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Special Section

Big data are data “whose scale, diversity, and complexity 
require new architecture, techniques, algorithms, and analyt-
ics to manage it and extract value and hidden knowledge 
from it.”1 As reported in our recent review, diabetes manage-
ment may gain advantages from the big data revolution at 
least in 3 related research directions: clinical data mining on 
large data collections, home monitoring and distributed data 
management, and monitoring patients’ behavior and the 
impact of environmental factors.1

In this article we show a case study aimed at jointly ana-
lyzing clinical, administrative, and environmental data of a 
cohort of around 1.000 patients, with the goal of unraveling 
potential spatiotemporal correlations between HbA1c and air 
pollution, as derived from satellites images.

The work has been carried on within the EU-funded 
MOSAIC project. Mosaic aims at providing new analytics 
to support the diagnosis and the follow-up of type 2 diabe-
tes mellitus (DM) patients, so to improve their character-
ization and to help in evaluating the risk of developing 
complications related to type 2 DM (T2D). The project 

involves ten clinical and technical partners, from five 
European countries.

Within the EU funded MOSAIC project, we have created 
a data warehouse (DW) that integrates clinical information 
of 1.000 diabetic patients treated by the Fondazione Salvatore 
Maugeri (FSM) hospital in Pavia with the data gathered for 
administrative purposes (including visit prescriptions, drug 
purchases, hospital admission and discharge codes) by the 
local health care agency of Pavia. The DW provides a com-
prehensive time-oriented view of the individual patients’ his-
tories.1,2 One of the interesting features of the MOSAIC data 
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Abstract
A very interesting perspective of “big data” in diabetes management stands in the integration of environmental information 
with data gathered for clinical and administrative purposes, to increase the capability of understanding spatial and temporal 
patterns of diseases. Within the MOSAIC project, funded by the European Union with the goal to design new diabetes 
analytics, we have jointly analyzed a clinical-administrative dataset of nearly 1.000 type 2 diabetes patients with environmental 
information derived from air quality maps acquired from remote sensing (satellite) data. Within this context we have adopted 
a general analysis framework able to deal with a large variety of temporal, geo-localized data. Thanks to the exploitation of 
time series analysis and satellite images processing, we studied whether glycemic control showed seasonal variations and if 
they have a spatiotemporal correlation with air pollution maps. We observed a link between the seasonal trends of glycated 
hemoglobin and air pollution in some of the considered geographic areas. Such findings will need future investigations for 
further confirmation. This work shows that it is possible to successfully deal with big data by implementing new analytics and 
how their exploration may provide new scenarios to better understand clinical phenomena.
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sets is that, thanks to the information derived from secondary 
data, patients’ addresses are associated to precise municipal-
ity codes. Such geo-referencing features open the possibility 
to connecting environmental data to the clinical ones.

The join analysis of environmental and health-related 
information has been conceptualized as the Exposome.3 It 
has been recognized that, although expanding biomedical 
research capabilities, the combination of these wide-ranging 
data sources requires innovative approaches not only in data 
analysis but also in the visualization of their results.

Several epidemiological studies had investigated the asso-
ciation between air pollution and diabetes from different per-
spectives, and some of them have been recently reviewed.4-6 
Among these studies, some of them are focused on glucose 
control and on diabetes-related complications than in the 
onset or the mortality rate of the disease.7,8 Another recent 
study9 shows a partly consistent link between long-term 
exposure to air pollution and the risk of T2D. The authors 
highlight that studies of air pollution exposure and T2D 
development have generated some significant association 
findings but also inconsistent results, maybe due to subpopu-
lations and geographic heterogeneity. However, in evaluating 
the methods applied by previous studies, it become clear that 
possible enhancements to determine whether environmental 
factor are causally related to the onset of T2D or T2D meta-
bolic control are related to the need of:

•• Retrieving more evidence from longitudinal studies—
take into account temporal aspects and fluctuations in 
chronic populations followed for several years/during 
the disease arise and progression

•• Defining finer-scale models of air pollution

Our work, leveraging on the MOSAIC DW and on big-data 
enabled approaches to analyze satellites images, moves 
along the direction of improving the quality of clinical and 
environmental data analysis.

In our analysis we compute the mean HbA1c of each geo-
graphic area and evaluate its relation with air pollution. Since 
air pollution is a time-dependent variable, that is, it certainly 
depends on seasons and, in case of industrial pollution, on 
cycles of production, we performed a dynamic study of the cor-
relation of glycemic control with air pollution. Hence we did 
not expressly focus on variability, but rather on the correlation 
between monthly behavior of glycemic control (measured as 
the HbA1c mean) and air pollution metric (estimated by remote 
sensing analysis). As also glycemic control may have a sea-
sonal component, to verify if this correlation exists, we esti-
mated and then removed the HbA1c seasonal components.

Data and Methods

Data and Population

The MOSAIC data set gathers two main data streams, previously 
collected for clinical and management purposes from 2009 to 

2013. Clinical data from the FSM hospital consisted of demo-
graphic information (gender, birth date, time from diagnosis) 
physical examinations (BMI, blood pressure), and laboratory 
data, including HbA1c measurements and lipid profile. 
Administrative data include patients’ address, hospital admission 
and discharges, ambulatory encounters, and drug purchases.

We focused our analysis on the inhabitants of the Pavia 
Province, which is the area managed by the Local Health 
Care Agency.10 From the original MOSAIC cohort of 1020 
T2D patients, we selected a subpopulation of 840 patients, 
for whom their addresses correspond to the considered geo-
graphic area. The Pavia Province is usually divided (for 
administrative and geographical reasons) into three main dis-
tricts (Pavese, Lomellina, and Oltrepo), which in turn are 
divided into nine counties. Figures 1a and 1b show Pavia 
Province and its partition into counties.

Within this context, we examined whether HbA1c levels of 
the studied population showed seasonal fluctuations and, in 
the case these variations were significant, if they are correlated 
to air pollution measurements as derived from satellites data.

Spatiotemporal Scales

The first step in the analysis was to tackle heterogeneous 
and diverse dimensionalities of the data streams, to use them 
in a common analysis framework. Compared to traditional 
cross-sectional studies, this phase was particularly challeng-
ing as we studied the relationship between variables evolv-
ing during time. Both HbA1c and air pollution are strongly 
time-dependent. On one hand, chronic patients are likely to 
evolve through several disease complexity levels, on the 
other hand, pollution levels may change due to land trans-
formation, like building new residential areas or changes in 
industrial strategies.

Therefore, one of the main efforts was to define the level of 
detail through which derive meaningful patterns and observe 
events of interest. We considered temporal and spatial aspect 
of clinical and satellite data. Table 1 shows the dimensionali-
ties of the two data streams, from fine scale to coarse scale.

In this context, we selected an approach able to balance 
aggregated data (over the whole geographic area; for the entire 

Figure 1. Pavia Province: satellite map (a) and counties (b).
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observation period) and punctual data (a pixel value; a single 
HbA1c measure taken in a certain day). This approach is based 
on the detection of seasonal variations within counties.

HbAc Longitudinal Analysis

Once geographic boundaries and temporal scales were defined, 
we calculated average HbA1c values in each county for each 
year, to assess glycemic control seasonal variations. Differently 
from other studies11-14 aimed at providing evidence of cyclic 
variations in glycemic control in the whole population, the 
main focus of our approach was to assess seasonal Hab1c vari-
ability within each county. We therefore calculated mean 
HbA1c values grouped by seasons in each county population. 
As results, seasonal Hab1c levels of the nine geographic areas 
were defined for each year from 2009 to 2014.

To retrieve significant fluctuations of HbA1c and select the 
patterns to further investigate, we performed a mixed effect 

analysis (implemented in the R package; http://cran.r-project.
org/web/packages/lme4/index.html).15 The applied methods 
allowed selecting significant (P value < .05) HbA1c seasonal 
geo-localized variations during the observation period.

HbA1c Time-Series Analysis

As already stated, the main aim of this work is to select the 
counties showing higher HbA1c variations in specific years. 
To separate the time series of the counties from the HbA1c 
seasonal component that is present in the entire province,  
we applied the additive model of seasonal decomposition 
procedure.16,17 From un-aggregated time series we extracted 
monthly variations of HbA1c profiles (Figure 2). The extrac-
tion of seasonal adjustment factors allowed identifying 
months with peaks. Consequently, original time series of 
each county were adjusted and smoothed by removing this 
factor.

Table 1. Spatiotemporal Granularities Schema.

Finer granularity → Coarser granularity

Spatial Clinical data Municipality Districts County Pavia Province
Satellite data Pixel Districts County Whole world

Temporal Clinical data Months (visit frequency) Seasons 10 years
Satellite data Weeks (satellite cycles) Seasons 5 years

Figure 2. Time series decomposition and monthly factor for the whole data set (Pavia Province, 2009-2014). X-axis indicates years, 
y-axis the monthly mean value of HbA1c.

http://cran.r-project.org/web/packages/lme4/index.html
http://cran.r-project.org/web/packages/lme4/index.html
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This procedure was meant to reduce the effects that are 
present every year and independently from the specific 
county; for example, the December month has an additive 
seasonal component of nearly 8 mmol/mol, showing the pos-
sible effect of lack of exercise maybe due to the autumn sea-
son and worsening of diet due to the winter period in the 
whole population.

Air Pollution Satellites Maps

The correlation between the presence of black particulate and 
the recorded temperature can be thoroughly characterized by 
radiance processes that affect the energy transmission 
throughout the atmosphere. Specifically, a pollution layer 
delivers a decrease in the atmospheric transmission factor. 
This effect impacts the thermal infrared acquisition, since the 
solar heating is decreased as well. Consequently, the emitted 
radiance is lower, that is, the signal recorded by the sensor is 
lower. Simultaneously, the pollution layer absorbs the emitted 
radiance, that is, causes a strong impoverishment of the 
energy that is radiated upward. Hence, the aforementioned 
physical processes contribute to outline the correlation 
between the increase of pollution and the decrease of appar-
ent temperature. Then, we assume that pollution plays a key 
role in the thermal pattern of a remotely sensed scene, that is, 
exploit the air quality maps from the aforementioned images.18

Several models have assessed the magnitude of these pro-
cesses and their effects.19 Collecting the data over the thermal 
infrared band and plotting them with reference to the black 

particulate concentration as reported by ground stations, it is 
apparent as the physical processes that affect the radiance 
transmission and absorption drive the correlation between air 
pollution and temperature records. Specifically, the energy that 
is scattered by the instantaneous field of view is used before 
any image preprocessing is employed, that is, the contribution 
provided by the environment is fully considered. The aforesaid 
reflectance records are called raw counts. Moreover, to provide 
a thorough and reliable characterization of the aforementioned 
interplay, while avoiding the contribution delivered by other 
environmental pollutants, the concentration of particulate mat-
ter with aerodynamic diameter smaller than 10 μm (ie, PM10) 
is considered. Hence, taking into account the overall pattern of 
the raw counts thermal signal as a function of black particulate 
concentration, a polynomial fitting model has been imple-
mented to estimate the air quality of the scene.18

On the other hand, to match the region of the remotely 
sensed data with the Pavia second order administrative area, 
we implemented spectral analysis throughout the years 2009-
2014. Specifically, to achieve the air quality maps, the data 
acquired by LandSat L8 mission by means of operational 
land imager (OLI) and thermal infrared sensor (TIRS) have 
been considered. Furthermore, the Pavia second order 
administrative area is spread over a region of 2968.64 km2 in 
northwestern Italy; it counts 189 municipalities.

We collected 35 LandSat images in the above-mentioned 
temporal interval over this test location, where each LandSat 
image consists of 2800 × 2800 pixels and has a 30 m spatial 
resolution. Then, for each temporal series we considered the 

Figure 3. Raw counts of the thermal infrared data of LandSat L8 images acquired over path 194 row 29 orbit on the 4 seasons in the 
2009-2014 interval as a function of the black particulate PM10 concentration as recorded by the Pavia second order administrative 
area ground stations (located in Pavia, Voghera, Vigevano, Parona, and Sannazzaro de’ B.). Polynomial fitting between black particulate 
concentration and raw counts of the thermal infrared imagery is also reported: its confidence coefficient R2 reached the value of .9.
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thermal infrared signals acquired by LandSat 8 over the areas 
covered by the ground probes that have been taken into 
account. Then, we have been able to draw a polynomial rela-
tionship between black particulate concentrations and sensed 
reflections. Hence, for each pixel in every temporal series, 
we apply the polynomial function resulting from the afore-
mentioned fitting process to estimate the air quality, which 
has been quantized on 50 levels over the black particulate 
concentration estimate.18-20

Figure 3 reports the thermal infrared raw counts of the 
images collected on the four seasons in the 2009-2014 interval 
as a function of the black particulate PM10 concentration as 
recorded by the aforementioned ground stations that are 
located in Pavia and 4 towns within its second order adminis-
trative area (ie, Voghera, Vigevano, Parona, Sannazzaro de’ 
B.). Such area is grouped for health care purposes into three 
districts, Pavese (including Pavia), Lomellina (comprising 
Vigevano, Parona and Sannazzaro de’ B.), and Oltrepo’ 
(including Voghera). Apparently, Figure 3 shows how the 
black particulate concentration impacts on the recorded reflec-
tance signals according to the aforementioned thermal infrared 
effects provided by air pollution. Thus, it is possible to infer air 
quality maps by properly processing the remotely sensed 
images according to the scheme that has been previously intro-
duced. Specifically, we aim at characterizing the air quality of 
the given scene according to the quantization that is proposed 
at the bottom of Figure 3. Finally, Figure 3 displays also the 
polynomial fitting between black particulate concentration 
and raw counts provided by remotely sensed thermal infrared 
imagery as a solid black line. It is worth to note that the afore-
mentioned fitting can be considered as very accurate and reli-
able, as its confidence coefficient R2 reached the value of .9.

Results

Characteristics of Studied Population and 
Counties

Tables 2 to 4 report the basic characteristics of the patients taken 
into consideration in the 5 years period, including sex, age, time 
from diagnosis, BMI, HbA1c, distribution per residence address, 
and values of HbA1c and PM10 per county. It is possible to 
notice an uneven distribution of sex and patient distribution in 
the districts and a very slight worsening of the clinical condi-
tions. Mean HbA1c and Air pollution values vary within the 
counties, while there is no apparent correlation between the two.

Significant HbA1c Variations and Correlation 
With Air Pollution

After having applied time series decomposition methods to the 
data of the whole area, and having removed the shared season-
ality factors, we ran the mixed effect model to select those 
counties and years showing significant HbA1c fluctuations 
among seasons. The selected counties and years are shown in 
Table 5. Subsequently, we obtained air quality values and 

maps from the LandSat images using the same spatiotemporal 
scale. Figure 4 shows the results for years 2011 and 2012.

Table 2. Population Characteristics at Baseline and Follow-Ups.

Baseline (2009)
Follow-up  

(2009-2014)

Mean SD Mean SD

BMI 29.31 4.84 29.68 5.25
HbA1c (mmol/mol) 52.44 12.10 54.47 12.15
Age, years 63.86 9.94 65.32 9.92
Time from 

diagnosis, years
8.92 8.80 9.66 8.61

Table 3. Population Characteristics at Baseline.

Follow-up (2009-2014), 
840 pts

Gender (%)
Female 40.96
Male 59.04
Smoking habit (%)
Yes (current and former) 51.08
No 48.92
Residence address (%)
Pavese 69.05
Lomellina 13.33
Oltrepo 17.62

Table 4. Air Pollution Values in the Counties.

District County

Mean HbA1c 
values  

(mmol/mol)

Mean air 
pollution values  
(PM10 µg/m3)

Pavese Certosa 53.26 25.17
Pavese Corteolona 55.11 24.83
Pavese Pavia 53.75 25.13
Lomellina Garlasco 56.70 27.25
Lomellina Mortara 50.93 23.78
Lomellina Vigevano 62.66 20.77
Oltrepo Broni 60.30 25.43
Oltrepo Casteggio 54.56 25.71
Oltrepo Voghera 57.70 20.91

Table 5. Counties and Years for Which Mean HbA1c Seasonal 
Values Were Significantly Different From the Mean.

District County Year P value

Pavese Certosa 2011 .00088
Pavese Certosa 2012 .00034
Pavese Pavia 2011 .00005
Pavese Pavia 2012 .00009
Lomellina Garlasco 2011 .00046
Oltrepo Casteggio 2012 .00921
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The next steps of the analysis were devoted to compare 
these finding in each area and period of interest to detect pos-
sible correlations between Hb1c variations and changes in air 
pollution. In particular, we wanted to evaluate if, in certain 
counties, notable seasonal fluctuations of HbA1c can be cor-
related with the air pollution pattern in a certain year.

We found correlations in all counties reported in Table 4 
(Certosa, Pavia, Garlasco, and Casteggio). In the following 
we will detail the results obtained in Pavia County, which is 
the one with the largest number of patients, since it is where 
the FSM hospital is located. Furthermore, Pavia County has 
the most homogenous geography.

Table 6 shows the P values of the HbA1c patterns calcu-
lated through the mixed effect model test for each year as 
well as the correlation between the HbA1c mean seasonal 
values and seasonal air pollution.

Once the seasonal component has been removed, it is nec-
essary to understand if there are temporal patterns in both 
HbA1c and air pollution, and if these temporal pattern are 
still correlated.

Figure 5 shows that when there are significant temporal 
patterns in the residual HbA1c, such patterns are correlated 
to air pollution, and that the more this temporal pattern are 
significant the higher is the correlation.

As an example, we can see (Figure 6) that in Pavia County 
during 2011 HbA1c and air pollution values followed the 
same trend:

•• HbA1c, compared with the year mean value (54.05 
mmol/mol), shows higher values during winter, lower 

values in spring and fall, and slightly higher values in 
summer.

•• Air pollution (on a 0-50 scale), compared with the 
year mean value (27.5 mmol/mol), shows the same 
trend.

Discussion

It is of course important to highlight that the analysis 
shown in this article is a proof of concept. In particular, we 
have clearly shown that, thanks to data availability and big 
data technologies, it is now possible to jointly study het-
erogeneous data, such as health care and air pollution 
information extracted from satellites. This provides an 
unprecedented opportunity to improve our understanding 
of phenomena by extracting unseen temporal and spatial 
correlations.

In the case study taken into consideration, we hypothesize 
the presence of a relationship between the HbA1c seasonal 
patterns and air pollution patterns in some areas of the Pavia 
Province. Such hypothesis has some clinical justifications,8 
although the evidence supporting it needs further confirma-
tion. The analysis of the data carried on in the Pavia Province 
certainly supports the presence of spatiotemporal correlation 
patterns.

We are of course aware of the possible biases that this 
approach may entail:

1. As we based our analysis on retrospective data 
derived from periodic visit patients underwent, we 

Figure 4. Air quality maps for 2011 and 2012. The same air quality color map in Figure 3 applies here.
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Figure 6. HbA1c and air pollution trends in Pavia County 
during 2011. The air pollution estimates are delivered in terms 
of a digitalized scale retrieved from the air quality class metric in 
Figure 3 as quantized in 50 intervals.

don’t have repeated measures for each subject for 
each season (1 single measure of each patient in each 
season) and there are possible confounding effects 
due to scheduled visits for more complicated patients; 
moreover, the areas under consideration have differ-
ent population densities. Other confounding effects 
may derive from the treatments to which the chronic 
population is exposed and from patients’ compliance 
to therapies.

2. HbA1c values represent the summary of the 
patients’ glucose metabolism in the previous 
months. Therefore, the average seasonal values 
include a delayed clinical effect that causes an 
overlap between seasons. As such, the correlations 
would need to be verified with a larger population 
and testing also cross-correlation indexes on a time 
continuous scale.

Conclusions

The availability of large data collections concerning long-
term monitoring of diabetes patients is a strong push toward 
the definition of “diabetes analytics” platforms. While sev-
eral solutions are now available to interpret home-monitor-
ing data, in particular in type 1 diabetes, there is need of 
defining new methods and tools able to extract useful infor-
mation from large sets of heterogeneous information, such as 
clinical, administrative and environmental data. Rather inter-
estingly, such information may be readily available by com-
bining the content of electronic medical records with open 
data, such as satellites images. In this article we have shown 
an example of large-scale diabetes analytics, which can be 

Figure 5. HbA1c pattern P values (in log scale) and their correlations with seasonal air pollution patterns.

Table 6. Results of Mixed Effect Model Analysis for Each Year in 
Pavia County and Correlation of HbA1c and Air Quality Values.

Year HbA1c patterns
HbA1c air quality 

correlation

Pavia 2009 n.s. –.029
Pavia 2010 <.05 .66
Pavia 2011 <<.01 .94
Pavia 2012 <<.01 .81
Pavia 2013 <.01 .83
Pavia 2014 ns .37
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exploited to generate interesting hypotheses as well as to 
highlight temporal and spatial patterns in diabetes control. 
Future steps will involve the definition of software tools and 
control dashboard that will include in the analytic platforms 
advanced visualization solutions for the benefit of health 
care providers and decision makers.
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