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Abstract

Purpose—We previously demonstrated the association between epithelial-to-mesenchymal 

transition (EMT) and drug response in lung cancer using an EMT signature derived in cancer cell 

lines. Given the contribution of tumor microenvironments to EMT, we extended our investigation 

of EMT to patient tumors from 11 cancer types to develop a pan-cancer EMT signature.

Experimental Design—Using the pan-cancer EMT signature, we conducted an integrated, 

global analysis of genomic and proteomic profiles associated with EMT across 1,934 tumors 

including breast, lung, colon, ovarian, and bladder cancers. Differences in outcome and in vitro 

#Corresponding authors: Lauren Averett Byers, Department of Thoracic/Head and Neck Medical Oncology, The University of Texas 
MD Anderson Cancer Center, Phone: 713-792-6363, Fax: 713-792-1220, lbyers@mdanderson.org. Jing Wang, Department of 
Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Phone: 713-794-4190, Fax: 
713-563-4242.
*Co-first authors

Author Contributions
M.P.M., P.T, L.D., J.W. and L.A.B. designed the study. P.T., L.D., F.S., E.R.P., J.R., I.I.W., K.R.C. and J.W. designed and performed 
the bioinformatics. D.L.G., W.N.W., J.V.H, and J.N.W provided data and contributed to analysis. M.P.M., P.T., and L.A.B. wrote the 
manuscript. R.J.C. edited the manuscript. L.A.B. supervised the project.

Conflicts of Interest: WNW receives research support from Astellas.

HHS Public Access
Author manuscript
Clin Cancer Res. Author manuscript; available in PMC 2017 February 01.

Published in final edited form as:
Clin Cancer Res. 2016 February 1; 22(3): 609–620. doi:10.1158/1078-0432.CCR-15-0876.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



drug response corresponding to expression of the pan-cancer EMT signature were also 

investigated.

Results—Compared to the lung cancer EMT signature, the patient-derived, pan-cancer EMT 

signature encompasses a set of core EMT genes that correlate even more strongly with known 

EMT markers across diverse tumor types and identifies differences in drug sensitivity and global 

molecular alterations at the DNA, RNA, and protein levels. Among those changes associated with 

EMT, pathway analysis revealed a strong correlation between EMT and immune activation. 

Further supervised analysis demonstrated high expression of immune checkpoints and other 

druggable immune targets such as PD1, PD-L1, CTLA4, OX40L, and PDL2, in tumors with the 

most mesenchymal EMT scores. Elevated PD-L1 protein expression in mesenchymal tumors was 

confirmed by immunohistochemistry in an independent lung cancer cohort.

Conclusions—This new signature provides a novel, patient-based, histology-independent tool 

for the investigation of EMT and offers insights into potential novel therapeutic targets for 

mesenchymal tumors, independent of cancer type, including immune checkpoints.
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Introduction

Over the past decade, multiple lines of evidence have suggested that epithelial cancers can 

transform into a more mesenchymal phenotype, a process known as “epithelial-to-

mesenchymal transition” (EMT). Studies have shown that EMT plays an important 

biological role in cancer progression, metastasis, and drug resistance(1–3). Tools that 

facilitate the study of EMT, therefore, will provide new insights into molecular regulation 

and evolution during oncogenesis and may help to improve treatments for mesenchymal 

cancers. The development of EMT signatures or other molecular markers to identify whether 

a cancer has undergone EMT is an area of active research. Most studies in this area, 

however, have focused on a single tumor type and/or on preclinical models(3–7).

We previously developed a robust, platform-independent EMT signature based on a set of 

54 lung cancer cell lines (hereafter called the lung cancer EMT signature). In vitro, this lung 

cancer EMT signature predicted resistance to EGFR and PI3K/Akt inhibitors and identified 

AXL as a potential therapeutic target for overcoming resistance to EGFR inhibitors (a 

common treatment for non-small cell lung cancer (NSCLC)). We and others observed 

significantly greater resistance to EGFR inhibitors in lung cancers that had undergone EMT, 

as determined by either their baseline EMT signature(3) or the expression of specific EMT 

markers after the development of acquired EGFR inhibitor resistance(8).

Although it is appealing to apply the lung cancer EMT signature to diverse tumor types, this 

approach may be limited by tumor type specific differences in EMT or discrepancies 

between cell line models (the starting point of the lung cancer EMT signature(3)) and 

clinical patient samples—especially in regard to the interplay between EMT, tumor 

microenvironments, and immune response at different disease sites(9). Therefore, we built 
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upon our previous approach to derive a pan-cancer EMT signature by leveraging molecular 

datasets from 11 tumor types (n = 1,934 tumors overall; see Supplementary Table S1) using 

clinical patient samples from The Cancer Genome Atlas (TCGA). The datasets were 

obtained from primarily epithelial malignancies such as breast, colorectal, and endometrial 

cancer, and two cohorts of lung cancer (adenocarcinoma and squamous cell carcinoma).

We tested the performance of the pan-cancer EMT signature by comparing its association 

with established, but independent, EMT markers at the proteomic, microRNA (miRNA), and 

mRNA level and then applied the signature as a tool for exploring cross-platform molecular 

and clinical features associated with EMT across multiple cancer types. Given the 

previously described association of EMT with drug response (both sensitivity and 

resistance), we then further evaluated the therapeutic relevance of the pan-cancer EMT 

signature in preclinical models using two publicly available drug sensitivity databases: the 

Cancer Cell Line Encyclopedia (CCLE)(10) and the Genomics of Drug Sensitivity in Cancer 

(GDSC)(11).

Materials and Methods

Datasets

We downloaded cell line drug sensitivity databases from the Cancer Cell Line Encyclopedia 

(CCLE)(10) and Genomics of Drug Sensitivity in Cancer (GDSC)(11). This included gene 

expression data (Affymetrix U133 Plus 2 array from CCLE and Affymetrix HT HG U133A 

array from GDSC) and drug sensitivity data (IC50 values). The CCLE data included 1,035 

cell lines and the GDSC data included 654 cell lines. In total, 425 cell lines were present in 

both drug sensitivity databases. Twenty-four targeted drugs were profiled in CCLE and 138 

drugs (both targeted and cytotoxic) were profiled in GDSC with a cell viability assay. The 

GDSC confirmed identity of cell lines by STR analysis and the CCLE by SNP fingerprinting 

at multiple steps, profiles were compared to existing profiles (10, 11). We used level-3 

TCGA pan-cancer data(12, 13), including RNAseqV2, reverse phase protein array (RPPA), 

miR, copy number, mutation, and clinical data. A summary of the TCGA data can be found 

in Supplemental Table S1. The PROSPECT (Profiling of Resistance Patterns and Oncogenic 

Signaling Pathways in Evaluation of Cancers of the Thorax and Therapeutic Target 

Identification) dataset of surgically resected NSCLC has been previously described(9). 

Array-based expression profiling of PROSPECT tumors was performed using the Illumina 

Human WG-6 v3 BeadChip according to the manufacturer’s protocol and gene expression 

data have been previously deposited in the GEO repository (GSE42127).

Developing the pan-cancer EMT signature

We adopted an approach similar to that used in Byers et al(3) to derive the pan-cancer EMT 

signature. We used four established EMT markers, namely CDH1 (epithelial marker, E 

type), CDH2 (mesenchymal marker, M type), VIM (M type) and FN1 (M type) as seeds to 

derive the pan-cancer EMT signature on the basis of TCGA pan-cancer RNAseq data. In 

particular, we computed correlations (Pearson’s correlation, r) between all mRNAs in the 

RNAseq data and each of the established EMT markers for each individual tumor type.
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Identification of EMT-associated genomic features

We computed Pearson’s correlation between the EMT score and individual genomic features 

since these features are normally distributed. The genomic features per gene included the 

mRNA expression, RPPA expression (either total protein or phosphorylated protein) and 

miRNA expression levels (5p and 3p mature strands).

Association between EMT score and other covariates

We applied the log-rank test to assess the association between the dichotomized EMT score 

(with a cutoff of 0) and overall survival. We used the ANOVA test to assess the association 

between EMT score and tumor grade.

Pathway analysis

We performed a functional annotation of the pan-cancer EMT signature as well as pathway 

enrichment analysis using QIAGEN’s Ingenuity Pathway Analysis®(14).

Quantitative immunohistochemistry

4μ-thick tissue sections were cut from formalin-fixed, paraffin-embedded blocks containing 

representative tumor and processed for immunohistochemistry (IHC), using an automated 

staining system (Leica Bond Max, Leica microsystems, Vista, CA, USA). For assessment of 

PD-L1 expression, the PD-L1 (E1L3N®)XP® rabbit monoclonal antibody (Cell Signaling 

Technology) was applied at 1:100 dilution followed by detection using the Leica Bond 

Polymer Refine detection kit (Leica Microsystems), DAB staining and hematoxylin 

counterstaining. For quantification, stained slides were digitally scanned using the Aperio® 

ScanScope Turbo slide scanner (Leica Microsystems). Captured images (200x 

magnification) were visualized using ImageScope™ software (Leica Microsystems,) and 

analyzed using Aperio Image Toolbox (Aperio, Leica Microsystems). For PD-L1 analysis in 

tumor and non-tumor cells, 5 randomly selected square regions (1 mm2) in the core of each 

tumor were evaluated. Analysis of PD-L1 expression specifically in tumor cells was based 

on assessment of the whole section. The cell membrane staining algorithm was used to 

obtain the PD-L1 H-score (0–300) which is computed on the basis of both extent and 

intensity of PD-L1 staining.

Association with drug sensitivity data

For each drug sensitivity database, we calculated the EMT scores for the cell lines and 

associated them with IC50 values using the Spearman rank correlation. Cell lines were 

obtained from commercial vendors and authentication was confirmed by STR analysis 

matched to existing STR profiles, as reported previously (10, 11).

Additional more detailed methods are included in the Supplemental Methods and Materials.
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Results

Development and evaluation of the pan-cancer EMT signature

We derived the pan-cancer EMT signature using an approach similar to that for the lung 

cancer EMT signature, as shown in the Fig. 1A (3). We selected candidate genes from the 

mRNAs that best correlated with four established EMT markers “the seed”, E-cadherin 

(CDH1), vimentin (VIM), fibronectin (FN1) and N-cadherin (CDH2), across 9 distinct 

tumors types (see Fig. 1 and Supplementary Table S1 for TCGA tumor types and sample 

sizes). For this initial process, we excluded kidney renal clear cell carcinoma (KIRC) and 

rectal adenocarcinoma (READ) tumors because they contained predominantly mesenchymal 

(KIRC) or epithelial (READ) tumors (i.e., low dynamic range of EMT; see Methods). Using 

this approach, we identified a set of 77 unique genes as the pan-cancer EMT signature (see 

Methods and Supplementary Table S2). Fig. 1B shows the correlation between these 77 

signature genes and the seed component (one of the four established markers) that identified 

them. We observed strong and consistent correlations with the seed across different tumor 

types. This suggests that the pan-cancer EMT signature encompasses core EMT markers that 

function across different tumors.

We observed a wide dynamic range of EMT scores calculated from the pan-cancer EMT 

signature across the 1,934 tumors that represent 11 distinct tumor types (Fig. 1C). As 

expected, EMT scores (calculated from the resulting pan-cancer EMT signature) 

successfully identified KIRC as mostly mesenchymal and READ as mostly epithelial. With 

the exception of KIRC (90.1% mesenchymal), READ (87.2% epithelial), and colon 

adenocarcinoma (COAD; 94.4% epithelial), each tumor type included a significant number 

of both epithelial (EMT score < 0) and mesenchymal (EMT score > 0) samples.

Fourteen genes overlapped between the original lung cancer EMT signature and the new 

pan-cancer EMT signature (Supplementary Fig. S1A). EMT scores computed from the pan-

cancer EMT signature were highly correlated with scores calculated from the lung cancer 

EMT signature for individual tumor types (r = 0.76–0.95; overall r = 0.82) (Fig. 1D). The 

most notable outlier when comparing the two signatures was KIRC, which had the lowest 

correlation (r = 0.759), possibly due to a relatively narrow range of EMT scores due to its 

mesenchymal tissue of origin.

To investigate whether the pan-cancer EMT signature performed better than the original 

lung cancer EMT signature, we correlated the EMT scores computed from each signature 

with six putative EMT markers. The markers included two proteins (E-cadherin and 

fibronectin) quantified by reverse-phase protein array (RPPA), two microRNAs (miRNAs) 

(miR-200a, miR-200b; well established as regulators of EMT(15)) as measured by RNAseq, 

and two EMT-associated transcription factors (TWIST1, TWIST2) represented by mRNA 

expression levels (Fig. 1D). These six putative markers were selected on the basis of their 

established roles in EMT(1, 2, 16). They served as an independent validation set since they 

(1) include data from different (non-signature) platforms (e.g., protein, miRNA) and/or (2) 

were not components of either mRNA-based EMT signature. Fig. 1D shows that 

correlations with the three putative mesenchymal markers, fibronectin, TWIST1 and 

TWIST2 (positive correlation with EMT scores), were significantly stronger for the pan-
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cancer EMT signature (one-sided t-test, p < 0.01); whereas correlations with the three 

epithelial markers, E-cadherin, miR-200a, and miR-200b, were similar for both signatures 

(one-sided t-test, p > 0.05) (see also Supplementary Fig. S1B).

We then performed a pathway analysis to investigate the biological function of the genes 

identified in the new pan-cancer EMT signature (Fig. 2A). Genes in the pan-cancer EMT 

signature were significantly associated with several molecular functions such as cellular 

movement, morphology, growth and proliferation, cell-to-cell signaling, and cellular 

assembly and organization. Another enriched canonical pathway was leukocyte 

extravasation signaling, suggesting immune activation.

An integrated molecular analysis of EMT across tumor types: gene expression and 
potential therapeutic targets

Using the pan-cancer EMT signature, we evaluated the impact of EMT on the mutational 

landscape, copy number alterations (CNAs), mRNA, miRNA and protein expression to 

identify events associated with EMT in patient tumors. To assess how EMT impacts the 

overall transcriptome, we correlated EMT scores with mRNA expression data for each 

tumor type (see Supplementary File S1). Genes expressed at higher levels in mesenchymal 

tumors were highly conserved across multiple tumor types, indicating greater post-EMT 

biological homogeneity; whereas those expressed at higher levels in epithelial tumors tended 

to be more specific to individual tumor types (Supplemental Fig. S2A–C).

Given our previously reported association of EMT with drug resistance(3, 4), individual 

genes or pathways overexpressed in mesenchymal tumors may have clinical utility as 

therapeutic targets. For example, we previously showed that the receptor tyrosine kinase 

AXL is highly expressed in lung cancers that have undergone EMT and, therefore, is a top 

candidate drug target in mesenchymal lung cancers(3). In the pan-cancer EMT signature 

derived here, AXL was again identified as a signature gene based on its strong correlation 

with established EMT markers. AXL, therefore, represent a hallmark gene that is positively 

correlated with EMT scores across all tumor types (r = 0.53–0.95, median = 0.674, 

Supplementary Fig. S2D). Other potential therapeutic targets that were highly expressed in 

mesenchymal tumors include the alpha-type platelet-derived growth factor receptor 

(PDGFRα) (r = 0.22–0.78, median = 0.65), beta-type platelet-derived growth factor receptor 

(PDGFRβ) (r = 0.59–0.92, median=0.81) and discoidin domain-containing receptor 2 

(DDR2) (r = 0.29–0.84, median = 0.63), inhibitors of which are in clinical studies or have 

been approved for cancer treatment(17–20).

Immune checkpoint expression in mesenchymal tumors

To better understand pathways globally dysregulated in the setting of EMT, we next 

performed a pathway analysis of genes that correlated with the pan-cancer EMT signature in 

all 11 tumor datasets, using a cutoff of an absolute r>0.3. In addition to functions related to 

EMT regulation (e.g., cellular movement, cell-cell signaling), the top activated pathways 

were related to immune cell signaling (Fig. 2B). Given recently published data from our 

group that suggests a role of EMT in regulating immune escape in lung cancer(9) and the 

strong therapeutic potential of emerging immunotherapies, we performed a more focused 
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analysis to investigate the association between EMT and key genes involved in the immune 

response across the 11 cancer types.

The expression of 20 potentially targetable immune checkpoint genes [based on current drug 

inhibitors that are in preclinical development, clinical trials, or which have been approved by 

the U.S. Food and Drug Administration for specific cancer types (Table 1)] were correlated 

with the EMT scores for each cancer type. We observed a consistent and strong positive 

correlation between EMT score and the expression levels of the immune checkpoint genes 

across all cancer types, with more mesenchymal tumors expressing higher levels of these 

immune targets (Fig. 2C). Notably, high expression of programmed cell death 1 (PD1), 

cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and tumor necrosis factor receptor 

superfamily, member 4 (OX40L, also known as CD134) were associated with high EMT 

score regardless of tumor type (PD1 median r = 0.33, median P = 2.1*10−4; CTLA4 median 

r = 0.36, median P = 1.3*10−5; OX40L median r = 0.65, median P = 2.4*10−13). It has been 

reported that OX40L regulates T cell response, which has led to the study of OX40L 

inhibition in conjunction with other checkpoint blockades(21, 22).

Looking at individual tumor types, samples with higher EMT scores expressed the immune 

checkpoint genes in a coordinated way, even in predominantly epithelial tumors such as 

READ (Fig. 3A). This enrichment of immune target expression in tumors with more 

mesenchymal characteristics corroborated our recent findings in lung cancer, namely that 

lung adenocarcinomas with higher lung cancer EMT signature scores expressed higher 

levels of PD-L1, which is a target of miR200 (a suppressor of EMT and metastasis)(9). 

Clinically, our findings are consistent with results of immunotherapy trials that have shown 

the greatest activity of immune checkpoint inhibitors in cancer types with the strongest 

mesenchymal phenotypes, such as melanoma(23–25).

Finally, we validated the association between the mesenchymal phenotype and elevated 

expression of PD-L1 immunohistochemically in chemotherapy-naïve lung adenocarcinomas 

and squamous lung cancers that were surgically resected at the University of Texas MD 

Anderson Cancer Center (PROSPECT dataset). For this analysis, we compared tumors in 

the top and bottom tertiles for EMT score, using a PD-L1 Histo-score (H-score) ranging 

from 0 to 300. In agreement with their gene expression profiles that confirmed enrichment 

for immune-related genes (Fig 3B and 3C, top panels), mesenchymal adenocarcinomas from 

PROSPECT exhibited higher PD-L1 H-score than epithelial tumors (p=0.003, Mann-

Whitney U test) (Fig 3B bottom, left panel). Significantly, this finding was upheld when the 

analysis was limited to tumor cells (p=0.002, Mann-Whitney U test) (Fig 3B, bottom right 

panel). We further confirmed the significant, positive correlation between the EMT score 

and PD-L1 H-score in the entire cohort of adenocarcinomas from PROSPECT, using 

Spearman’s rank correlation co-efficient (p=0.002 for tumor and non-tumor cells and 

p=0.011 when the analysis was limited to tumor cells).

Similar results were noted in squamous lung cancers, with higher PD-L1 H-score recorded 

in mesenchymal tumors (p=0.019, Mann-Whitney U test) (Fig 3C, bottom left panel) and a 

significant, positive correlation noted between the EMT and PD-L1 H –score (p=0.011). 

Comparison of tumor cell PD-L1 H-score in tumors with EMT scores in the top versus 
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bottom tertiles did not reach statistical significance in squamous tumors (p=0.110, Mann-

Whitney U test, Fig 3C bottom right panel), likely due to a limited number of tumors 

included in this analysis. However, the correlation between the EMT score and PD-L1 H-

score (using all squamous tumors) remained significant (p=0.028).

MicroRNA expression patterns in mesenchymal tumors

To better understand potential factors contributing to the EMT phenotype, we then 

investigated changes in other data types (miRNA, protein, mutation, copy number) that 

corresponded with differences in EMT score across the pan-cancer set. Because several 

miRNAs are known to regulate EMT, we identified miRNAs that were significantly 

correlated with EMT scores, either positively or negatively, across the pan-cancer sets. Fig. 

4A and B show the miRNAs that strongly correlate with the EMT score (absolute r > 0.3 in 

four or more tumor types). As expected, high expression of miR-200 family members 

(miR-200a/b/c, miR-141, miR-429), which are known to suppress ZEB1 and thereby 

maintain E-cadherin expression and other hallmarks of an epithelial phenotype, was 

observed among tumors with the lowest (most epithelial) EMT scores (Fig. 4A and B). We 

observed a positive correlation between the EMT score and numerous other miRNAs, with 

the miR-199 family (miR-199a/b) having the greatest expression in mesenchymal tumors 

(Supplementary Fig. S3A). The miR-199 family has been shown to regulate skeletal 

development and to play a role in melanoma invasion and metastasis, but has been rarely 

studied in EMT(26, 27). Despite the tumor-specific association observed between the 

expression of some miRNAs and the EMT score, positively correlated miRNAs (i.e., those 

expressed at higher levels in mesenchymal tumors) were more frequent and homogenous in 

this analysis than negatively correlated miRNAs (those higher in epithelial tumors) (Fig. 4A 

and B and Supplementary Figure S3A), suggesting that miRNA expression may play an 

important role in regulating EMT.

To investigate the functional roles of miRNAs identified by this analysis, we next 

investigated whether expression of EMT-associated miRNA target genes also correlated 

with EMT scores. For the EMT-associated miRNAs in Fig. 4A and B, we downloaded their 

experimentally validated targets using miRWalk(28) and observed a significant overall 

association between target expression levels and EMT scores (p < 0.001) (Fig 4C). Taking 

the miR-200 family as an example, Supplementary Fig. S3B shows the strong associations 

between the miRNA targets and the EMT score. Collectively, these findings support an 

intricate regulation of EMT that is conserved across multiple tumor types by miRNAs 

beyond the miR-200 family and which merit further investigation.

Protein expression and EMT

Next, we evaluated the correlation between the EMT score and protein expression using 

Reverse Phase Protein Array (RPPA) data. RPPA is a highly quantitative platform for the 

measurement of key total and phosphorylated proteins. In this analysis, we included 181 

proteins for which data were available across all 11 tumor types. Notably, some proteins 

relevant to EMT, such as AXL, are excluded from the analysis because they were evaluated 

in only a subset of the TCGA pan-cancer tumor types included here.
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We found higher levels of several protein markers such as E-cadherin, claudin-7 and Her-3 

in epithelial tumors across most tumor types (≥ 8); with higher levels of PAI1 and p21 in 

mesenchymal tumors (Fig. 4D). Fibronectin-1 was the only marker with consistently higher 

expression in all 11 cancer types, possibly due to the use of fibronectin (FN1) mRNA levels 

in deriving the pan-cancer signature (one of the seed genes). In contrast, other proteins such 

as protein kinase C-alpha (PKC-α) were associated with EMT in a subset of tumor types (4 

of 11), reflecting tumor-specific EMT differences.

Mutational landscape and copy number alterations

To determine the mutational landscape of mesenchymal tumors, we investigated whether a 

mutation was associated with the EMT score independent of tumor origin. Despite a 

significant association, the results can still be primarily attributed to mutations specific to 

certain tumor types (Supplementary Fig. S4A). For example, a VHL mutation primarily 

observed in KIRC was strongly associated with higher EMT score. Therefore, after 

adjusting for tumor type and multiple testing, we performed another analysis (see Methods), 

and found no significant association between mutation and EMT score (Supplementary Fig. 

S4A). We also explored whether mesenchymal status would influence tumor mutation and 

CNA burden by quantifying the mutation rate and percentage of CNAs in each sample per 

tumor type, as described by Ciriello et al(29). Using this approach, we found no correlation 

between CNAs versus mutation distribution and EMT score (Supplementary Fig. S4C), 

indicating that enrichment of CNAs or mutations is also primarily driven by the tumor tissue 

of origin.

EMT score and clinical outcomes

In some cancers, EMT may be associated with worse clinical outcomes. Therefore, we 

assessed whether pan-cancer EMT scores were associated with clinical covariates such as 

overall survival and tumor grade. We did not observe a significant association between EMT 

score and overall survival, although we found a trend toward shorter survival times in 

patients with mesenchymal ovarian carcinomas (OVCA) (Hazard Ratio (HR) 1.32; 95% 

confidence interval (CI) 0.96–1.81, P = 0.08) and uterine corpus endometrial carcinomas 

(UCEC) (HR 2.07; 95% CI 0.93–4.63, P = 0.09). We also found higher EMT scores in 

KIRC and head and neck squamous cell carcinomas (HNSC) with higher tumor grade (P < 

0.0001 and P = 0.01, respectively) (Supplementary Fig. S5).

Drug sensitivity in mesenchymal tumors

Finally, we tested the ability of the pan-cancer EMT signature to identify associations 

between EMT and patterns of drug response across 1,689 preclinical models, representing 

18 tumor types (Supplementary Table S3). We curated gene expression data from two 

publicly available databases (CCLE(10) and GDSC(11)) to compute an EMT score for each 

cell line, which we subsequently correlated with drug sensitivity (based on IC50 values). 

Among 1,035 cell lines in CCLE and 654 cell lines in GDSC with gene expression data, 425 

cell lines were common to both sets, allowing us to compare the concordance of EMT scores 

derived from independently generated expression datasets. Despite the gene expression data 

having been generated from different versions of the Affymetrix array platforms, EMT 
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scores calculated for individual cell lines were highly concordant, suggesting a robust 

performance of our approach across platforms (Fig. 5A). Furthermore, the distribution of 

EMT scores for the cell line models of each disease type closely mirrored those observed 

across patient tumors (Fig. 1B and 5B). For example (and as expected), bone sarcoma, 

glioblastoma multiforme, and melanoma were predominantly mesenchymal (Fig. 5B). To 

determine patterns of drug sensitivity in mesenchymal tumors, we correlated the EMT score 

from each cell line and IC50 values for targeted drugs tested in the CCLE (24 drugs) and 

GDSC (138 drugs) databases. As previously demonstrated with the lung cancer EMT 

signature(3), we found increased resistance to EGFR inhibitors (e.g., erlotinib). 

Mesenchymal models also demonstrated greater resistance to other drugs that target the 

ErbB family, including the dual EGFR/VEGF inhibitor vandetanib (ZD-6474) and the 

EGFR/Her2 inhibitor lapatinib (Fig. 5C and D). In contrast to ErbB inhibitors, but consistent 

with higher expression of FGFR1 and PDGFR in mesenchymal cancers, we observed 

increased sensitivity to the FGFR1 and PDGFR multikinase inhibitor dovitinib (TKI258) in 

cell lines with higher EMT scores (Fig. 5C). To evaluate potential therapeutic targets in the 

GDSC dataset, we performed an exploratory analysis of the in vitro effect of drugs against 

the same targets. From this target analysis (Fig. 5D and Supplementary Fig. S6), we 

observed greater sensitivity to PDGFR inhibitors in mesenchymal tumors. Another 

interesting finding was increased sensitivity in the mesenchymal cell lines to the inhibition 

of the serine/threonine protein kinases GSK3 and TBK1(30).

Discussion

EMT has long been recognized as playing a major role in cancer progression and 

metastasis(1, 2). Despite extensive research in the field, the best way to characterize this 

phenomenon, especially in the clinical setting, is still under debate(2). Here, through the use 

of a gene expression signature developed from multiple tumor types, we were able to 

evaluate global molecular alterations associated with EMT, as well as potential therapeutic 

targets. Comparing our original lung cancer EMT signature with the pan-cancer EMT 

signature, we observed a better correlation of the pan-cancer EMT signature with known 

markers of EMT across all tumor types evaluated, verifying the strength of this approach. 

Interestingly, commonly expressed genes correlated with the pan-cancer EMT signature in 

all 11 tumor types included a number of potential therapeutic targets, such as the receptor 

tyrosine kinase AXL, which was also an important target in mesenchymal lung cancers 

identified our lung cancer EMT signature(3). With AXL inhibitors entering clinical trials, 

the finding of high AXL expression across multiple cancer types in the setting of EMT has 

important clinical implications(31). Another major finding of this analysis was the 

significant enrichment of multiple immune targets in cancers that have undergone EMT, 

which has potentially important implications for identifying cancer patients who may benefit 

from immunotherapies. Specifically, we found a high correlation of expression of 20 

druggable immune targets and mesenchymal status, as defined by the pan-cancer EMT 

signature and were able to validate these findings by mRNA expression analysis and 

immunohistochemistry in an independent lung cancer cohort.

Several reports have shown the importance of miRNA regulation in EMT(2, 15, 32). As 

expected, the miR-200 family was highly expressed in epithelial tumors. However, a number 
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of novel miRNAs were found to be highly expressed in mesenchymal tumors, regardless of 

cancer type, including the miR-199 family. Previously implicated in skeletal development 

and fibrosis(27, 33), miR-199a seems to have a dual role in cancer, both as a tumor 

suppressor and a promoter, depending on the tissue of origin(27). Although its role in EMT 

is still unknown, the correlation we found between miR-199 and EMT warrants further 

investigation.

While mesenchymal tumors had similar patterns of gene and miRNA expression, the overall 

mutational landscape and alterations in copy number seem to be mostly determined by 

tumor type. In contrast, protein expression and drug sensitivity patterns appear to be driven 

by both tumor type and EMT status. From this analysis, we identified several drugs as 

potentially more active in the mesenchymal subgroup of each tumor type. However, some 

limitations of this study include different numbers of cell lines for each drug tested within 

each tumor type and multiple targets (both inhibitory and promoter) for many of the drugs 

included in the analysis. Nevertheless, we identified drugs that may be more active in 

mesenchymal cancers, which are often highly resistant to established targeted therapies (e.g., 

ErbB2 family inhibitors used in breast, head and neck, and lung cancers). Further validation 

is necessary to determine the clinical relevance of these drugs in the context of EMT.

In summary, the new pan-cancer EMT signature introduced here identifies global molecular 

alterations across multiple cancer types that are associated with EMT. Furthermore, the 

identification of the association between pan-cancer EMT signature scores and expression of 

candidate drug targets suggests that EMT may be a clinically useful marker for selecting 

patients most likely to respond to specific cancer-targeting approaches. The finding that 

mesenchymal tumors express higher levels of immune checkpoint targets is of particular 

clinical relevance given the significant clinical activity of immunotherapies such as PD1 and 

PD-L1 inhibitors in lung cancer(34, 35) and other malignancies, but current lack of validated 

biomarkers to select patients most likely to benefit from these targeted immunotherapies. 

The results described here suggest a possible role for using a tumor’s EMT phenotype to 

identify cancers that may be more sensitive to immune targeting strategies.

Except for one previous report(4), other existing EMT signatures were developed from a 

single tumor type(3, 5–7), which is likely to limit their application across diverse cancer 

types. Furthermore, many of these were developed in cell line models, which do not reflect 

the contribution of the tumor microenvironment and immune response, which play 

important roles in therapeutic response, especially with the emergence of the field of 

immunotherapy. By deriving the pan-cancer EMT signature from patients’ tumors, we 

overcame some of these limitations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of translational relevance

Epithelial-to-mesenchymal transition (EMT) is associated with resistance to many 

approved drugs and with tumor progression. Here, we sought to characterize the common 

biology of EMT across multiple tumor types and identify potential therapeutic 

vulnerabilities in mesenchymal tumors. A patient-derived, pan-cancer EMT signature 

was developed using 11 distinct tumor types from The Cancer Genome Atlas. 

Mesenchymal tumors had similar patterns of gene, protein and microRNA expression 

independent of cancer type. Tumors with mesenchymal EMT scores not only had a 

higher expression of the receptor tyrosine kinase Axl (previously implicated with EMT 

and associated with response to Axl inhibitors), but also expressed high levels of multiple 

immune checkpoints including PD-L1, PD1, CTLA4, OX40L, and PDL2. This novel 

finding, which was validated in an independent patient cohort, highlights the possibility 

of utilizing EMT status--independent of cancer type--as an additional selection tool to 

select patients who may benefit from immune checkpoint blockade.
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Figure 1. Development and application of the pan-cancer EMT signature
(A) Schematic flow of how the pan-cancer EMT score was derived from known EMT 

markers (CDH1, VIM, FN1 and CDH2) using patient tumor-derived samples from TCGA 

and subsequently utilized to identify molecular markers and potential therapeutic targets (B) 

Genes in the pan-cancer EMT signature preserved strong correlation with known EMT 

markers across different tumors. “Type:” indicates whether the signature gene was 

epithelial-like (E) or mesenchymal-like (M) and “Origin:” indicates which seed gene was 

used to identify the signature gene. E markers (red) had positive correlation with CDH1 

(Pearson’s correlation mean=0.44, median=0.43); M markers (blue) had positive correlation 

with VIM, FN1 or CDH2 (Pearson’s correlation mean=0.67, median=0.71). (OVCA: 

Ovarian cancer (n=123); BLCA: Bladder urothelial carcinoma (n=88); HNSC: Head and 

neck squamous cell carcinoma (n=203); COAD: Colon adenocarcinoma (n-89); UCEC: 

Uterine corpus endometrial carcinoma (n=189); BRCA: Breast invasive carcinoma (n=503); 

LUSC: Lung squamous cell carcinoma (n=104); Basal: Basal-like breast cancer (n=103); 

LUAD: Lung adenocarcinoma (n=131). (C) TCGA pan-cancer tumor types exhibit a range 

of epithelial (score <0) and mesenchymal (score > 0) samples. (D) Comparison of lung 

cancer and pan-cancer EMT signatures. The EMT scores from each signature were highly 

concordant, except for KIRC. Using TWIST1/TWIST2 mRNA, miR-200a/b and E-cadherin/

fibronectin RPPA data as external validation, the pan-cancer EMT signature performed 

significantly better (P < 0.01) for fibronectin and TWIST1/2 and similarly well for 

miR-200a/b and E-cadherin.
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Figure 2. The Pan-cancer EMT signature is enriched with different molecular functions and 
pathways
(A) Functional annotation of the pan-cancer EMT signature using QIAGEN’s Ingenuity 

Pathway Analysis®(14) found five molecular functions (cyan) and six pathways (purple) 

were significantly enriched in the pan-cancer EMT signature. Signature gene names are 

shown in red (genes associated with mesenchymal phenotype) and blue (genes associated 

with epithelial phenotype) circles, where text size represents average correlation to EMT 

signature score across tumors. (B) Enriched pathway for genes (using RNAseq data) 

strongly correlating with EMT score (Ingenuity Pathway Analysis). Immune pathways 

ranked top among the enriched pathways derived from commonly expressed genes across 

different mesenchymal tumor types (red arrows). (C) Correlation between immune 

checkpoint genes and EMT score across different tumor types.

Mak et al. Page 17

Clin Cancer Res. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Immune target enrichment in mesenchymal tumors
(A) Expression of immune checkpoint genes was found in the Pan-caner tumor types. 

Tumor samples within each cancer type are ordered by EMT score. Mesenchymal tumors 

have higher expression than epithelial tumors of immune checkpoint genes. (B, C) Heatmap 

representation of mRNA expression levels of selected immune checkpoint genes in 151 lung 

adenocarcinomas (B) and 57 lung squamous carcinomas (C) from the PROSPECT study, 

rank ordered on the basis of their EMT score (upper panels). Comparison of PD-L1 Histo-

score (H-score) in epithelial (E) and mesenchymal (M) tumors that were included in the 

PROSPECT tumor microarray. Automated quantification of extent and intensity of PD-L1 

staining was performed in tumor and non-tumor cells or limited to tumor cells (B&C, lower 

panels). Lung adenocarcinomas and squamous carcinomas with EMT score in the top/

bottom tertile were included in this analysis. Statistical comparisons are based on the Mann-

Whitney U test. Asterisks denote significance at the p≤0.05 (*) and p≤0.01 (**) level.
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Figure 4. MicroRNA expression is highly correlated with EMT status
(A) Axes show the number of tumor types for which a miRNA was correlated with EMT 

score (x-axis: miRNA expressed at higher levels in mesenchymal tumors (red); y-axis: 

miRNA higher in epithelial tumors (blue) at a cutoff of p ≥ 0.3). miR-200 family (200c/b/c 

and 141) is anti-correlated with EMT (blue), whereas numerous miRNAs are positively 

correlated with EMT (red). (B) Correlation between miRNA and EMT score for each cancer 

type. (C) Targets of EMT-associated miRNAs (from 4A and 4B) were identified by 

miRWalk. Among these, we observed a statistically significant enrichment of targets whose 

expression correlated with EMT score (Kolmogorov–Smirnov test p = 1.8×10−28). Top 

miRNA targets associated with EMT score are shown based on an absolute correlation >0.3 

in at least four tumors (full list of targets and their correlation with EMT score for each 

cancer type is provided in Supplemental File 2. (D) Proteins correlated with EMT score. 

Similar to the finding at gene expression level, epithelial status correlates with expression of 

HER3 protein, among others. Proteins with an absolute correlation coefficient higher than 

0.25 in more than four tumor types are shown (blue, epithelial; red, mesenchymal).
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Figure 5. Potential therapeutic targets in mesenchymal cell lines
(A) EMT scores computed from different datasets are highly concordant. Although gene 

expression data were generated from different laboratories utilizing distinct platforms, high 

concordance (Pearson’s correlation = 0.97, concordance correlation coefficient = 0.96) of 

the EMT score is found in shared cell lines from both datasets (GDSC, y-axis; CCLE, x-

axis), reinforcing the robustness of the signature. (B) Spectra of EMT scores across different 

tumor types in CCLE and GDSC. Similar to results from patient-derived tumor samples, cell 

lines from different tumor types exhibited different spectra of EMT scores. (C) Correlation 

between IC50 and EMT score in CCLE. Dot size is proportional to the P value of 

correlation; color indicates magnitude of correlation. (D) Correlation between IC50 and 

EMT score in GDSC. Drugs associated with resistance (red) include EGFR and ERBB2 

inhibitors; whereas PDGFR inhibitors have lower IC50s in mesenchymal samples (green).
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