
Sensory plasticity in human motor learning

David J Ostry1,2 and Paul L Gribble3,2

1McGill University, Montreal, Québec, Canada

2Haskins Laboratories, New Haven, Connecticut, USA

3University of Western Ontario, London, Ontario, Canada

Summary

There is accumulating evidence from behavioural, neurophysiological and neuroimaging studies 

that the acquisition of motor skills involves both perceptual and motor learning. Perceptual 

learning alters movements, motor learning and motor networks of the brain. Motor learning 

changes perceptual function and the brain’s sensory circuits. Here we review studies of both 

human limb movement and speech which indicate that plasticity in sensory and motor systems is 

reciprocally linked. Taken together, this points to an approach to motor learning in which 

perceptual learning and sensory plasticity play a fundamental role.
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Perceptual change and human motor learning

There has been recent interest in the idea that perceptual and motor learning do not occur in 

isolation but rather that motor learning changes sensory systems and sensory networks in the 

brain and, likewise that perceptual learning changes movements and the brain’s motor areas. 

This review will present evidence in support of both of these ideas, drawing on examples 

from human arm movement and speech motor learning. We suggest that perceptual learning 

is an integral part of motor learning and contributes in several ways. Perceptual learning 

results in changes to motor networks in the brain and in this way participates directly in 

motor learning. Perceptual learning is also associated with plasticity in sensory systems that 

is dependent on both afferent inputs from the periphery and on cortico-cortical projections 

from motor areas. We will propose that perceptual learning, and associated changes to 

sensory systems, play a fundamental role in human motor learning and that in this context, 

the two generally occur together.
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Neuroanatomical basis for reciprocal plasticity in sensory and motor 

networks

The efferent and afferent pathways linking the spinal cord with sensorimotor cortex and 

cerebellum are well known (see [1–3] for reviews). There are also extensive 

neuroanatomical connections between cortical motor and somatosensory areas that could 

drive plasticity in either direction, on the basis of use or experience. The connections extend 

from those between primary motor and somatosensory cortices to more distant connections 

linking premotor and prefrontal cortex with second somatosensory (SII) and parietal cortex 

(Table 1).

Somatosensory receptive fields are present in primary motor cortex and dorsal and ventral 

premotor cortices [17 – 18] and there are both visual and auditory receptive fields in ventral 

premotor cortex [19 – 20]. Neurons in ventral premotor cortex, SMA, and even ventrolateral 

prefrontal cortex are involved in perceptual decision making [21–22]. Accordingly one 

would expect that plasticity in the frontal motor networks should occur in conjunction with 

sensory processing and in particular from the extended and systematic nature of inputs 

related to perceptual learning.

Motor learning results in changes to sensory function

In work on human arm movement, both somatosensory and visual perceptual change have 

been observed to accompany sensorimotor adaptation. The changes are obtained in the 

context of force-field learning [23 – 26], visuomotor adaptation [27 – 29] and prismatic 

adaptation [30 – 35]. In each, there are systematic shifts in the somatosensory perceptual 

boundary (the felt position of the limb) and these occur over the same time period as 

adaptation [26]. There are also changes in visual motion processing in relation to force-field 

learning and prism adaptation [33 – 36] and changes to auditory localization following 

visuomotor adaptation [37]. The magnitude of the perceptual change ranges from about 20% 

to as much as 50% of the observed change in movement associated with adaptation. This is 

true even for force-field learning if average rather than maximum movement deviation is 

used as a behavioral measure of learning. The somatosensory shifts are in the direction of 

the perturbation. Thus, if the limb is deflected to the right, the sensed position of the limb 

likewise shifts rightward.

The perceptual change that occurs in conjunction with adaptation is durable. In studies to 

date, the magnitude of perceptual change is little altered in the period from immediately 

following training to 24 hours later [24, 38]. In work with prisms, it was shown that initial 

changes in sensed limb position initially decreased and then recover and are present up to 

seven days later [39]. The other notable features are that subjects that show greater motor 

adaptation likewise show greater perceptual change [24] and similarly, larger experimental 

perturbations result in larger perceptual changes [40].

The perceptual alteration that is observed in these studies is primarily in the perceptual 

boundary rather than in perceptual acuity. In functional terms the perceptual boundary shift 

seems to be central to the phenomenon. For example, in visuomotor adaptation, the altered 
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visual input creates a sensory mismatch between visual and somatosensory information. The 

resulting somatosensory perceptual shift is in the direction of the external perturbation and 

would seem to be required to keep the senses in register. This same notion has been 

advanced to explain both somatosensory and visual changes in prism adaptation although in 

this case the visual and proprioceptive shifts are in opposite directions ([30 – 32], see [41] 

for review). It is noteworthy that in force-field adaptation studies, which are normally 

conducted without introducing a mismatch between visual feedback and limb position, 

adaptation is nevertheless accompanied by systematic changes to somatosensory function 

and to somatosensory brain areas.

There have been a small number of recent studies in which perceptual acuity rather than the 

perceptual boundary is found to change with learning. These are notable because neither is 

an adaptation study. In one report [42] subjects learned to make movements in a restricted 

part of the workspace. This resulted in changes in proprioceptive acuity that were spatially 

localized. Improvements in somatosensory acuity were likewise observed when movement 

training was paired with reinforcement [43].

A number of studies have presented data that speak to the robustness of the perceptual 

adaptation result. In particular, in visuomotor adaptation the perceptual change is observed 

regardless of whether visual feedback of the hand is rotated or translated [28]. It likewise 

occurs and is roughly similar in magnitude when perceptual testing involves either active or 

passive movement. Finally, it occurs regardless of whether the perturbation is introduced 

abruptly [24, 44] or gradually [28].

The pattern of generalization for perceptual change is similar to that observed for motor 

learning. Thus for example, in recent work on visuomotor adaptation there was no evidence 

of inter-manual transfer of proprioceptive re-calibration [45]. Limited interlimb 

generalization has been previously reported for force field learning [46]. Note however, that 

others have reported small amounts of inter-limb transfer following force-field adaptation. 

In a more recent study, generalization of proprioceptive recalibration to positions nearer than 

the training target but not further has been reported [47], which is likewise consistent with 

work on force-field learning [48].

Perceptual shifts are similarly observed in association with speech motor adaptation to 

altered auditory and altered somatosensory feedback. Auditory perceptual shifts have been 

reported following adaptation to altered vowel sounds [49]. It is shown that the perceptual 

change is related to the sounds that subjects have to produce in order to compensate for the 

acoustical perturbation rather than what the subjects hear as a perturbed utterance. Auditory 

perceptual change in speech is also observed in the context of adaptation to altered 

somatosensory feedback even in cases where there is no measurable auditory perturbation 

[50]. In one further study of the effects of adaptation to altered auditory feedback on speech 

perception, auditory perturbation of consonant sounds resulted in a perceptual boundary 

shift in the identification of consonants that is in a direction opposite to the applied 

perturbation [51]. That is, if the auditory perturbation made a consonant sequence sound 

more like “sh” than “s”, subjects were more likely following adaptation to classify 

subsequent sounds on this continuum as sounding “sh”-like.
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Motor learning results in changes to sensory areas of the brain

There is a range of electrophysiological evidence indicating that sensory processing changes 

with motor learning. Changes to activity in orofacial somatosensory cortex are observed in 

conjunction with orofacial motor learning [52]. In this study, monkeys were trained in a 

novel tongue protrusion task. Rapid and long-lasting changes to M1 and S1 were observed 

in parallel. In both cases, there are increases in the proportion of task modulated neurons, 

and reductions across trials in firing rate variability. In humans there is also 

electrophysiological data showing sensory change following learning. In particular there are 

changes to somatosensory evoked potentials following force-field learning [53], following 

learning an arm muscle timing task [54], and a repetitive typing task [55].

There are likewise neuroimaging data showing changes in functional connectivity following 

force-field adaptation in networks related to both perceptual change and motor learning [25]. 

Changes in resting-state networks that are related to the perceptual changes that occur in 

conjunction with force-field adaptation can be seen in patterns of altered functional 

connectivity between second somatosensory cortex, supplementary motor area and ventral 

premotor cortex (Figure 1). The results are noteworthy in that these same areas have been 

implicated in tasks involving the transient storage of somatosensory information and 

somatosensory decision-making [21 – 22]. Other examples of changes to sensory systems in 

conjunction with motor learning come from tasks involving sequence learning and from 

long duration training tasks. In particular, daily practice of a sequential movement task 

involving the fingers and thumb of the left hand resulted in clusters of activity in postcentral 

gyrus and supramarginal gyrus that were related to learning [56]. Jugglers were found to 

have increases in gray matter in V5/MT following extended periods of practice [57 – 58] 

and musicians show greater gray matter concentration in right planum temporale (auditory 

cortex) than non-musicians [59]. A somewhat different pattern is seen in prism adaptation, 

where the main changes in activity during adaptation are in parietal multisensory areas and 

cerebellum [60].

Taken together, the studies summarized above indicate that motor adaptation involves 

concurrent and durable changes to motor, visual and somatosensory systems. In 

neuroimaging studies it is seen that sensorimotor adaptation also results in changes in 

connectivity in sensory networks of the brain. In adaptation studies the changes appear to 

keep sensory and motor systems in register, whereas more limited results from studies 

focused on skill acquisition suggest that in some cases improvements are focused on acuity 

rather than alignment. We expect that future studies will reveal further instances of 

perceptual change in the context of motor learning, each matched to the specific role of the 

sensory system in the acquired motor behavior. While the relative contribution to sensory 

plasticity of cortico-cortical and afferent factors are unresolved, the evidence to date is 

consistent with the conclusion that perceptual learning and motor adaptation are part and 

parcel of human motor skill learning.
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Source of sensory effects in motor learning: Are they efferent or afferent?

What causes sensory change during motor learning? Is it due to motor outflow, sensory 

inflow or the two in combination? There is an extensive literature documenting sensory 

plasticity produced by manipulating afferent input alone. For example, there is 

reorganization of somatosensory cortex following digit amputation in raccoons and monkeys 

[61 – 62] and following peripheral nerve stimulation in adult cats [63]. There are changes to 

primary auditory cortex following frequency discrimination training in adult monkeys [64] 

and human cortical plasticity in primary and second somatosensory cortex has been shown 

using fMRI following somatosensory stimulation applied passively to the fingertip [54].

There is also evidence that plasticity in the sensorimotor network arises from cortico-cortical 

connections. Evidence in sensory systems is obtained in work on crossmodal plasticity in 

which the loss of input to one sensory modality results in cortical reorganization in other 

sensory systems. For example, in response to somatosensory stimulation, individuals with 

early loss of vision show significant activation in early visual areas that is not seen when the 

same stimulation is applied in sighted control subjects [65]. Concordantly, stimulation of 

visual cortex in early blind subjects using TMS disrupts tactile perception but this disruption 

does not occur in sighted controls [66]. In animal studies, crossmodal reorganization in the 

posterior auditory field of deaf cats results in enhanced visual localization of peripheral 

stimuli [67]. Evidence for plasticity induced in motor areas was reported in recent studies in 

which mice learned to discriminate textures using facial whiskers. It was found that the 

fraction of whisker-touch activated neurons in M1, which receive projections from S1 

neurons, increases over the course of training and the increase persists during post training 

recordings [68].

In studies that have attempted to distinguish sensory changes associated with motor learning 

that are due to afferent input, from changes related to the efferent outflow, the results are 

mixed. In one study, the magnitude of perceptual recalibration and motor adaptation was 

similar when the hand was moved passively during the training phase, rather than actively 

[69]. However in another, no perceptual change was observed following passive control 

experiments in which limb kinematics were matched to those which occurred during 

learning, but in the absence of voluntary movement [24]. In experiments on speech motor 

learning, it appears that sensory change is dominated by motor outflow. Specifically, 

perceptual change is associated with the sounds the subject produces rather than what the 

subject hears during adaptation to altered auditory feedback [49].

One potential account of sensory change that occurs in conjunction with learning is that it is 

a by-product of efference copy during voluntary movement. This is certainly a possibility. 

Somatosensory evoked potentials (SEPs) are reduced in conjunction with finger and limb 

movement [70 – 72]. However these changes are transient, on a time scale much shorter than 

the sensory and perceptual changes observed in association with motor learning. Similarly, 

an SEP reduction occurs early in visuomotor learning but dissipates quickly such that SEPs 

are back to baseline levels well before the end of training [73]. Efference copy might well 

contribute to perceptual changes in the early stages of learning but sensory and perceptual 
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change persists long after the end of any ongoing motor signals (and associated efference 

copy).

A number of lines of evidence suggest that somatosensory change is not an epiphenomenon 

but is tied to the motor system. Circumstantial evidence is that movements follow new 

perceptual boundaries [24]. A more direct test involves manipulating the somatosensory 

system (for example, the auditory system in speech) and observing systematic changes in 

motor behaviour and learning (as in [74 – 76]. In studies of force-field and visuo-motor 

adaptation, and in adaptation to altered auditory feedback during speech, correlations are 

often observed between the magnitude of adaptation and the associated perceptual change 

[24, 28]. In other studies, while changes are observed in both sensory and motor function, 

there is no indication that the magnitudes of adaptation are correlated [40, 48]. It has been 

suggested that the latter constitutes evidence that the adaptation processes involved are 

independent, although they occur simultaneously [40].

Perceptual learning changes movement and the brain’s motor areas

The preceding sections focus on the idea that motor learning drives sensory plasticity and 

changes perceptual systems. In this section we consider evidence that the relationship is 

reciprocal, that is, perceptual learning produces changes in motor function and motor areas 

of the brain. Indeed, perceptual learning, particularly in the somatosensory system, may well 

play an essential role in motor learning, particularly in the initial stages of learning when the 

somatosensory targets of movement are frequently unknown. In situations such as learning 

the feel of a good tennis serve or learning to speak in a foreign language, perceptual and 

motor learning occur together. Studies that have attempted to separate perceptual from 

motor learning provide the possibility of better assessing the relative balance of these factors 

in the broader undertaking of motor learning.

There is a substantial literature documenting benefits to movement that originate in sensory 

systems. The focus of much of this work is on plasticity in sensory systems which is due to 

stimulation or sensory loss and subsequent changes to movement that occur as a result (see 

[76] for a recent review). There is also evidence involving human limb movement showing 

that somatosensory training acts directly on the motor system and improves motor learning, 

increases motor cortex excitability (as reflected in changes to MEPs), and increases activity 

in frontal motor areas during passive movement. Thus for example, it has been shown that 

passive limb movement paired with visual input improved the learning of complex hand 

trajectories [42]. It has also been shown that perceptual training involving somatosensory 

discrimination with feedback resulted in changes to motor learning in a task requiring rapid 

thumb abduction and changes to motor evoked potentials in vibrated hand muscles [78]. 

Similarly, passive wrist movement over a 28-day period resulted in increases in activity in 

primary motor cortex and supplementary motor area in response to passive movement 

conducted in the MRI scanner [79]. Finally, it has been demonstrated that proprioceptive 

stimulation resulting from passive movement of the wrist leads to increases in the evoked 

response to a constant cortical stimulus produced using TMS [80].
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When passive somatosensory training is paired with reinforcement, changes are observed in 

perceptual function, movement and in motor networks of the brain. In these studies, 

participants hold the handle of a robot that moves the arm along one of a number of 

trajectories. The participant is required to indicate the direction of limb displacement. Binary 

feedback regarding the accuracy of judgement is provided. Perceptual training conducted in 

this fashion results in improvements in perceptual acuity and to changes in judgments 

regarding the position of the limb. It also produces improvements in the rate and extent of 

subsequent force-field adaptation, which persist for at least a day [74]. This same perceptual 

training procedure, involving passive movement paired with reinforcement, alters functional 

connectivity in both sensory and motor networks of the brain. Reliable changes in 

connectivity related to perceptual learning are observed in the links between SMA and M1, 

PMd and cerebellar cortex, and also bilaterally in M1 ([75], Figure 2).

Recent work using a similar procedure ([43], Figure 3) suggests that somatosensory inputs 

may drive the initial stages of human motor learning. In these studies, participants make 

movements to uncertain target locations in the absence of either visual feedback or vision of 

the limb. When a movement successfully lands within an unseen target zone, binary 

reinforcement is provided. Subjects who train using active movement show improvements to 

movement accuracy that persist for at least one week. Participants in a matched passive 

condition that have their arm moved along the same trajectories and receive the same 

reinforcement as subjects in the active movement condition, show just as great a benefit to 

subsequent movement as subjects that train actively, and like active subjects, the benefits 

persist at one week retest. Participants that experience the same passive movements, but in 

the absence of feedback or reinforcement, show little benefit from the perceptual training.

Concluding remarks

Changes to both sensory and motor systems are observed in the context of sensorimotor 

adaptation and motor skill acquisition. Perceptual changes occur in each of the widely 

studied motor adaptation tasks — force-field learning, visuomotor and prism adaptation and 

they also occur in adaptation to altered auditory feedback in speech. Perceptual change 

occurs concurrently with motor adaptation, it is durable and is often correlated in magnitude 

with behavioural measures of motor adaptation. In neuroimaging studies, changes to sensory 

networks in the brain are seen in conjunction with sensorimotor adaptation. When perceptual 

learning is directly manipulated, it results in systematic changes to motor adaptation and 

also alters motor networks of the brain. Indeed, in some cases, skill acquisition is 

substantially driven by somatosensory inflow. These observations are consistent with the 

idea that perceptual learning and sensory plasticity are fundamental to sensorimotor 

adaptation and motor skill acquisition. If we are to improve models of skill acquisition or 

develop new therapeutic interventions we need a better understanding of how skill 

acquisition is determined by plasticity in both sensory and motor systems.
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Glossary

Force-field 
learning

Predictable mechanical loads are applied to the arm during movement or 

to the jaw in speech, in both cases typically using a robotic device. The 

perturbations initially alter the movement path which gradually returns 

to normal as subjects learn to counteract the load. A negative after-effect 

(movement in the opposite direction) occurs when the perturbation is 

removed. The after-effect provides a measure of the compensation 

learned by subjects to produce straight movement in the presence of 

load.

Visuomotor 
adaptation

Predictable displacements of a visual target are applied during reaching 

movement, typically by changing the mapping between the position of 

the hand and the position of a cursor on a display screen. The pattern 

during adaptation is similar to that seen in force-field learning, namely, 

an initial error in the direction of the perturbation is gradually corrected 

over a series of subsequent movements. A negative-after effect follows 

the removal of the perturbation. In visuomotor adaptation, participants 

tolerate proprioceptive error in order to have movements appear visually 

correct.

Prismatic 
adaptation

The earliest motor adaptation studies were done using prisms. Prisms 

shift the entire visual scene rather than just a single point (as in 

visuomotor adaptation). The compensatory pattern is similar to that in 

visuomotor adaptation. Prism adaptation is associated with both visual 

and proprioceptive perceptual change.

Adaptation to 
altered 
auditory 
feedback

Participants read words aloud that are presented on a computer screen. 

The acoustical speech signal is altered in real-time and played back to 

the participant through headphones. As in other adaptation procedures, 

participants learn to shift their vocal output in a direction opposite to the 

applied acoustical shift. As in visuomotor adaptation, participants 

tolerate proprioceptive error, in this case, to have their speech sound 

correct.

Perceptual 
boundary

In these studies, subjects typically make binary judgements to classify 

perceptual stimuli. For somatosensory judgements, limb position is 

systematically varied. For auditory judgements, participants classify 

sounds. In vision, the stimulus position is varied. The set of actual 

positions and participant’s judgments are fit with psychometric function. 

The 50% point serves as an estimate of the perceptual boundary.

Perceptual 
acuity

Perceptual classification data are used to estimate acuity, using a 

measure of the slope of the psychometric function about its midpoint.
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Box 1

Motor Learning and Sensorimotor Adaptation

The studies reviewed here primarily involve adaptation to experimentally imposed 

perturbations. The main examples come from the literature on force-field learning which 

involves the introduction of novel force loads, visuomotor and prism adaptation in which 

the correspondence between vision and proprioception is manipulated and adaptation to 

altered auditory feedback in speech. The subject is required to move to a target, 

perturbations are delivered, and the resulting movement error is corrected by changes to 

motor commands. Although termed adaptation, these manipulations typically result in 

changes to behaviors and brain networks that are normally associated with learning. 

Adaptation is generally distinguished from motor learning in that adaptation is associated 

with corrections that occur when perturbations are delivered to well learned motor 

behaviors. The corrections or compensation bring the behavior back towards its 

unperturbed form. Learning on the other hand is not dependent on perturbation and 

results in persistent changes to brain and behavior. The studies reviewed here have many 

of the features of learning. The correction, like the original learning, is often incomplete 

and the changes to movement are durable in the sense that when subjects are retested 

after considerable delay, there are substantial savings, both in the rate of re-adaptation 

and in changes to perceptual systems. Moreover, adaptation results in changes to both 

motor and sensory networks of the brain, a finding that would not be expected if 

adaptation acted simply to return the system to its unperturbed state.
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Trends

Sensorimotor adaptation results in changes to sensory systems and sensory networks 

in the brain.

Perceptual learning modifies sensory systems and directly alters the brain’s motor 

networks.

Perceptual changes associated with sensorimotor adaptation are durable and occur in 

parallel with motor learning.

Ostry and Gribble Page 14

Trends Neurosci. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Motor learning increases functional connectivity in sensory networks in the brain. Each row 

shows a seed region (left) and those clusters of voxels whose correlation with the seed 

regions are strengthened in proportion to the perceptual change produced by motor learning 

(PI). The bar plots show functional connectivity (FC) before and after force-field training. 

The scatter plots show that subjects that show greater perceptual change (PI) likewise show 

greater changes in connectivity between each specific seed and the clusters shown to the 

right. It is seen that motor learning results in increases connectivity in proportion to 

perceptual change in a network comprised of SII, PMv and SMA.
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Figure 2. 
Somatosensory perceptual learning strengthens functional connectivity in motor networks in 

the brain. It is seen that perceptual learning results in changes in connectivity that 

strengthens networks in M1, S1, SMA and dorsal premotor cortex. Layout as in Figure 1.
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Figure 3. 
Passive movement paired with reinforcement (red circles) results in improvements in 

movement following training as great as those obtained for subjects who train with active 

movement and receive the same reinforcement (dark blue circles). The benefits of passive 

movement without reinforcement (light blue circles) are transient. The left panel shows 

baseline movements in the absence of feedback. The dashed line shows baseline 

performance prior to training. The middle panel shows training movements produced by 

subjects in the active reinforcement condition. Subjects in the other two groups experience 

the same movements passively (produced under position servo-control by a robot arm). The 

right panel shows movements following training, also in the absence of feedback or vision 

of the arm.
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Table 1

Anatomical connections between somatosensory cortex and frontal motor areas. M1 (primary motor cortex), 

PMC (premotor cortex), SMA (supplemental motor area), CMA (cingulate motor area), PF, PFG, SII (second 

somatosensory cortex), PE, PMV (ventral premotor cortex), PMD (dorsal premotor cortex). The data are for 

macaques unless otherwise indicated.

Source/Origin Target

Core Sensorimotor Network Frontal Motor Areas Somatosensory Cortex

M1 1 [4]

M1, PMC 2 [5]

SMA, CMA 3a [6]

PMC PV [7]

M1, SMA 3a (marmosets) [8]

M1 3b (squirrel monkeys) [9]

Somatosensory Cortex Frontal Motor Areas

1, 2, 3a, 5 M1 [6, 10]

1 M1, SMA [11]

2 SMA, PMC [11]

3a, 3b, 1, 2, SII, PV M1 (squirrel monkeys) [12]

3a, 1, 2, SII, PV, 5 PMV (owl monkeys) [13]

Extended Network Parietal Cortex Frontal Cortex

PF, PFG, SII PMV, 46v [14 – 15]

PE PMD, SMA [16]
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