products or 

facilitate RESC interactions with other RNA processing complexes?

• Completion of editing triggers mRNA adenylation/uridylation, a process in 

which 200–300 nt A/U-tails are added to pre-existing A-tails. What is the 

signaling event that leads to A/U-tailing? What are the molecular mechanisms 

involved in A/U-tailing activation or derepression?

• What is the mechanism used by mitochondrial ribosomes to distinguish fully 

edited from partially or missedited mRNAs? Either a sequence-specific mRNA 

recognition or rapid degradation of abortive translation products can be a 

potential solution.
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Glossary

5′ anchor 5′ part of the guide RNA that forms a continuous 5–10 nt duplex 

with pre-edited mRNA; this region is responsible for initial 

gRNA-mRNA interaction

3′ anchor refers to scattered base-pairing between gRNA region that directs 

editing reactions and pre-edited mRNA

5′ and 3′ cleavage 
fragments

mRNA fragments generated by gRNA-directed endonucleolytic 

cleavage, the first reaction of the editing cascade

Endo/Exo/
phosphatase (EEP)

metal-dependent hydrolase, endonuclease/exonuclease/

phosphatase family

Editing block mRNA segment covered by a single guide RNA; typically 

contains both U-insertion and U-deletion sites

Editing domain mRNA segment covered by multiple overlapping gRNAs. 

Sequence changes directed by the initiating gRNA create binding 

site for a sequential one and so forth; the hierarchical gRNA 

binding provides for the overall 3′-5′ progression of editing events 

within the domain

Editing site position of the guide RNA-directed mRNA cleavage where 

uridines are either removed from or added to the 5′ cleavage 

fragment

dsRNA double-stranded RNA

Fully-edited mRNA final product of the editing process; contains an open reading 

frame

Guide RNA small non-coding RNA that specifies positions and extent of 

uridine insertions and deletions. Guide RNAs are typically 40–60 

nt in length and possess 5′ triphosphates and 3′ oligo U-tails

Kinetoplast a densely packed, disc-like nucleoprotein structure that encloses 

mitochondrial DNA

Kinetoplast DNA kDNA, mitochondrial genome, DNA component of the 

kinetoplast composed of maxicircles and minicircles. In most 

cases circular DNA molecules are locked into a catenated 

network, but in some species circles are not catenated and 

distributed throughout mitochondrial lumen

Kinetoplastida 
(Kinetoplastea)

a group of flagellated protists belonging to the phylum 

Euglenozoa and characterized by the presence of a kinetoplast
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Maxicircle An equivalent of a typical mitochondrial genome, maxicircles 

contain genes for respiratory complex subunits, often ribosomal 

protein S12, and ribosomal RNAs. Maxicircles are typically 

longer than 20 kb and are present in few dozen copies per 

kinetoplast

Minicircle minicircles encode guide RNAs (gRNAs) that participate in the 

editing process and gRNA-like molecules on unknown function. 

The lengths (0.75–10 kb) and copy numbers (~10,000) vary 

dramatically among species

Pan-edited mRNAs transcripts that undergo massive editing directed by multiple 

overlapping gRNAs. There can be several editing domains within 

pan-edited mRNA

Partially-edited 
mRNA

intermediate of the editing process

Pre-edited mRNA precursor transcript that must undergo editing to acquire an open 

reading frame and/or translation initiation and termination signals

RNA helicase a motor protein capable of harnessing the energy from NTP 

hydrolysis to unwind double stranded RNAs or to remodel 

ribonucleoprotein complexes

RNase III an enzyme that binds to and cleaves double-stranded RNA leaving 

5′ monophosphate and 3′ hydroxyl groups

TUTase RNA terminal uridyltransferase, UTP-specific nucleotidyl 

transferase which adds uridylyl residues to the 3′ end of RNA

Unedited mRNA protein coding transcript that contains open reading frame and 

does not require editing

UTR untranslated region of mRNA
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Box 1. RNA editing core complex (RECC)

The concept of a stable protein complex that displays both U-insertion and U-deletion 

activities evolved with improvements in purification, detection and reverse genetic 

approaches [35,52,78]. This particle was referred to as the L-complex to signify the 

presence of RNA ligases [35]) or 20S editosome to reflect sedimentation properties of a 

purified complex [79]. The RNA editing core complex (RECC) is a collective term 

describing three alternative forms distinguished by a mutually exclusive association of 

endonuclease modules with a common set of structural and enzymatic subunits (Figure 1, 

[80]). The endonuclease modules contain REN1 and REN2 RNase III-like enzymes that 

cleave mRNA at deletion and insertions sites, respectively, and one or two accessory 

proteins. The REN3 module is believed to act on a single CO2 mRNA which contains 

guiding sequence in the 3′ UTR [24,25,81]. The common set of proteins could be further 

subdivided into inner nucleus and spatially separated U-insertion and U-deletion sub-

complexes. These three-member sub-complexes contain enzymes participating in 

respective enzymatic cascades. Noteworthy, the KREX2 exonuclease is dispensable for 

cell viability and lacks catalytic domain in related parasite L. tarentolae.
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Box 2. RNA editing substrate binding complex (RESC)

The RESC complex, also referred to as the mitochondrial RNA binding complex 1 

(MRB1) [66,82] or the guide RNA binding complex (GRBC) [17,63], emerged recently 

as the main RNA binding platform, which is also responsible for coupling of mRNA 

editing, polyadenylation and translation processes. All but one (RGG2) RESC submits 

lack annotated motifs and few have been assigned specific functions. At least three 

distinct modules can be distinguished within RESC based on mass spectrometry analysis 

of affinity purified subunits and yeast two-hybrid mapping of protein interactions: 1) 

gRNA binding complex (GRBC), of which subunits G1 and G2 are responsible for 

binding and stabilization of mature gRNAs; 2) RNA editing mediator complex (REMC), 

of which RGG2 subunit is required for processivity of pan-editing and 3) polyadenylation 

mediator complex (PAMC), of which subunit P1 is required for post-editing mRNA 

adenylation/uridylation. Approximately 17 subunits have been verified by cross-tagging 

experiments.
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Trends

• Uridine insertion/deletion editing generates protein coding sequences in most 

mitochondrial mRNAs of trypanosomes. The emerging architecture of the 

editing holoenzyme suggests an RNA-mediated assembly of the multi-subunit 

enzymatic RNA editing core (RECC) and RNA editing substrate binding 

(RESC) complexes.

• Recently characterized RESC complex is composed of approximately 17 

polypeptides that can be clustered into GRBC, REMC and PAMC modules. 

These modules are responsible for guide RNA binding, and mediating 

interactions with the enzymatic core editing and polyadenylation complexes, 

respectively.

• The majority of RNA editing factors are essential for parasite viability and do 

not have apparent human homologs. Therefore, RNA editing pathway represents 

a significant source of therapeutic targets relevant to neglected tropical diseases.
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Figure 1. 
Isoforms of the RNA editing core complex (RECC). Protein-protein interactions within core 

complex are depicted by overlapping circles or black bars. SC; subcomplex. Trans-guided 

insertion and deletion, and cis-guided insertion pathways are juxtaposed with corresponding 

endonuclease modules. Abbreviations: 3′ anchor, base-pairing between gRNA region that 

directs editing reactions and pre-edited mRNA; 5′ anchor, 5′ part of the gRNA that 

hybridizes with pre-edited mRNA; A, KREPA; B, KREPB; gRNA, guide RNA; REL, RNA 

editing ligase; RET, RNA editing TUTase; REX, RNA editing exonuclease; REN, RNA 

editing endonuclease; UMP, uridine monophosphate.
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Figure 2. 
Predicted protein interaction network within the RNA editing substrate binding complex 

(RESC). The network of RNase-resistant interactions was generated from cross-tagging and 

mass spectroscopy analysis of all subunits (adapted from [17]). The edge thickness and color 

intensity correlate with a relative strength of bait-prey interactions. Abbreviations: G, guide 

RNA binding (GRBC); R, RNA editing mediator (REMC); P, polyadenylation mediator 

(PAMC) complexes are colored red, blue and green, respectively.
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Figure 3. 
Schematic representation of mRNA interactions with RNA editing substrate binding, RNA 

editing core and polyadenylation complexes, and the ribosome. The RNA editing substrate 

binding complex (RESC) consists of three modules: guide RNA binding (GRBC), RNA 

editing mediator (REMC) and polyadenylation mediator (PAMC). These modules have been 

implicated in gRNA stabilization, recruitment of RNA editing core and polyadenylation 

complexes, respectively [17]. Pre-edited mRNA is depicted in red, edited mRNA is shown 

in blue, and edited A/U-tailed mRNA is colored in orange. The A/U-tail enables mRNA 

binding to the small ribosomal subunit (SSU) while RNA editing substrates and complexes 

are predominantly associated with the large ribosomal subunit (LSU).
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