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Abstract

Purpose—To gain insight into factors involved in tumor progression and metastasis, we 

examined the role of non-coding RNAs (ncRNAs) in the biological characteristics of colorectal 

carcinoma (CRC), in paired samples of tumor together with normal mucosa from the same CRC 

patient. The tumor and healthy tissues samples were collected and stored under stringent 

conditions, thereby minimizing warm ischemic time.

Experimental Design—We focused particularly on distinctions among high stage tumors and 

tumors with known metastases, performing RNA-Seq analysis which quantifies transcript 

abundance and identifies novel transcripts.

Results—In comparing 35 CRCs, including 9 metastatic tumors (metastases to lymph nodes and 

lymphatic vessels (LN/LV)), to their matched healthy control mucosa, we found a distinct 

signature of MT-tRNAs and snoRNAs for metastatic and high stage CRC. We also found the 

following: 1) MT-TF (phenylalanine) and snord12B expression correlated with a substantial 

number of miRNAs and mRNAs in 14 CRCs examined; 2) a miRNA signature of oxidative stress, 

hypoxia and a shift to glycolytic metabolism in 14 CRCs, regardless of grade and stage, and 3) 

heterogeneous MT-tRNA/snoRNA fingerprints for 35 pairs.

Conclusions—These findings could potentially assist in more accurate and predictive staging of 

CRC including identification of those CRC likely to metastasize.
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Introduction

CRC is the third most common cancer and also the third leading cause of cancer-related 

deaths in the United States (1). The prognosis in advanced cases is poor with more than one-

third of the patients dying from progressive disease within 5 years (2). However, 

simultaneous evaluation of sRNA, miRNA and mRNA in matched pairs of CRC by RNA-

Seq, a technology for high throughput sequencing of the whole transcriptome with some 

advantages over microarrays, has not been reported.

miRNAs are ncRNA molecules with 18-25 nucleotides (nts) in length and are known to 

repress mRNAs by inhibiting translation and stimulating mRNA degradation (3). 

Approximately 270 of such miRNAs have been shown to be dysregulated in CRC (3-5) by 

real-time PCR and microarray. sRNAs are approximately 60-300 nts in length which include 

transfer RNAs (tRNAs) and snoRNAs. MT-tRNAs, approximately 70-80 nts long, are 

structurally distinct from nuclear-encoded tRNAs by having one less loop than the nuclear 

canonical cloverleaf structure due to genome economization (6). Twenty-two MT-tRNAs 

and 2 ribosomal RNAs (rRNAs) are required for the synthesis of 13 out of the 84 essential 

protein subunits of NADH dehydrogenase, cytochrome reductase, cytochrome oxidase and 

ATP synthase which are essential for ATP production through oxidative phosphorylation in 

the mitochondria (7). Upregulated expression of such MT-tRNAs has been found in breast 

cancer (8). snoRNAs play a crucial role in ribosome biogenesis through methylation and 

pseudouridylation of rRNAs (9). A linkage between snoRNAs and carcinogenesis has been 

established for non-small-cell lung cancer (NSCLC) (10). mRNAs are RNA templates for 

protein synthesis and thus far, more than a dozen mRNAs have been identified as 

biomarkers for staging and prognosis of CRC (11).

Our study sought to investigate, using stringently collected and preserved tissue samples 

(12) and RNA-Seq analysis, whether expression of unique sRNA species correlated with and 

potentially contributed to the aggressive biological behavior of advanced stage colorectal 

cancers and cancers with known metastasis, as compared to lower grade tumors and healthy 

tissues.

Materials and Methods

Cohort

Thirty-five paired-tissues of pretreatment CRC were collected by Indivumed GmbH 

(Germany). Histologically, tumor content is 50-70% in tumors and 0% in normal tissues. 

Normal tissues were 5 cm away from tumors. Ischemia time to freeze was 6-11 minutes. The 

normal mucosa was collected in a distal part of the bowel close to the resection margins. 

Clinical and histopathological characteristics of the patients are summarized in table S1.

Small RNA and miRNA sequencing

All 35 pairs were sequenced at small RNA level and first 15 pairs were also sequenced at 

miRNA level. The RNA quality was assessed using the Agilent 2100 Bioanalyzer. Samples 

with a RNA Integrity Number (RIN) of 7 or higher were processed to generate libraries for 

small RNA sequencing following the Illumina®TruSeq™ Small RNA Sample Preparation 
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protocols. In brief, 3’ and 5’ RNA adapters, specifically modified to target the 3’ hydroxyl 

group and 5’ phosphate group of most small RNA molecules, were ligated to the ends of 

sRNAs present in 1 μg of high quality total RNA. Reverse transcription was performed to 

generate the first-strand cDNAs followed by synthesis of the second-strand cDNAs. The 

small RNA libraries were loaded onto a 4% agarose gel after 11-cycle PCR amplification. 

DNA fragments of 145 to 160 bp containing miRNA inserts were excised from the gel and 

purified for micro RNA sequencing (miRNA-Seq), while those of 160 - 400 base pair (bp) 

containing longer inserts were similarly purified for small RNA (including MT-tRNAs and 

snoRNAs) sequencing (sRNA-Seq). The yield of small RNA library was quantified on 

Agilent 2100 Bioanalyzer. Twelve to twenty-four small RNA libraries were pooled, 

denatured and loaded onto one lane of a flow cell for cluster generation using the Illumina 

cBot. The flow cell was loaded onto Illumina HiSeq 2500 sequencer (Illumina, San Diego, 

CA, USA) and subjected to single-end, 50- and 100-cycle sequencing for miRNA and sRNA 

sequencing, respectively.

mRNA Sequencing

Fourteen pairs were further processed to generate mRNA-Seq libraries using Illumina 

TruSeq “stranded mRNA sample prep kit.” In this method, poly (A) tailed RNA was 

purified from 0.5 μg total RNA, fragmented and reverse-transcribed into cDNAs. Double 

strand cDNAs were adenylated at the 3’ ends and ligated to indexed sequencing adaptors, 

followed by limited-cycle (15) amplification. Paired-end sequencing was carried out on 

HiSeq 2500 sequencer (Illumina, San Diego, CA, USA) for 100×2 cycles.

Sequencing Data Analysis

The miRNA-Seq data analysis was performed on NIH Biowulf supercomputer. miRDeep2 

was used to trim the adapter sequences, map the reads to the miRNA database, miRBase 

(version19), and quantify miRNA expression levels. Novel miRNAs were predicted using 

miRDeeps2 for aligning the reads against the reference human genome (hg19). For mRNA 

sequencing, Tophat V.2.0.11 and Cufflinks V.2.2.1 were used to align the reads in fastq files 

to the RefSeq UCSC human hg19 transcript reference genome annotation database and the 

quantification of relative abundance of each transcript was reported as Reads Per Kilo base 

per Million (RPKM). sRNA sequencing data was analyzed using the software CLC 

Genomics Workbench 5 for the mapping of trimmed reads to Ensemble GRCh37.75 

noncoding RNA database and quantitation of the sRNA expression levels. Statistical 

analyses and gene clustering were carried out using R 2.15.3 (The R Project for Statistical 

Computing Program). The sRNA expression levels were normalized to the expression levels 

of all identified, known sRNAs. Paired Student t-test was conducted to identify sRNAs with 

differential expression between cancers and matched normal adjacent tissues (P < 0.05). 

Hierarchical clustering was conducted using Euclidean distance to cluster RNAs and 

samples. By standard detection criteria (13), 5,171 sRNAs, 1009 miRNAs and 13580 

mRNAs with 1 RPKM in at least one sample were selected for analysis. Though paired t-

test, 37 sRNAs, 204 miRNAs and 665 mRNAs were identified to have significant 

differential expression (p-value <0.05). The expression patterns of sRNAs, miRNAs and 

mRNAs are presented on clustering analysis, which were performed by the R package 

“gplots.” Principal component analysis (PCA) was conducted to visualize differences 
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between samples and cluster samples on the gene expression profiles, with the majority of 

the data variation explained by PC1, PC2 and PC3. Pearson correlation analysis was done 

with EXCEL 2003 and correlation cutoff was 0.6 (r>0.6). Plots were made with Prism 6 

software and EXCEL 2003.

Verification of RNA-Seq fidelity and identification of colonic tissue house keeping genes 
(Information S1)

Results

1) Identification of MT-tRNAs and snoRNAs as biomarkers for tumor with LN/LV 
metastasis

To evaluate the sRNA profile of tumors that had documented lymph node (LN) and 

lymphatic vessel (LV) metastases, the average ratios (Tumor/Normal: T/N) of sRNAs in 

tumors with metastases (MET+) (9 tumors: T8LN, T11LV, T14LN, T15LN, T20LV, T25LV, 

T26LN, T30LV and T35LN) (Table. S1) and tumors without documented metastases (MET−) 

(26 tumors) were compared. We found that 6 MtRNAs (MT-TI (isoleucine), MT-TL 

(leucine)1, MT-TE (glutamic acid), MT-TP (proline), MT-TF, MT-TL2 and 4 sRNAs 

(snord19.2, snord86, snord77 and snora71D) were among the top 10 upregulated genes with 

2.5-6.5 fold increases in tumors with LN/LV metastasis compared to 1.5-3 fold increases in 

tumors without LN/LV metastases (Fig. 1a). Next, we evaluated whether such genes were 

also upregulated in advanced stage vs early stage tumors by comparing the average ratios 

(T/N) of sRNAs among tumors at stage 1 (5 tumors), stage 2 (6 tumors) and stage 3 (21 

tumors) compared to stage 4 (3 tumors). We found that there was a 6-28 fold increased 

expression of 7 MT-tRNAs (MT-TC (cysteine), MT-TI, MT-TL1, MT-TP, MT-TE, MT-TF 

and MT-TS (serine)1) and 3 snoRNAs (snord19.2, snord86 and snord77) in stage 4 tumors 

compared to1-3 fold increases in all lower stage tumors (Fig. 1b). Overall, MT-tRNAs were 

found to be highly expressed in high grade tumors and in tumors with LN/LV metastases. 

Moreover, the upregulated expression of snord19.2, snord86, snord77 and snora71D in CRC 

has not been reported and their potential roles in malignant transformation/progression not 

known.

Thus to determine whether deregulated MT-tRNAs and snoRNAs can be used as a signature 

to distinguish some metastatic and high stage tumors, unsupervised clustering and PCA 

analysis of the selected 6 top upregulated MT-tRNAs (MT-TF, MT-TL1, MTTY (tyrosine), 

MT-TE, MT-TH (histidine), MT-TS1) and 2 top upregulated snoRNAs (snord43, snord86) 

were performed. The hierarchical clustering distinguished MET+ T8LN, T14LN, T15LN, 

T25LV, T26LN, T30LV and T35LN (Fig. 1e) while the PCA plot distinguished a subset of 

such MET+ tumors including T8LN, T14LN, T15LN and T26 LN (Fig. 1g). Among 9 MET+ 

tumors, 3 (T20LV T30LV and T35LN) had only upregulation of snord43 and snord86 but not 

MT-tRNAs. Furthermore, principal component analysis (PCA) of 22 MT-tRNAs also 

distinguished metastatic T11 LV, T14LN, T15LN and T26LN (Fig. S2a). Five MET− tumors 

(T9, T12, T13, T18, T22 and T23) that clustered with MET+ tumors (Fig. 1e, 1g, Fig. S2a) 

were moderately differentiated stage 2 or 3 tumors with high expression of MT-tRNAs (Fig. 

S3a). Thus, patients with tumors bearing such MT-tRNA profiles may be at higher risk for 

progression and metastasis.
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We next evaluated sRNAs that were most prominently downregulated in MET+ as well as 

stage 4 tumors and found that the snord113-114-116 cluster, snord64, snord71, snord93, 

snord107, scarna18, CTD2651B20.6 (CTD: comparative toxicogenomics database) and 

AP000318.1 (AP: annotation process) were the 10 most downregulated sRNAs with 1.2-10 

fold decreases (Fig. 1c, 1d) Interestingly, the snord113-114-116 cluster, snord116-7 and 

snord64 are deleted in PWS, a severe metabolic disorder causing excess adiposity which 

suggests a role for such dysregulation in energy storage in tumors (14). However, these 

snoRNAs have not previously been specifically linked to CRC malignant transformation or 

progression.

Since MET+ tumors clustered in multiple analyses of non-coding gene expression, we 

performed an unsupervised clustering analysis of 14 tumor pairs using 11 known metastatic 

mRNA biomarkers (15) including the following: liver-intestine cadherin 17 (CDH17), 

protocadherin 1 (PCDH1), transcription factor 5 (E2F5), matrix metalloproteases 3 and 7 

(MMP3 and MMP7), transcription factor AP-4 (TFAP4), transcription factor 1 (E2F1), 

transforming growth factor, beta 1 (TGFB1), zinc finger transcriptional repressor 1 (SNAI1) 

and extracellular matrix receptor III (CD44). The resulting cluster analysis distinguished all 

MET+ tumors (T8LN, T14LN, T15LN and T11LV) in 14 tumors (Fig. 1f).

Taken together, the coding RNA data support ncRNAs signatures that distinguish MET+ 

CRC. Thus, such MT-tRNA/snoRNA signatures have the potential to more precisely 

identify these more aggressive and deadly tumors and suggest novel therapeutic targets.

2) Identification of sRNA as potential novel biomarkers for CRC

To evaluate the spectrum of sRNA biomarkers associated with tumors regardless of grade, 

stage and LN/LV metastases, as distinguished from normal tissue, the average ratios (T/N) 

of sRNAs of all 35 tumors and all 35 normal samples were compared. We again found a 

predominance of 9 MT-tRNAs (MT-TI, MT-TL1, MT-TL2, MT-Y, MTTC, MT-TE, MT-

TF, MT-TH and MT-TD) among the top 20 upregulated genes with 1.4-5 fold increases 

(Fig. S2b, Table. S3a). Nineteen snoRNAs and AP000318.1 were among the 20 most 

downregulated genes in tumors with approximately 1.5-2.5 fold decreases relative to normal 

tissue (Fig. S2c). Overall, 41 sRNAs were found up or downregulated (Table. S2a, S2b, S2c, 

Fig. S3a, S3b, S3c). PCA analysis of these 32 differentially expressed snoRNAs 

distinguished 28 out of 35 tumors from normal controls (Fig. S2d). Among 41 differentially 

expressed sRNAs (9 MT-tRNAs, 32 snoRNAs), we found that the upregulation of snord12B 

expression in tumors bore the greatest statistically significant difference from normal 

samples (p value=3.830e-12) (Fig. S4a). Consistent with upregulation of snord12B, the host 

gene of this snoRNA, zinc finger nuclear transcription factor, x-box binding 1 anti-sense 

1(ZNFX1-AS1) (16), a long non-coding RNA, was upregulated in all examined CRCs (Fig. 

S4b). There was an association strength (r=0.66) between the expression of snord12B and 

ZNFZ1-AS1 (Fig. S4c). Paradoxically, the expression of ZNFZ1-AS1 is down-regulated in 

mouse mammary tumors, and thus it may have distinct functions in different tissues or 

species. Although, snord12B was reported as upregulated in rectal cancer (17), the profound 

differences in snoRNA expression between CRC and normal mucosa have not hitherto been 
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reported and suggest potentially important roles for these ncRNAs in malignant 

transformation, progression, or metastasis in CRC.

3) Correlation of sRNAs with miRNAs and mRNAs in primary CRCs

Key biological premises that underlie relationships of genes regarding “drivers’ and 

‘passengers” consist of the following: highly co-expressed genes are more likely to be co-

regulated; and those genes that display prominent connectivity patterns tend to play 

biologically influential or regulatory roles in disease-related processes (18-20). Measures of 

node centrality in biological networks may detect genes with critical functional roles. In 

gene co-expression networks, highly connected genes (i.e., candidate hubs) have been 

associated with key drivers of disease pathways and gene connectivity has been shown to be 

a measure of functional relevance (18-20). Thus to explore whether there were potential 

cancer “driver” sRNAs, we performed correlational analyses among 41 differentially 

expressed sRNAs (9 MT-tRNAs, 32 snoRNAs), 204 miRNAs, and 665 mRNAs in 14 tumor 

pairs. Interestingly, we found that expression of some sRNAs, such as MT-TF, snord12B 

and the snord114- cluster, correlated with expression of more than 100 to 450 miRNAs/

mRNAs while expression of some sRNAs, such as MT-TY, snord19B and snord83.9 

correlated with expression of less then 10 miRNAs/mRNAs (Table 1 and Information S2). 

Moreover, the upregulated expression of MT-TF and snord12B sRNAs positively correlated 

with upregulated hypoxia, metastatic and pentose phosphate pathway genes, such as mir21, 

mir181, ECE2, PHF19 and TKT, and negatively correlated with expression of tumor 

suppressor genes, such as let7c, mir139, CGRRF1 and SRSF5 (Fig. 2a, 2b, 2c, 2d). The 

downregulation of snord114-1 correlated with downregulation of tumor suppressors, such as 

let7c and AHNAK (Information. S2d). In addition, MT-TF, snord12B and snord114-1 were 

commonly deregulated in all 35 tumors (Table. S2a, S2b, S2c, Fig. S3a, S3b, S3c). Thus, 

our data suggest that deregulation of these 3 sRNAs may be causally linked to 

tumorigenesis, tumor proliferation or aggressiveness. The regulatory mechanisms 

controlling expression of these 3 sRNAs are not known.

4) Evidence for Hypoxia and upregulation glucose metabolism in CRC

Since the prominent upregulation of MT-TF correlated with hypoxia biomarkers (mir21, 

mir31) (Fig. 2a), we examined whether enzymes to mitigate the oxidative effects of hypoxia 

were also affected. The glutathione anti-oxidative pathway consisting of 15 enzymes 

pertaining to glutathione S-transferase (GSTA), glutathione peroxidase (GPX), gamma-

glutamyltransferase (GGT), glutathione reductase (GSR), microsomal/glutathione S-

transferase (MGST) and catalase (CAT) in 14 CRCs were examined and downregulation of 

9 out of 15 anti-oxidative enzymes (Fig. 3a) was found in all tumors as well as in 2 normal 

controls (N8, N14), which were associated with MET+ tumors. Furthermore, we also 

examined hypoxia induced miRNAs (21, 22, 23) and found 13 upregulated miRNAs 

pertaining to hypoxia in 14 out of 15 tumors (Fig. 3b), the sole exception being a poorly 

differentiated stage 3 tumor. Because IL-8 is known to be upregulated and glycerol-3-

phosphate dehydrogenase 1-like (GPD1L) is known to be downregulated by hypoxia (24), 

we examined the mRNA expression profile of these 2 genes in the 14 tumor pairs to 

establish the validity of the hypoxia clustering analysis. Relative to healthy control tissue, 

IL-8 was upregulated 2-35 fold and GPD1L was downregulated 1.2-5.2 fold in all tumors 
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examined (Fig 3c). Thus, these data are indicative of hypoxia in CRCs. Since hypoxia 

switches ATP production from oxidative phosphorylation to glycolysis in tumor cells (25, 

26, 27), we analyzed the expression of 3 SIRTs, which are known to suppress glycolysis 

(28), and found all tumors had down regulation of all 3 SIRTs (Fig. 3d). Further, a clustering 

analysis of 6 genes directly pertaining to glycolytic enzymes including glyceraldehyde-3-

phosphate dehydrogenase (GAPDH), glucose phosphate isomerase (GPI), pyruvate kinase2 

(PKM2), enolase1 (ENO1), phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) 

and phosphoglycerate kinase 1 (PGK1), clustered all 14 tumors together with upregulation 

of all 6 genes, except in one stage 1 and two stage 3 tumors (Fig. 3e), while a clustering 

analysis of 7 genes directly pertaining to TCA cycle enzymes, including malate 

dehydrogenase 1 (MDH1), oxoglutarate (alpha-ketoglutarate) dehydrogenase (OGDH), 

aconitase 2 (ACO2), succinate dehydrogenase (SDHD), citrate synthase (CS), fumarate 

hydratase (FH) and isocitrate dehydrogenase 1 (IDH1), grouped 12 out 14 tumors together 

(Fig. 3f). Among these 12 tumors, 6 high stage (3 or 4) tumors did not have downregulation 

of all 7 TCA cycle enzymes. One poorly differentiated stage 3 tumor (T4) and one poorly 

differentiated stage 4 tumor (T8) with LN metastases grouped with normal samples in this 

analysis. These two tumors showed the most upregulated mRNA expression of CS, a rate 

limiting enzyme in the TCA cycle, suggesting that while the glycolytic pathway is generally 

upregulated and the TCA pathway is generally downregulated in CRC, the most aggressive 

tumors may use both glycolysis and the TCA cycle for energy production. Alternatively, one 

pathway or the other may predominate in different cells within the heterogeneous tumor 

population or in different environmental niches. Furthermore, all 14 examined tumors also 

had evidence of upregulation of the pentose phosphate pathway as shown by upregulation of 

enzymes including transketolase (TKT), glucose 6-phosphate dehydrogenase (G6PD) and 6-

phosphogluconate dehydrogenase (PGD), (Fig. 3g). The pentose phosphate pathway utilizes 

glucose to generate ribonucleotides as well as NADPH and plays a pivotal role in anabolic 

processes and in combating oxidative stress in glycolytic cancer cells. Overall, these data 

suggest that there is increased utilization of glucose in CRCs via anaerobic glycolysis. 

Intriguingly, one normal sample (N8), paired to MET+ T8, was adjacent to tumors in 

various clustering analyses (Fig. 1f, 3a, 3d, 3f). Compared to other normal samples, this N8 

had higher expression of oncogenes such as SNAI1 and CD44 as well as lower expression of 

anti-oxidative enzymes and tumor suppressors such as GST, GSR, CAT, SIRT3 and SIRT6 

(Fig. 1f, 3a, 3d) at the mRNA level. These data suggest the potential presence of metastasis 

in this supposedly normal sample despite its designation as “normal” by histological 

diagnosis (Table. S1).

5) sRNA profiles in 35 CRCs

Finally, to compare and contrast expression profiles in tumors across the histologic 

spectrum, we established individual tumor sRNA fingerprints in paired matched samples 

and evaluated commonality and dissimilarity in sRNA expression. Since both the magnitude 

of the ratio (T/N) and of the subtractive difference (T-N) in gene expression may have 

biological significance, we established both relative ratio (T/N) and absolute difference (T-

N) fingerprints for each tumor. We then selected the three most highly up and down 

regulated sRNAs based on values of (T/N) or (T-N) to build a sRNA fingerprint for each 

tumor. Relative ratio fingerprints identified the MT-tRNA family, CTD 2651B20.6 and 
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snord19 cluster as the most frequently upregulated genes while the snord114 cluster, 

AP000318.1 and snord64 were identified as the most frequently down regulated genes 

(Table. 2a, Table. S3a), largely reflecting earlier analyses (Fig. S2b, S2c). As in the initial 

analysis of average fold increased or decreased expression of each sRNA in all MET+ 

tumors (Fig. 1a, 1c), the 3 most upregulated (8-20X) genes in 9 individual metastatic tumors 

were also either MT-tRNAs or the snord19 family while the 3 most downregulated (2-25X) 

genes again were in the snord113/114/116 cluster (Table. S3a). For absolute difference 

fingerprints, we found that in metastatic tumors, snord43, MT-tRNAs and the snord12 

cluster were the most frequently upregulated genes while snord71, snord59A and the 

snord114 cluster were the most frequently down regulated genes among the top 3 up/

downregulated genes (Table. 2b, Table. S3b). Met+ tumors(T8LN, T15LN, T25LV and 

T35LN) displayed the greatest level of absolute RPKM changes of snord43, snord12 cluster 

and snord113/114/116 cluster expression. The deregulation of these snoRNAs in CRC has 

thus far not been reported and their roles, if any, in tumorigenesis, proliferation, or 

metastasis are not known. Overall, each tumor had its own genomic signature, with some 

unique features and some common features. Based on the presence or absence of MT-

tRNAs in the top 3 upregulated genes, 35 CRCs can be placed into two groups, regardless of 

their histological types and TNM classification (Table 2c).

Discussion

CRC is a disease with variegated genetic and epigenetic profiles (29). Thus advanced 

molecular profiling of CRC may improve staging and grading of tumors and thus predicting 

clinical course, but as well in defining specific tumor survival and proliferation pathways 

and thereby elucidate novel drug treatments. Currently there are a number of drugs that 

target such specific oncogenic pathways (30). In this study, we delineated sRNA for 35 

CRCs. We found that all 35 CRCs had distinct combinations of common as well as uniquely 

deregulated genes. This new understanding of oncogenic mechanisms has begun to 

influence risk assessment, diagnostic categories, and therapeutic strategies, with increasing 

use of drugs and antibodies designed to counter the influence of specific molecular drivers.

Our study mainly focused on distinctions among tumors of high stage and tumors with 

metastases. In this study, we identified MT-tRNAs as the top upregulated sRNAs in LN/LV 

positive and high stage CRC, as well as a signature of sRNAs associated with such tumors 

and, in some cases, with their adjacent “normal” tissues which likely contain undetected 

metastasis. Furthermore, the distinct profiles of tumors with metastasis, as defined by both 

ncRNA and coding RNA signatures in CRC reveals some novel elements. Especially 

notable was the stunning downregulation of the snord113/114/116 clusters which are deleted 

in PWS, a genetically imprinted disease marked by profound obesity which may likewise 

enhance energy storage in cancer cells, but not described thus far in cancer. Whether these 

snoRNA clusters having tumor suppressor function need to be studied.

A multitude of data support the role of hypoxia in tumor physiology as hypoxia has been 

shown to upregulate glycolytic metabolism and MT-tRNAs (31) and downregulate enzymes 

involved in the TCA cycle. More generally, hypoxia has long been recognized to play a role 

in promoting the invasive and metastatic behavior of cancer cells and their ability to 
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disseminate from established colonies and establish new colonies in distinct environments 

may depend on their ability to diversify metabolic pathways (21, 23). In this regard, the 

stringency of tumor harvest and preservation in our study is critical in assuring that these 

findings are not artifacts of prolonged ex-vivo time duration prior to storage (12). The 

superposition of upregulated MT-tRNAs, which may support generation of ATP through 

mitochondrial oxidative phosphorylation, on a profile of a shift to glycolytic metabolism, 

suggests that tumors with enhanced capacity for local and distant invasion are poised to use 

either oxidative phosphorylation or glycolytic metabolism, depending on the oxygenation 

circumstances in which they find themselves. Though downregulation of snoRNAs such as 

snord50A, h5sn2, snord43 and snord44, have been found in breast, prostate, brain and lung 

cancers (32, 33), the panel of downregulated snoRNAs, identified in this study, have not 

been reported previously and may be unique to colonic cancers. Interestingly, the host gene 

of the downregulated snord114 cluster (Fig. S5a) is the maternally expressed 3 RNA gene, 

MEG3 (34, 35). MEG3 inhibits cancer cell proliferation by both p53-dependent and p53 

independent pathways (34, 35). Consistent with this finding, our sRNA/mRNA sequencing 

data revealed a strong expression correlation (downregulation of expression) between 

snord114-23/snord114-26 and MEG3 (rs>0.8) (Fig. S5b). Whether these imprinted 

snoRNAs have specific biological functions distinct from their host gene in malignant 

transformation needs to be further evaluated.

In conclusion, the 35 paired samples analyzed in this study serve as a training set that helps 

to identify sRNA signatures for metastatic and advanced CRC. To strengthen our findings, 

these putative sRNA markers will be evaluated and potentially validated by an independent 

study with larger numbers of samples. The hope is that such ncRNAs and coding RNAs will 

be validated as biomarkers and therapeutic targets which will ultimately benefit patients.
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Statement of translational relevance

The precise molecular profiling of colorectal cancer (CRC) should facilitate development 

of better staging systems as well as identify targets for development of novel treatments. 

Our study focused principally on non-coding RNAs in the characterization of tumors at 

high stage and with metastases. We identified mitochondrial transfer RNAs (MT-tRNAs) 

as the top upregulated small RNAs (sRNAs) in high stage CRC and in CRC with defined 

metastases. We also found that small nucleolar RNAs (snoRNAs) downregulated in 

Prader-Willi syndrome (PWS), a metabolic disorder characterized by obesity (energy 

storage), were commonly downregulated in CRC. These findings indicate that a hallmark 

of tumor aggressiveness/progression pertains to energy storage and endowment of 

mitochondria with enzymes critical for oxidative phosphorylation, despite a shift to 

glycolytic metabolism in such tumors.
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Fig. 1. 
Identification of 10 most up/down regulated sRNAs between tumors with metastasis (Met+) 

and without metastasis (Met−). All 35 tumors were grouped into Met+ and Met−, T/N ratios 

were obtained, and log2 ratios of LN positive /negative ratio were sorted from high to low 

and plotted. (a) Six MT-tRNAs were among top 10 expressed sRNAs. The difference in the 

average ratio of the top 10 sRNAs expressed between Met+ and Met− tumors was highly 

significant, (P=0.00685 paired t-test). (b) Identification of most up regulated sRNAs by 

tumor stages. Tumors were grouped according to stage (T1, T2, T3 and T4) and the log2 

ratios (T1/N1, T2/N2, T3/N3 and T4/N4) were obtained and plotted. Expression in stage 4 

tumors differed significantly from all other stages: stage 1 (P<0.0001). There were no 

differences among stages 1, 2 and 3 (P>0.06) (ANOVA). (c) 10 snoRNAs were among the 

10 most down regulated sRNAs in LN/LV positive tumors but not statistically significant 

(P=0.364) by student t- test. (d) Nine snoRNAs were among the 10 most downregulated 

sRNAs in stage 4 tumors. Stage 4 differed significantly from stage1/2/3 (P<0.0458) and 

stage1/2/3 had no significant difference among them (P>0.22) by ANOVA. (c) and (d) were 

plotted as –log2 ratio. (e)Hierarchical unsupervised clustering analysis of 6 MT-tRNAs/2 
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snoRNA expression RPKMs in 35 CRC pairs. Met+ tumors tended to cluster at higher 

expression side of the map. (f) Hierarchical unsupervised clustering analysis of mRNA 

expression of 11 markers associated with metastatic tumors by RPKMs in 14 CRC pairs. 

This 11-coding gene signature grouped T14/T15 together and separated all tumors from 

normal samples. Red arrows indicate Met+ tumor samples. Red and green bars delineate 

tumors from normal controls. Red in the heatmap indicates an expression level above the 

mean in all samples and blue indicates expression levels lower than the mean of all samples. 

(g) 3D PCA analysis of 6 MT-tRNAs/2 snoRNA (same sRNAs as in Fig. 1e) in 35 CRC 

pairs. Four Met+ tumors (T8LN, T14LN, T15LN, T26LN) (boxed) and 2 Met− tumors (T12, 

T13) were clearly separately from remaining tumors and normal controls.
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Fig. 2. 
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(a) Nine upregulated and 1 downregulated miRNAs correlated with MT-TF. (b) Five top 

positive and negative correlated miRNAs with snord12B. Five top positive and negative 

correlated mRNAs for MT-TF (c) and snord12B (d). This figure was summarized from 

Information S2. Positive correlated genes are represented by brown oval dots and negative 

correlated genes are represented by blue oval dots. The correlation coefficient value for each 

gene pairs was showed and bigger dots had stronger correlation.
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Fig. 3. 
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(a) Hierarchical unsupervised clustering analysis of the selected 16 anti-oxidative stress 

enzymes in 14 CRC pairs. All tumors and 2 normal controls (N8, N14) had downregulation 

of anti-oxidative stress pathway. (b) Hierarchical unsupervised clustering analysis of the 

selected 13 hypoxia induced upregulated miRNAs in 15 CRC pairs. Only one tumor (T5) 

was grouped with normal samples. (c) mRNA expression profiles of hypoxia upregulated 

IL8 (p=0.005) and hypoxia downregulated GPD1L (paired t-test: p=2.6-07E) in 14 CRC 

pairs. (d) Hierarchical unsupervised clustering analysis of 3 SIRT mRNAs in 14 CRC pairs. 

All tumors had lower mRNA levels of 3 SIRT and were separated from normal controls. (e) 

Hierarchical unsupervised clustering analysis of the 6 glycolytic enzyme mRNAs in 14 CRC 

pairs. All tumors had higher mRNA levels of glycolytic genes and were separated from 

normal controls. (f) Hierarchical unsupervised clustering analysis of the 7 TCA cycle 

mRNAs in 14 CRC pairs. Twelve of 14 tumors had lower mRNA levels of TCA cycle genes 

were separated from normal controls. (g) Hierarchical unsupervised clustering analysis of 

the 3 pentose phosphate pathway (PPP) mRNAs in 14 CRC pairs. All tumors had high 

mRNA levels of 3 PPP enzymes and were separated from normal controls. Red and green 

bars delineate tumors and normal controls, respectively. Red in the heatmap indicates an 

expression level above the mean in all samples and blue indicates expression levels lower 

than the mean of all samples. The clustering analysis was based genes’ RPKMs.
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