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Abstract

Oncogenic mutations in the monomeric Casitas B-lineage lymphoma (Cbl) gene have been found 

in many tumors, but their significance remains largely unknown. Several human c-Cbl (CBL) 

structures have recently been solved depicting the protein at different stages of its activation cycle 

and thus provide mechanistic insight underlying how stability-activity tradeoffs in cancer-related 

proteins may influence disease onset and progression. In this study, we computationally modeled 

the effects of missense cancer mutations on structures representing four stages of the CBL 

activation cycle to identify driver mutations that affect CBL stability, binding, and activity. We 

found that recurrent, homozygous, and leukemia-specific mutations had greater destabilizing 

effects on CBL states than did random non-cancer mutations. We further tested the ability of these 

computational models assessing the changes in CBL stability and its binding to ubiquitin 

conjugating enzyme E2, by performing blind CBL-mediated EGFR ubiquitination assays in cells. 

Experimental CBL ubiquitin ligase activity was in agreement with the predicted changes in CBL 

stability and, to a lesser extent, with CBL-E2 binding affinity. Two-thirds of all experimentally 

tested mutations affected the ubiquitin ligase activity by either destabilizing CBL or disrupting 

CBL-E2 binding, whereas about one-third of tested mutations were found to be neutral. 

Collectively, our findings demonstrate that computational methods incorporating multiple protein 

conformations and stability and binding affinity evaluations can successfully predict the functional 

consequences of cancer mutations on protein activity, and provide a proof of concept for 

mutations in CBL.
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Introduction

Whole exome sequencing of cancer patients has produced unprecedented amounts of data to 

analyze and interpret; these studies report a very large fraction of missense mutations which 

can potentially be implicated in tumorigenensis (1). Although some missense mutations can 

provide selective growth advantage to tumor cells (driver mutations), the large majority of 

them are considered to be neutral (passenger mutations). The mechanisms by which the 

driver variants may affect protein stability, interactions, and function remain largely 

unknown. Various computational methods have been developed to estimate the impacts of 

disease mutations on proteins but most of them exclusively use sequence features and do not 

explicitly utilize the protein three-dimensional structures, their physico-chemical properties 

and dynamics (2, 3). Many cancers are characterized by (de)activation of certain proteins 

which may be a result of missense mutations (4). The interconversion between active and 

inactive states is highly regulated in proteins and it is not well understood how these 

regulatory mechanisms are disrupted in cancer. The development of in silico approaches to 

estimate the effects of disease mutations on protein activity, stability and binding will help 

to define which are likely to be driver or passenger mutations. Moreover, understanding the 

mechanisms of their actions would allow for prioritization of potential driver candidates for 

better targeted therapies to design drugs which might in turn compensate for the reduced/

enhanced protein stability or activity.

The monomeric Casitas B-lineage lymphoma (Cbl) RING finger ubiquitin ligase (E3) 

represents an exceptionally difficult yet important system to study the mechanisms of cancer 

mutations (5, 6). Strikingly, proteins from this family play both positive and negative 

regulatory roles in tyrosine kinase signaling which is aberrantly activated in many cancers 

(5). Oncogenic mutations in the c-Cbl gene (referred to as CBL thereafter) were found in 

human myeloid neoplasms and other tumors (5) but the significance of these mutations and 

their impacts on CBL function were studied only for very few mutants (7). The mechanistic 

aspects of CBL cancer mutations can now be adequately addressed as several CBL 

structures have become available which represent the snapshots of different stages of the 

CBL activation cycle (Fig. 1). All CBL proteins share a highly conserved N-terminus which 

includes a tyrosine kinase–binding domain (TKBD), a linker helix region (LHR) and a 

RING finger domain, while the C-terminus comprises a proline-rich region (8). The RING 

domain of CBL has E3 activity and ubiquitinates activated receptor tyrosine kinases which 

subsequently targets them for degradation (8). At the same time, since CBL proteins can 

bind to activated receptor tyrosine kinases via the TKBD domain, they can serve as adaptors 

by recruiting downstream signal transduction components such as SHP2 and P13K (9, 10).

Another aspect of CBL function which should be accounted for in modeling the effects of 

cancer mutations is that it can bind to the ubiquitin-conjugating enzyme (E2) in complex 

with ubiquitin (Ub) and a substrate protein, thereby facilitating the transfer of Ub from E2 to 

a lysine residue of the substrate (11). The crystal structure of the inactive complex of CBL 

with E2 (UbcH7) was solved more than ten years ago (12) while the active phosphorylated 

CBL-E2 (UbcH5B) complex was resolved fairly recently (13). According to the latter study, 

substrate binding and Tyr371 phosphorylation activates CBL by producing a large 

conformational change in order to place the RING domain and E2 in close proximity to the 
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substrate. It was further confirmed that phosphorylation-induced conformational change is 

required for positioning of ubiquitin for effective catalysis (14).

Here we present a new approach, which aims to assess the effects of cancer mutations on 

stability, binding and activity of cancer related proteins. We apply computational models to 

four different stages of the CBL activation cycle (Fig. 1) and perform blind in vivo 

experiments of CBL-mediated EGFR ubiquitination. We show a rather remarkable 

agreement of experimental EGFR ubiquitination by CBL mutants with the computed 

changes in CBL thermodynamic stability and to a lesser extent with CBL-E2 binding 

affinity. The computational models not only quantitatively predict the magnitude of the 

effects of mutations but also shed light on the mechanisms of their action. Namely, we find 

that cancer mutations have greater destabilizing effects on four CBL states than random non-

cancer mutations for recurrent, homozygous and leukemia mutations. Most damaging cancer 

mutations happen in the sites involved in Zn-coordination and in the formation of salt 

bridges and hydrogen bonds within CBL or between CBL and E2. Overall cancer driver 

mutations affect different or multiple stages of the CBL activation cycle either completely 

abolishing its E3 activity or partially attenuating it. The computational models based on 

stability and binding affinity calculations can discriminate experimentally validated driver 

from passenger mutations (with the exception of two mutations) and outperform several 

state-of-the-art bioinformatics methods aiming to predict phenotypic impacts of mutations.

Materials and Methods

Computational modeling and analysis

Mapping of CBL mutations—The COSMIC database (15) stores data on somatic cancer 

mutations and integrates the experimental data from full-genome sequencing studies. We 

extracted 103 missense mutations for the CBL gene from the COSMIC database (15) that 

could be mapped to four available CBL structures in its activation cycle (Fig. 1). Cancer 

mutations were classified into different classes according to the frequency of observed 

samples (single and recurrent mutations), zygosity (homo- and heterozygous mutations), 

types of cancer (leukemia and sarcoma) and the involvement of mutations in Zn-

coordination (Table S1). In addition, all possible single nucleotide substitutions resulting in 

amino-acid changes in the CBL gene were performed to obtain a “Random” missense 

mutation reference set. After excluding mutations observed in COSMIC and mutations 

occurring on residues without known coordinates in crystal structures, we obtained 2,102 

random missense mutations (Table S1). We also searched the dbSNP database (16) but 

found very few benign variations in the CBL gene. Detailed description is provided in 

Supplementary Materials and Methods.

Model preparation—We investigated the effects of mutations on four states of the CBL 

activation cycle: (1) closed CBL state (nCBL), (2) partially opened CBL state bound to 

substrate (CBL-S), (3) unphosphorylated autoinhibitory CBL bound to substrate and 

conjugating enzyme UbcH5B (CBL-E2-S) and (4) phosphorylated CBL bound to substrate 

and UbcH5B (pCBL-E2-S) (Fig. 1). It was previously noted that both UbcH5B and UbcH7 

can bind specifically to CBL but only UbcH5B can facilitate ubiquitination (17). The crystal 
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structures of nCBL (PDB id: 2Y1M) (13), CBL-S (PDB id: 2Y1N) (13) and pCBL-E2-S 

(PDB id: 4A4C) (13) were obtained directly from the Protein Data Bank (PDB) (18). Only 

one crystal structure of the unphosphorylated inactive state of CBL bound to E2 (UbcH7) 

and Zap-70 peptide (PDB id: 1FBV) (12) was available in PDB. Although sequence identity 

between UbcH7 and UbcH5B proteins is 38%, the structural similarity is very high with the 

root mean square deviation (RMSD) of 1.04 Å. The unphosphorylated autoinhibitory 

structure of CBL-UbcH5B-S was therefore modeled based on CBL-UbcH7-S (PDB id: 

1FBV) using Chimera (19). (Detailed description is provided in Supplementary Materials 

and Methods.)

Minimization procedure—We applied our recently developed optimization protocol for 

minimizing wild-type and mutant structures (20). Heavy side chain atoms without known 

coordinates and hydrogen atoms were added to the crystal structures using the VMD 

(version 1.9.1) program (21) with models immersed into rectangular boxes of water 

molecules extending up to 10 Å from the protein in each direction. Wild-type protein 

complexes were minimized for 40,000 steps using explicit TIP3P water model. The final 

minimized models of wild-type protein complexes were used to produce all mutant 

structures and then an additional 300-step minimization for all mutant structures was 

performed. The energy minimization was carried out with the NAMD program (version 2.9) 

(22) using the CHARMM27 force field (23). For unfolding free energy calculations we 

applied the optimization procedure implemented in the RepairPDB module of the FoldX 

program (24) which optimizes the side chain configurations to provide a repaired structure. 

(See Supplementary Materials and Methods for more information.)

Binding and unfolding free energy calculations—Binding free energy and effects of 

mutations on binding affinity were calculated according to the approach introduced by us 

earlier (20). Energy calculations were based on the modified MM-PBSA method that 

combined the molecular mechanics terms with the Poisson–Boltzmann continuum 

representation of the solvent (25) and statistical scoring energy functions with parameters 

optimized on experimental sets of several thousand mutations (equation 3). Binding free 

energy calculations were performed on minimized wild-type and mutant structures of 

inactive CBL-E2-S and active pCBL-E2-S states. The binding energy is defined as a 

difference between the free energies of the complex and unbound proteins.

(1)

The change of binding energy due to a mutation can be calculated as:

(2)

The effect of mutations on binding affinity was calculated in this work using the following 

energy function:

(3)
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Here ΔΔEvdw is the change of the van der Waals interaction energy and ΔΔGsolv is the 

change of the polar solvation energy of solute in water. ΔSAmut represents a term 

proportional to the interface area of the mutant complex. ΔΔGBM and ΔΔGFD are the binding 

energy changes from BeAtMuSiC and FoldX, respectively. BeAtMuSiC (26) estimates the 

effect of mutations on binding based on statistical potentials.

The FoldX software program (24) was used to estimate the unfolding free energy and to 

model the unfolding state. FoldX calculates the effects of mutations on protein stability 

using an empirical force field. The BuildModel module was used to introduce a mutation, 

optimize the configurations of the neighboring side chains and calculate the difference in 

stability (unfolding free energy) between mutant ( ) and repaired native structure 

( ).

(4)

For comparison we used three alternative methods to predict the impacts of mutations on 

unfolding free energy: the Eris server (27), the Rosetta program (28) and the PoPMuSiC 

server (29). We also applied four additional webtools to assess the impacts of amino acid 

substitutions on CBL function: PROVEAN (30), PolyPhen-2 (31), MutationAssessor (32) 

and InCa (33). (See Supplementary Methods for more information.)

Experimental procedures

Expression constructs

Human CBL cDNA was originally obtained from Wallace Langdon and subsequently 

cloned into the pCEFL expression plasmid (34). Point mutation constructs, described above, 

were created from wild-type CBL using the QuikChange II Site-directed Mutagenesis Kit 

according to the manufacturer’s instructions (Stratagene, La Jolla, CA). All constructs were 

confirmed by DNA sequencing.

Cell culture and transfections

The human embryonic kidney cell line HEK293T, the human nonsmall cell lung cancer cell 

line A549 and the human cervical cancer cell line HeLa used in this study were originally 

obtained from ATCC and maintained in culture using DMEM (Gibco, Grand Island, NY) 

supplemented with 10% FBS, 100 U/ml penicillin and 100 μg/ml streptomycin sulfate. Cell 

lines were authenticated by Short Tandem Repeat (STR) analysis by using either Promega 

Powerplex 16 (Promega, Madison, WI) or the AmpFISTR Identifier Kit (Life Technologies, 

Carlsbad, CA) and compared to the ATCC or DSMZ databases. HeLa cells were received in 

the lab in 2013 last authenticated on 7-30-15, A549 were received in the lab in 2015 and last 

authenticated on 8-12-15, and HEK293T were received in the lab in 1995 and last 

authenticated on 10-8-15.HEK293T cells were transfected using calcium phosphate 

according to the instructions accompanying the reagent (Profection; Promega Corp., 

Madison, WI), incubated 18 h prior to media change and grown for a total of 48 h prior to 

harvesting. A549 and Hela cells were transfected with Lipofectamine 2000 (Invitrogen, 
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Carlsbad, CA). Transfections were allowed to incubate 6 h prior to media change, and cells 

were grown an additional 48 h before being harvested. Cells were starved for 4 hours and 

treated with EGF (100 ng/ul). Each cell-based experiment was repeated at least two times.

Immunoblotting and immunoprecipitation

To harvest proteins, cells were washed twice in ice-cold Dulbecco’s PBS-containing 200 μM 

sodium orthovanadate (Fisher Chemicals, Fairlawn, NJ) then lysed in ice-cold lysis buffer 

(10 mM Tris-HCl pH 7.5, 150 mM NaCl, 5 mM EDTA, 1% Triton X-100, 10% glycerol, 

100 mM iodoacetamide [Sigma-Aldrich Corp., St. Louis, MO], 2 mM sodium 

orthovanadate, and protease inhibitors [Complete tabs®, Roche Diagnostics Corp., 

Indianapolis, IN]). All whole cell lysates were cleared of cellular debris by centrifugation at 

16,000 × g for 15 m at 4 °C. Supernatant protein concentrations were determined using the 

BioRad protein assay (BioRad, Hercules, CA). For immunoblotting, 20μg of whole cell 

lysates were boiled in a 1:1 dilution of 2X loading buffer (62.5 mM Tris-HCl pH 6.8, 10% 

glycerol, 2% SDS, 1 mg/ml bromophenol blue, 0.3573 M β-mercaptoethanol) for 5 m. For 

immunoprecipitations, 150 μg of each of the whole cell lysates were incubated with rabbit 

anti-EGFR (Ab-3; Millipore) and with Protein A/G+ agarose beads (sc-2003; Santa Cruz 

Biotechnology, Santa Cruz, CA). All immunoprecipitations were incubated overnight at 4°C 

with tumbling. Immune complexes were washed five times in 1 mL cold lysis buffer, then 

resuspended in 2X loading buffer, boiled for 5 m, then resolved by SDS-PAGE and 

transferred to nitrocellulose membranes (Protran BA85; Whatman, Sanford, MA). For 

immunoblot detection of proteins, the following antibodies were used: rabbit anti-EGFR 

(2232L; Cell Signaling), rat monoclonal high affinity anti-HA-peroxidase, (clone 3F10; 

Roche), rabbit anti-Cbl (sc-C-15; Santa Cruz) and mouse anti-Hsc70 (sc-7298; Santa Cruz). 

Horseradish peroxidase linked donkey anti-rabbit IgG (NA934V; GE Healthcare, 

Piscataway, NJ), or donkey anti-mouse IgG (NA931: GE Healthcare, Piscataway, NJ) 

immunoglobulin was used with SuperSignal (Pierce Biotechnology Inc., Rockford, IL) to 

visualize protein detection.

Densitometric Analysis

Immunoblots were developed on HyBlot CL Autoradiography Film (Denville Scientific 

Inc., South Plainfield, NJ) with an X-OMAT automated processor (Eastman Kodak, 

Rochester, NY). Protein expression levels were then recorded using an Epson Perfection 

V750 PRO scanner (Epson Inc., Long Beach, CA) and densitometric analysis was 

performed using Adobe Photoshop software version 7.0 (Adobe Systems Inc., U.S.A). 

EGFR ubiquitination signal intensity was determined by optical density in a set area 

normalized against the EGFR band intensity in parallel immunoblots and expressed as a 

densitometric ratio of ubiquitination/EGFR levels. The mean densitometric ratio of EGFR 

ubiquitination, in the presence of each CBL mutation, was then assessed relative to wild-

type CBL where the ratio was set at 1.0.
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Results

Cancer mutations impact CBL stability

We estimated the thermodynamic stability (unfolding free energy) changes, ΔΔGfold, upon 

mutation for closed (nCBL) and partially opened (CBL-S) CBL states (Fig. 1). These states 

did not involve binding to E2. The examination of the ΔΔGfold distribution for random non-

cancer mutations (Fig. 2A) showed that it was very similar to experimental distributions 

produced by random mutagenesis on a set of different proteins (35, 36). Namely, the 

distribution for random non-cancer mutations was asymmetrically centered at positive 

energy values and there were about 10% of random mutations with highly damaging effects 

on CBL structures by more than 5 kcal mol−1 (Fig. 2A). Despite the presence of highly 

damaging random mutations, recurrent cancer mutations overall produced significantly 

larger destabilizing effects compared to random (p-value ≪ 0.01) for both nCBL and CBL-

S states (Fig. 2A and S1, Table S2). This was not the case for single cancer mutations 

observed in only one patient (Table S2). Overall, the form of the ΔΔGfold distribution for 

recurrent cancer mutations was different from the ΔΔGfold distribution of random mutations 

(Kolmogorov-Smirnov test p-value ≪ 0.01) whereas the distribution for single cancer 

mutations was indistinguishable from a random mutation distribution. However, it does not 

mean that all single cancer mutants can be considered passenger, as we show later, this is 

not the case for some of them.

The top 25% cancer mutations with the largest damaging effects are presented in Table S3. 

Many of them occurred in Zn-coordinating sites while many others did not involve Zn-

coordination sites. Some of these latter mutations (G415V, G413R and G415S) introduced 

large Van der Waals clashes with neighboring residues which could not be accommodated 

by side chain rearrangements, whereas other mutations (S376F, Y371D and L405P) affected 

disulfide or hydrogen bonds. For example, L405P located in the middle of an α-helix 

affected the CBL structure by introducing an energetically unfavorable kink in the helix due 

to its inability to donate an amide hydrogen bond.

Effects of cancer mutations on CBL-E2 binding

The outcome of mutations can be assessed by the extent of structural changes they induce. 

We calculated the local root mean squared deviation (RMSD) between the minimized wild-

type and mutant structures around the mutated site. We found that the protein backbone in 

the vicinity of a mutation of the CBL-E2 complex underwent larger local conformational 

changes upon recurrent cancer mutations, especially for mutations occurring in Zn-

coordinating site clusters, compared to random mutations (p-value ≪ 0.01, Fig. S2 and S3). 

In the previous section we analyzed the original closed (nCBL) state and partially opened 

(CBL-S) state induced by substrate binding. In this section we study the effects of cancer 

mutations on two other CBL states: an autoinhibitory CBL state bound to substrate and 

conjugating enzyme UbcH5B (CBL-E2-S) and phosphorylated active CBL state bound to 

substrate and UbcH5B (pCBL-E2-S) (Fig. 1) (13). Effects of mutations on binding can be in 

general linked with their structural locations, therefore we examined the locations of 

mutations and found that about one third of all cancer mutations were located on the CBL-
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E2 interface (Fig. S4). This preference was found to be statistically significant (p-value ≪ 

0.01) (Fig. S4).

It was previously experimentally shown that binding between CBL and E2 was rather weak 

with a micromolar dissociation constant (13). Despite the fact that the interface between 

CBL and E2 in the inactive state is several residues larger than in the active state, consistent 

with experiments, we found somewhat stronger binding between CBL and E2 for the active 

state of CBL (Table S4). Similarly to the impacts of cancer mutations on stability, recurrent 

(but not single) mutations destabilized CBL-E2 binding significantly (Fig. 2B, S1 and Table 

S2). Importantly, cancer mutations reduced the CBL-E2 binding in the active state 

considerably more than in the inactive state (p-value = 0.002) (Fig. 2B) and the effects of 

cancer mutations on CBL-E2 binding of the active state were noticeably larger compared to 

random mutations even if we excluded mutations in Zn-coordinating sites (Table S2). This 

latter observation does not hold true for the autoinhibitory CBL-E2-S conformation.

Next, all cancer mutations were ranked with respect to their effects on CBL-E2 binding. 

About half of all highly damaging mutations (top 25% of most damaging mutations, Table 

S3) impacted both stability and CBL-E2 binding for all four CBL states. Among them, 

several mutations occurred in Zn-coordinating clusters and M400 and L405 sites. Another 

class of mutations (involving W408 and R420 sites) mostly influenced CBL-E2 binding. For 

example, the W408S mutation caused the largest perturbation in CBL-E2 binding of the 

active state by decreasing binding affinity up to 3.5 kcal mol−1 but having a moderate effect 

on stability of the nCBL and CBL-S states. It was previously suggested that amino acids in 

positions W408 and I383 constituted specificity of CBL-E2 binding and corresponded to 

binding hot spots (10, 12). Mutations in the I383 site are not recorded in the COSMIC 

database although they have a profound destabilizing effect on CBL-E2 binding for both 

states (see data for random mutations on the ftp site ftp://ftp.ncbi.nih.gov/pub/panch/CBL). 

Another site affecting binding of CBL (R420) is a highly conserved site in the CBL family, 

it strongly interacts with the Q92, W93 and S94 residues of E2. It was previously 

experimentally verified that mutations in this site disrupted the CBL activity and could be 

associated with cytokine-independent growth (37). There are 24 cancer patient samples 

where mutations of this site (R420Q, R420L and R420P) are found and they all produce 

strong destabilizing effects on the active pCBL-E2-S state.

According to the zygosity annotation, there are 49 heterozygous (“Hetero”) and 27 

homozygous (“Homo”) mutations (Table S1) and for the rest of cancer mutations their 

zygocity status is undetermined. Overall, we found that destabilizing mutations were 

enriched among homozygous compared to heterozygous mutations for all stages of CBL 

activation cycle (p-value = 0.021 – 0.035) and were more prevalent in leukemia compared to 

sarcoma patients (p-value = 0.000 – 0.003) (Fig. 2B, Table S2). This observation could not 

be attributed to the prevalence of homozygous mutations in Zn-coordinating clusters since 

these clusters had almost equal numbers of heterozygous and homozygous mutations. It was 

reported earlier that many homozygous mutations could be connected to uniparental disomy 

when germline heterozygosity would lead to neoplasia upon reduction to homozygosity (6, 

38, 39). If some patients with myeloproliferative neoplasms had germline heterozygous 

mutations in CBL, then lost the wild-type CBL allele and duplicated mutant allele, it would 
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be possible that the damaging mutant allele would be duplicated in a cancer cell with a 

higher probability. Indeed, human leukemia samples show the loss of the normal CBL allele.

CBL-mediated EGFR ubiquitination: comparing experiments with computational models

Next we randomly picked fifteen cancer mutations based on their predicted damaging status, 

trying to equally sample highly damaging and benign mutations irrespective to their 

frequencies in cancer samples, and experimentally tested the E3 activity of wild-type and 

mutant CBL proteins (see Methods, Table 1). As can be seen in Fig. 3A, in the presence of 

wild-type CBL, activation of the EGFR induced more than a 10-fold increase in the 

ubiquitination of the EGFR compared to empty vector (endogenous CBL levels) in 

HEK293T cells (compare lane 4 to lane 2 in top panel of Fig. 3A). The E3 activity of wild-

type CBL was mirrored by a decrease in the levels of immunoprecipitated EGFR consistent 

with the targeting of ubiquitinated EGFR for degradation (compare lanes 2 and 4 in second 

panel of Fig. 3A).

We classified all mutations into three groups (damaging, attenuating and benign) according 

to their experimental relative densitometry data and compared experimental data with the 

estimates produced by the computational models. The first group of damaging mutants 

included C396R, H398Q, Y371H, K382E and C381A which completely abolished CBL 

activity (relative densitometry was less than 10%) (Fig. 3B) and the levels of total EGFR 

were not decreased by these mutants (Fig. 3A). Only two of these mutants belonged to the 

Recurrent class of mutations. Table 1 shows predicted and experimentally verified effects of 

mutations on all four CBL states. All five mutants were predicted to be damaging by 

stability and binding affinity calculations but the mechanisms of their action were different. 

C396R, H398Q and C381A mutations disrupted Zn-coordinating clusters and had very 

damaging consequences according to the stability model for both nCBL and CBL-S states 

and damaging effects on CBL-E2 binding even though none of these mutations were located 

on the CBL-E2 interface. On the other hand, the K382E mutation did not affect Zn-

coordination but destabilized the nCBL state. This, in turn, could be explained by the charge 

substitution that led to the disruption of the K382-E373 salt bridge within the closed state of 

nCBL (Figure 4 and Figure S5A). Moreover, K382E mutation had a significant impact on 

CBL-E2 binding due to the disruption of a salt bridge between pY371 and K382 affecting 

the stability of CBL in the active state (Figure 4 and Figure S5D). No significant changes 

were observed for CBL-S and CBL-E2-S states (Figure S5B,C). K382E mutation was 

previously observed in Noonan syndrome and was speculated to affect CBL stability or 

binding (40). Finally, the Y371H mutation not only abolished phosphorylation at the Y371 

site but also had a profound destabilizing effect on all four states as evident from Table 1.

The second group of mutants (M374V, V430M, P428L, Q249E and double mutant S80N/

H94Y) maintained the CBL activity equivalent to or greater than wild-type CBL (relative 

densitometry of 80% or higher) (Fig. 3B). Consistent with this, the levels of the activated 

EGFR were also decreased in these samples (Fig. 3A). To confirm that the retained E3 

activity of these mutants was not cell type specific, we transfected these mutants into the 

non-small cell lung cancer cell line A549 and the cervical cancer cell line Hela (Fig. S6). 

The S80N/H94Y and Q249E mutations were previously identified in human non-small cell 
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lung cancers making the A549 cell line a relevant cell type to investigate the function of 

these CBL mutants while other cancer mutations were found in other cancer types. As in the 

HEK293T cells, transfection of wild-type CBL into A549 and HeLa cells resulted in a 

significant increase in EGF stimulated ubiquitination of EGFR compared to the cells 

transfected with empty vector (Fig. S6). The increase in transfected CBL protein compared 

to endogenous CBL protein was less in HeLa than in either the A549 or HEK293T cells. 

Consistent with this, the fold increase in EGF stimulated ubiquitination of the EGFR by 

wild-type CBL was smaller in Hela cells (about three fold) compared to either A549 or 

HEK293T cells (more than 10 fold in each). As in HEK293T cells, the Y371H mutant did 

not stimulate ubiquitination compared to the vector transfected control for A549 or HeLa 

cells (Fig. S6A and C). The CBL mutants that were fully active in HEK293T cells (Fig. 3A 

and B) maintained CBL E3 activity in A549 and HeLa cells (Fig. S6). Two of these CBL 

mutants resulted in more ubiquitination of EGFR compared to wild type CBL. For example, 

the Q249E mutant showed an increased ubiquitination of EGFR in 293T and HeLa cells 

while the M374V mutant resulted in higher ubiquitination levels in A549 and HeLa cells 

(Figure 3 and S6). Only V430M mutant was on the borderline with the densitometry ratio of 

0.8. All mutations from the second group were predicted to be benign according to our 

computational models, whereas V430M, consistent with experimental data, had a borderline 

destabilizing impact on CBL-E2 binding (Table 1).

Finally, the third group constituted mutations (L399V, G375P, P395A and V391I) which 

attenuated the CBL E3 activity according to the relative densitometry data (Fig. 3B). Only 

one of these mutants was observed in two cancer samples while other three belonged to the 

Single mutation class. Concordant with this, there were intermediate levels of EGFR (Fig. 

3A). G375P and P395A mutations were predicted to have partially damaging effects while 

V391I and L399V were classified as benign in our predictions. Interestingly, mutations from 

this third group affected only some of the CBL states. In contrast, the highly damaging 

mutations from the first group had damaging impacts on almost all CBL states.

Next we tested if the reduction in CBL ubiquitination activity was directly correlated with 

the effects of mutations on stability (Fig. 5A). The relationship between experimental 

densitometry data and ΔΔGfold was better described by an exponential dependence with 

correlation coefficient (R) of 0.77 and 0.78 for CBL-S and nCBL states respectively (Table 

S5). Indeed, the change in absorption between wild-type and mutant proteins which refers to 

a fraction of active mutants can be described by the Boltzmann equation relating the 

probability of a state with the energy of this state. A mutation may lead to damaging effects 

and a loss of function if it impacts at least one of the CBL functional states. Taking this into 

consideration we calculated the correlation between densitometry and stability changes 

taking a maximum of ΔΔGfold values for the nCBL and CBL-S states. As shown in Fig. 5A 

and Table S5, changes in stability can indeed explain the effects of mutations on CBL 

ubiquitination activity with high correlation of R = 0.83. For comparison, several alternative 

methods were applied to predict the effect of mutations on unfolding free energy, they all 

reported correlation coefficients ranging from 0.21 to 0.52, with only one method PopMusic 

reporting a statistically significant correlation of 0.52 (Table S5). The relationship between 

densitometry and binding affinity changes was on the borderline of significance with a linear 
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correlation coefficient of 0.48 and 0.62 (if two highly damaging mutations were excluded) 

(Fig. 5B and Table S5).

There are various methods which predict the phenotypic effects of mutations, (30–33, 41) 

and some of them use structural features (31, 41). We applied four state-of-the-art 

independent methods to predict the impacts of mutations on CBL function: PROVEAN (30), 

PolyPhen-2 (31), MutationAssessor (32) and InCa (33). Some of these methods 

outperformed our model in classifying cancer from random mutations since they were 

trained to distinguish disease from neutral variants (Table S6). However, all four methods 

had a very limited accuracy in classifying CBL cancer mutations into those that disrupted 

function and those that did not. As evident from Table 1 and Table S5, all methods except 

for PROVEAN over-predicted damaging effects of experimentally tested mutations while 

PROVEAN was the only method which produced a significant correlation between the 

densitometry data and PROVEAN’s score (R=0.58, Table S5).

Discussion

Stability-activity balance in cancer related proteins

Evolutionary selection to maintain structural, foldable and functional proteins eliminates 

many mutations in protein sequences. On the other hand, thermodynamic stability can be 

compromised in evolution to ensure certain arrangements of catalytic and binding sites, 

which might not be energetically optimal (36, 42). In tumorigenesis, protein stability or 

binding may be reduced (or in some cases increased) due to cancer mutations. As a 

consequence it can lead to decreased fitness at the protein level, but may confer a fitness 

advantage for the population of tumor cells (43, 44). However, the extent of the stability-

activity tradeoff in oncogenes and tumor suppressors remains largely unknown. Using the 

example of the CBL protein, here we tried to elucidate the stability-activity balance and to 

understand whether the loss or gain of activity in cancer-related proteins can be 

accompanied by compromised stability or binding.

In contrast to many other computational studies, which attempt to link stability with activity 

by mostly focusing on one protein conformation, we performed an analysis on four different 

stages of the CBL activation cycle. Our predictions of changes in stability and binding were 

further elucidated by the experimental CBL-mediated EGFR ubiquitination assays. We 

found a strong relationship between the effects of mutations on CBL stability and 

experimentally obtained densitometry data (quantifying activity), while a relatively weaker 

correlation was observed between changes in densitometry and CBL-E2 binding affinity. It 

could be explained either by a less significant impact of experimentally tested mutations on 

CBL-E2 binding or by a limited coupling (compared to CBL stability) between CBL-E2 

binding and E3 activity.

Drivers or passengers?

According to our study, about two thirds of all experimentally tested mutations either 

completely abolished or attenuated E3 activity, while one third of them were neutral. Trying 

to assess the limitations of our models, we applied state-of- the-art methods commonly used 
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to predict functional effects of mutations. However, these methods failed to distinguish 

inactivating from neutral mutations as accurately as the computational models which were 

solely based on accounting for the effects on stability and binding for different CBL states. 

Indeed, many methods are not specifically designed to discriminate driver from passenger 

mutations within the pool of cancer mutations, but rather they perform a task of 

distinguishing cancer from neutral mutations.

Certainly, the large majority of all mutations detected in cancer genomics studies are likely 

to be neutral although the collective burden of passenger mutations may also alter the course 

of tumorigenesis (45). When we analyzed the distribution of all single cancer missense 

mutations observed in the CBL gene, their average effects on stability or binding were not 

found to be significantly different from the pool of random mutations. These mutations 

either mostly constitute true passenger mutations or their oncogenic mechanisms are not 

directly connected to protein destabilization. The story is quite the opposite for the recurrent 

mutations as they have on average significantly higher destabilizing effects than random 

mutations and the majority of them should be drivers. An interesting group of mutations 

includes those which are highly damaging but found only in one cancer sample (10% of all 

single cancer mutations). These mutations may represent either rare driver or latent driver 

mutations (46). Several of these mutations were experimentally tested and are listed in Table 

1.

CBL-E2 binding in deciphering the mechanisms of cancer

Our analysis showed that cancer mutations reduce CBL-E2 binding in the active state 

considerably more than in the inactive state. It is in contrast to the stability-activity tradeoff 

reported for EGFR and other cancer related proteins (47), where cancer mutations may 

disrupt autoinhibitory interactions and activate the kinase (48, 49). Importantly, all 

mutations with experimentally tested high inactivating effects have impacts on both CBL 

stability and CBL-E2 binding (Table 1). In fact, the correlation between ΔΔGfold and 

ΔΔGbind for CBL cancer mutations from COSMIC is positive (R = 0.20 – 0.48 depending on 

the CBL state, p-value < 0.05). It might seem counterintuitive as some residues maintain 

stability by sustaining the RING-TKBD autoinhibitory interactions within CBL. This 

interface overlaps with the CBL-E2 interface and competes against E2 binding (13). One 

might think that disruption of RING-TKBD interactions and destabilization of CBL might 

facilitate binding to E2 and therefore lead to CBL activation. A slight activation was actually 

observed for two mutants, one of which (M374V) was directly located on the CBL-E2 

interface. However, as we showed through the positive high correlation between stability 

and activity changes, this mechanism is rarely observed and the vast majority of mutations 

disrupt CBL-E3 activity by either destabilizing CBL and/or CBL-E2 binding or by directly 

affecting phosphorylation of the critical tyrosine Y371.

Overall, our results support the idea that decrease of E3 activity, of the ability to ubiquitinate 

receptor tyrosine kinases, of CBL stability and/or CBL-E2 binding can give a selective 

advantage for tumor cells. However, there are several factors that complicate deciphering 

the mechanisms of action of CBL cancer mutations. CBL mutations can be dominant-

negative and mutated CBL might not only change the CBL E3 activity but also might affect 
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the concentration and activity of the wild-type CBL. According to a ratiometric method to 

identify driver genes in cancer (1), CBL can be regarded as an oncogene since it has several 

mutation hot spots. On the other hand, as shown in our study and in other studies, cancer 

driver mutations can inactivate the E3 activity of CBL, so it can also be regarded as a tumor 

suppressor. Although the latter fact complicates the development of CBL targeted therapies, 

understanding the delicate balance among different CBL-affected pathways may facilitate 

the indirect drug targeting of damaged CBL proteins. The current genetics-based 

frameworks to analyze cancer genome-wide sequence data are necessary but not sufficient 

for understanding the processes of carcinogenesis and developing informed, targeted 

therapies. Our approach, which can be applied in general to different proteins of interest, 

emphasizes the importance of the physics of binding and protein conformational ensembles 

in deducing the mechanisms of cancer.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
CBL activation cycle. The structures representing the activation cycle of CBL are shown. In 

the inactive closed state (nCBL) the protein exists in the cytosol. Upon activation of the 

RTK, CBL can bind to the phosphorylated RTK (orange peptide) via TKBD domain. Upon 

phosphorylation (pCBL-E2-S) CBL undergoes a large conformational change resulting in 

positioning the E2 active site close to the RTK. CBL and E2 are shown in blue and green 

colors and all cancer mutation sites are shown in yellow.
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Figure 2. 
(A) The distribution of unfolding (ΔΔGfold) and binding (ΔΔGbind) free energy changes for 

Single, Recurrent and Random class mutations on nCBL and pCBL-E2-S states (see SI for 

other states). Positive and negative values correspond to destabilizing and stabilizing effects. 

Recurrent cancer mutations (green line) produce significantly larger destabilizing effects for 

both nCBL and pCBL-E2-S (p-value ≪ 0.01) states compared to random mutations. The 

distributions are smoothed by the Gaussian kernel density estimation. (B) Mean values and 

standard errors of ΔΔGfold and ΔΔGbind for different classes of mutations for nCBL, CBL-S, 

CBL-E2-S and pCBL-E2-S states.
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Figure 3. 
(A) EGFR ubiquitination. HEK293T cells were transfected with plasmids encoding wild-

type or mutant CBL proteins along with the EGFR and hemagglutinin (HA)-epitope tagged 

ubiquitin. The vector control and wild-type, CBL transfectant cells were incubated with or 

without EGF and EGFR was immunoprecipitated (IP EGFR) from each lysate. 

Ubiquitination of the EGFR was measured by blotting the immunoprecipitated EGFR for 

HA. EGFR levels in the immunoprecipitate were determined in parallel blots. The bottom 

two panels show CBL protein expression and HSC70 for loading in the cell lysates. The 

MW in kDa is shown to the left of the blots. (B) Quantification of the blots. Densitometry 

was performed for ubiquitination and EGFR levels; the data represent the ubiquitination/

EGFR levels normalized to the ubiqutination/EGFR levels of wild-type CBL in the presence 

of EGF; the mean value +/− SE for at least three experiments for each CBL protein. Results 

for A549 and Hela cell lines are presented in Fig S5. The densitometry data for S80/H94Y 

and Q249E for HEK293T cells were quantified based on our previous EGFR ubiquitination 

experiments (7).

Li et al. Page 18

Cancer Res. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Structures of wild type (green) and K382E mutant (tan) are shown for nCBL and pCBL-E2-

S states. Salt bridges are shown as dashed lines and in both cases mutation affects the 

stability by disrupting the salt bridge.
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Figure 5. 
(A) Comparison between experimental densitometry values (exponential model) and 

maximal predicted changes in stability. (B) Comparison between experimental densitometry 

values (linear model) and predicted changes in binding affinity of pCBL-E2-S state. Black 

line corresponds to 15 mutations and the grey line corresponds to the data with the exclusion 

of highly damaging C381A and G375P.
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