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Special Section

Over 20 million US adults have type 2 diabetes (T2D); prev-
alence has more than tripled since 1990.1,2 Prediabetes, an 
asymptomatic state in which blood glucose concentrations 
are elevated but lower than diagnostic thresholds, confers 
high risk for development of T2D. Previous studies have 
reported demographics, comorbidities, clinical measures, 
family history, lifestyle, and anthropomorphic measures may 
be associated with progression.3 Further elucidation of the 
factors that drive progression to prediabetes/diabetes would 

be valuable in characterizing and intervening on at-risk 
patients. Prevention and clinical management of patients on 
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Abstract

Background: Application of novel machine learning approaches to electronic health record (EHR) data could provide 
valuable insights into disease processes. We utilized this approach to build predictive models for progression to prediabetes 
and type 2 diabetes (T2D).

Methods: Using a novel analytical platform (Reverse Engineering and Forward Simulation [REFS]), we built prediction model 
ensembles for progression to prediabetes or T2D from an aggregated EHR data sample. REFS relies on a Bayesian scoring 
algorithm to explore a wide model space, and outputs a distribution of risk estimates from an ensemble of prediction models. 
We retrospectively followed 24 331 adults for transitions to prediabetes or T2D, 2007-2012. Accuracy of prediction models 
was assessed using an area under the curve (AUC) statistic, and validated in an independent data set.

Results: Our primary ensemble of models accurately predicted progression to T2D (AUC = 0.76), and was validated 
out of sample (AUC = 0.78). Models of progression to T2D consisted primarily of established risk factors (blood glucose, 
blood pressure, triglycerides, hypertension, lipid disorders, socioeconomic factors), whereas models of progression 
to prediabetes included novel factors (high-density lipoprotein, alanine aminotransferase, C-reactive protein, body 
temperature; AUC = 0.70).

Conclusions: We constructed accurate prediction models from EHR data using a hypothesis-free machine learning 
approach. Identification of established risk factors for T2D serves as proof of concept for this analytical approach, while novel 
factors selected by REFS represent emerging areas of T2D research. This methodology has potentially valuable downstream 
applications to personalized medicine and clinical research.
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the diabetes spectrum could have a major impact on personal 
and population health, and health care resource utilization 
and expenditures.

The digitalization of clinical records has provided a 
rich source of high-dimensional data, and presents a 
unique opportunity for powerful machine learning 
approaches to identify patterns and predict outcomes. 
Several diabetes-related prediction models have been 
reported, though inconsistency remains—model-building 
approaches, effect estimates, and the overall accuracy and 
validation of these prediction models vary to the point that 
consensus has not been reached.4-6 Whereas prediction 

models are generally constructed in specialized cohorts, 
with variable selection based on prior publications and/or 
investigator preconceptions, a hypothesis-free machine 
learning approach could lead to novel insights into clini-
cal progression and care.7,8 Specifically, accurate predic-
tions of progression to T2D, based on real-world data, 
would have distinct value for caregivers and patients with 
modifiable risk factors. Our objective was to identify 
patient characteristics that predict progression to predia-
betes and T2D in a US adult population, as a practical 
application of pairing machine learning with electronic 
health records (EHRs), to characterize disease progres-
sion and identify opportunities for intervention.

Methods

Data

The source data consisted of clinical records for US adults, 
2007-2012, provided by Humedica, Inc (www.humedica.
com). Available data included demographic information, 
ICD-9 codes, prescriptions, laboratory values, and vital 
signs. Data were deidentified and determined by an inde-
pendent institutional review board as nonhuman subjects 
research. Patients eligible for the study population (N = 
24 331) were adults belonging to any integrated health care 
delivery network (IDN), without type 1 diabetes, entering 
the database with blood glucose measures in the low-risk 
(normoglycemic) range (Figure 1). The Humedica data-
base includes over 20 IDNs, distributed across all regions 
of the United States. The exclusion of non-IDN patients 
(consisting of patients receiving care from various multi-
specialty, ambulatory service providers), though substan-
tial, was done to ensure that the record of health care 
interactions for each study patient would be as complete as 
possible. Data for non-IDN patients were set aside and 
used as a testing set for prediction models constructed 
within the study population.

Modeling Approach

We evaluated 3 progression models: (1) normoglycemia to 
T2D, (2) normoglycemia to prediabetes, and (3) prediabetes 
to T2D. An incident T2D event was defined as the first 
observed ICD-9 diagnosis code specific to T2D. Patients 
were considered to have transitioned to prediabetes on the 
earliest date corresponding to multiple (≥2) consecutive glu-
cose measures qualifying as prediabetes, according to 
American Diabetes Association and World Health 
Organization criteria.9,10 Specifically, the prediabetes thresh-
old was defined as fasting glucose ≥110 mg/dL, 2-hour oral 
glucose tolerance ≥140 mg/dL, random glucose ≥140 mg/
dL, or hemoglobin A1c (HbA1c) ≥5.7%. Models for progres-
sion from prediabetes to T2D were restricted to patients who 
transitioned to prediabetes as described.

Figure 1.  Flow diagram describing restriction criteria for analytical 
study population applied to Humedica electronic health records 
data sample, 2007-2012. BG, blood glucose; IDN, integrated 
delivery network; UACR, urinary albumin to creatinine ratio.

www.humedica.com
www.humedica.com
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Variables

The outcomes of interest were prediabetes or T2D. 
Covariates included demographics (age, gender, race, 
region, insurance status, 3-digit zip-code-based average 
annual household income and education level); laboratory 
values (hemoglobin A1c, fasting glucose, 2-hour oral glu-
cose tolerance, random glucose, triglycerides, total biliru-
bin, alanine aminotransferase [ALT], creatinine, low-density 
lipoprotein [LDL], high-density lipoprotein [HDL], 
C-reactive protein [CRP]; clinical observations (heart rate, 
blood pressure, body temperature, body mass index [BMI]); 
ICD-9 diagnosis codes (grouped using Agency for 
Healthcare Research and Quality Clinical Classifications 
Software);11 and prescriptions (National Drug Codes, clas-
sified using the Wolters Kluwer Medi-Span Generic Product 
Identifier groupings; www.medispan.com). The analysis 
data set consisted of 442 variables. Patients with missing 
values were not removed; instead variables were modeled 
as discrete with a missing category, where applicable. This 
approach was chosen due to its comparability to imputation 
methods,12 the ability to retain data while considering many 
variables (vs a complete-case analysis), and for practical 
application in clinical assessments where information on 
key factors may be unknown.

REFS Bayesian Analytics Platform

We applied a novel analytic platform, Reverse Engineering 
and Forward Simulation (REFS™) to generate prediction 
models for progression to diabetes. REFS uses Bayesian 
inference to learn models directly from data, without pre-
specified hypotheses. Instead of a single model, REFS pro-
duces an ensemble of models sampled from the Bayesian 
posterior. The ensemble approach has several advantages—
applied rigorously, it significantly reduces the risk of over-
fitting, and provides a framework to estimate distributions of 
individual variable effects. As chosen from a prior sensitivity 
analysis, ensembles for this study consisted of 248 individual 
component models.

To produce each model in the ensemble, REFS scores the 
posterior probability of a vast number of putative models, 
using a maximum entropy structural prior as previously 
described.13 A model’s Bayesian score is approximated by 
marginalizing out the model parameters and applying the 
Bayesian Information Criterion, which penalizes complex-
ity. Since the space of possible models is too large to enumer-
ate, REFS uses a Markov Chain Monte Carlo approach to 
generate samples from the equilibrium distribution of mod-
els weighted by their score. Each subsequent evaluation cor-
responds to a small local transformation, such as adding or 
removing a single model term. To accelerate convergence, a 
simulated annealing approach was used to obtain samples 
from the desired posterior distribution. For further detail on 
REFS, we refer the reader to the appendix.

Prediction model ensembles, ß estimates, predicted 
probabilities, and area under the (receiver operating charac-
teristic) curve (AUC) estimates were generated using 
REFS. Supplemental analyses, including Kaplan–Meier 
plots and multivariable Cox regression models, were con-
ducted using R (version 2.15.0). Cox model estimates are 
reported as hazard ratios (HRs) with 95% confidence inter-
vals (CIs). Effect estimates were adjusted for factors 
selected by REFS, in addition to available diabetes risk fac-
tors identified a priori.3,4

Results

We evaluated 24  331 eligible patients for progression out-
comes. During follow-up, 15% (N = 3765) were diagnosed 
with T2D. Transition to prediabetes was observed in 46% of 
the study population. The rate of progression from normogly-
cemia to T2D was 4.72 events per 100 person-years; normo-
glycemia to prediabetes, 18.72 events per 100 person-years; 
prediabetes to T2D, 8.6 events per 100 person-years. 
Distributions of baseline characteristics by T2D status are 
listed in Table 1. Patients in the study population were likely 
to be female, Caucasian, and from the Midwest region. The 
distributions of T2D events suggested positive associations 
with: male gender, older age, African American race, South 
region, inconsistent insurance coverage, low income, hyper-
tension, obesity, higher blood glucose at baseline, high tri-
glycerides, and dyslipidemia (Table 1).

Consistent predictors for the 3 progression model ensem-
bles are summarized in Table 2. We first evaluated predictors 
in each REFS ensemble by identifying the proportion of 
models that include each factor (selection frequency). For 
progression from normoglycemia to T2D, factors that were 
selected in every component model included blood glucose 
(test-specific tertiles), hypertension, income, insurance sta-
tus, race, and triglycerides. Additional factors frequently 
selected were lipid disorders (97%), and systolic blood pres-
sure (77%). Those with high baseline blood glucose pro-
gressed to T2D nearly 3 times faster on average, relative to 
those in the lowest category (HR = 2.95, 95% CI: 2.69, 3.23; 
Table 2, Figure 2). We observed a dose-response relationship 
between triglycerides and progression to T2D (Table 2, 
Figure 2). Patients with hypertension (HR = 1.33, 95% CI: 
1.23, 1.44) or lipid disorders (HR = 1.18, 95% CI: 1.08, 1.29) 
progressed faster, and self-reported race (African American 
vs Caucasian, HR = 1.60, 95% CI: 1.47, 1.75) predicted pro-
gression to T2D (Table 2).

To evaluate predictive performance of the ensemble, we 
calculated AUC statistics. For the ensemble predicting pro-
gression from normoglycemia to T2D, AUC was 0.76, 
reflecting moderately strong accuracy in predicting T2D 
(Figure 3). To assess performance of the model outside of the 
training data, we tested the ensemble in a separate data set 
(the non-IDN population; N = 189 082). In this testing set, 
AUC of the ensemble predicting progression to T2D from 

www.medispan.com
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normoglycemia was 0.78, indicating consistency with the 
training data. For context, investigators of the Framingham 
Offspring Study reported an AUC of 0.72 for their “personal 
model” (consisting of variables that would generally be 
known to a patient, ie, age, sex, parental history of diabetes, 
BMI), and an AUC of 0.85 when clinical variables (oral glu-
cose tolerance, fasting insulin, CRP, and indexes indicating 
insulin sensitivity/resistance) were included.6 Our ensemble 
of prediction models exhibited comparable performance, 
using EHR data, even though some key predictors used by 
the Framingham investigators were not uniformly available 
(ie, family history of diabetes, waist circumference).

In addition, we generated individual diabetes risk distri-
butions for 2 patients with contrasting covariate profiles 
(Figure 4). Patient 59 was a 48-year-old Caucasian female 
from a high-income area (mean = $68 000/year), with a base-
line random glucose of 81 mg/dL, low triglycerides (73 mg/
dL), without hypertension or a lipid disorder. Her corre-
sponding 3.5-year risk of progressing to T2D ranged from 
6% to 10%, with a mean of 9.2%. Patient 5076 was a 46-year-
old African American female from a low-income area (mean 
= $32 000/year), with a baseline random glucose of 128 mg/
dL, high triglycerides (508 mg/dL), hypertension, and a lipid 
disorder. Her predicted 3.5-year risk of progressing to T2D 
ranged from 70% to 84% (mean = 77.0%). During follow-
up, patient 5076 progressed to T2D, while patient 59 did not.

A summary of the predictors of progression to prediabetes 
can be found in Table 2. Consistent with the T2D model, 
baseline blood glucose and insurance status were selected in 
every component model. Additional predictors of prediabe-
tes included age (100%), body temperature (100%), ALT 

Table 1.  Distributions of Selected Baseline Characteristics 
Among the Primary Study Population (N = 24 331), and 
Proportion Progressing to Type 2 Diabetes, Humedica Electronic 
Health Records Data Sample, 2007-2012.

Variable n (%)
Diabetes events, 

n (%)a

Gender
  Female 15 272 (63) 2220 (15)
  Male 9059 (37) 1545 (17)
Age (years)
  ≤30 2246 (9) 181 (8)
  31-45 4842 (20) 559 (12)
  46-60 7234 (30) 1305 (18)
  61-70 3659 (15) 805 (22)
  >70 6350 (26) 915 (14)
Race
  Caucasian 14 836 (61) 2181 (15)
  African American 3557 (15) 900 (25)
  Asian 505 (2) 74 (15)
  Other/unknown 5433 (22) 610 (11)
Region
  Midwest 22 362 (92) 3230 (14)
  South 1858 (8) 523 (28)
  West/Northeast 111 (<1) 12 (11)
Insurance status
  Commercial 11 317 (47) 1452 (13)
  Medicare 6822 (28) 779 (11)
  Inconsistent 5866 (24) 1491 (25)
  Uninsured/other 326 (1) 43 (13)
Average income (US$/year)
  <40 000 6021 (25) 1371 (23)
  40 000-55 000 13 877 (57) 1607 (12)
  >55 000 4433 (18) 787 (18)
Systolic blood pressure (mmHg)
  <90 87 (<1) 7 (8)
  90-119 4077 (17) 594 (15)
  120-139 4645 (19) 1045 (22)
  ≥140 2378 (10) 665 (28)
  Missing 13 144 (54) 1454 (11)
Body mass index (kg/m2)
  <18.5 93 (<1) 12 (13)
  18.5-24.9 1849 (8) 173 (9)
  25.0-29.9 2581 (11) 405 (16)
  30.0-34.9 1719 (7) 405 (24)
  ≥35 1562 (6) 445 (28)
  Missing 16 527 (68) 2325 (10)
Family history of diabetes
  No evidence 24 290 (>99) 3753 (15)
  Yes 41 (<1) 12 (29)
Hypertension
  No evidence 20 344 (84) 2543 (13)
  Yes 3897 (16) 1222 (31)
Lipid disorders
  No evidence 21 013 (86) 2852 (14)
  Yes 3318 (14) 252 (28)

Variable n (%)
Diabetes events, 

n (%)a

Blood glucose
  Low 8453 (35) 914 (11)
  Medium 9647 (40) 1616 (17)
  High 6231 (26) 1235 (20)
Triglycerides (mg/dL)
  ≤150 11 796 (48) 1749 (15)
  151-199 2341 (10) 542 (23)
  200-499 2257 (9) 589 (26)
  ≥500 127 (1) 34 (27)
  Missing 7810 (32) 851 (11)
High-density lipoprotein (mg/dL)
  <50 (female)/<40 
(male)

6108 (25) 1193 (20)

  50-59 (female)/40-59 
(male)

5653 (23) 1010 (18)

  ≥60 4573 (19) 707 (15)
  Missing 7997 (33) 855 (11)

aPercentages are row percentages, that is, the proportion of category-
specific patients with a T2D event.

 (continued)

Table 1. (continued)
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(99%), BMI (81%), CRP (78%), triglycerides (19%), and 
HDL (19%; Table 2). Specifically, positive dose-dependent 
associations with prediabetes were identified for age, base-
line blood glucose, BMI, and CRP. We also observed a nega-
tive association between rate of progression to prediabetes 
and HDL (Table 2). In addition, higher baseline body tem-
perature, Medicare coverage, and elevated ALT were associ-
ated with faster progression to prediabetes (Table 2). Of note, 
missingness of some variables (ALT, BMI, CRP, HDL, tri-
glycerides) appeared to be associated with progression 
(Table 2). Whereas many of the selected predictors are rec-
ognizable as established risk factors for diabetes, others 
(ALT, HDL, CRP, and body temperature) may be novel in 
that they represent plausible but still emerging areas of dia-
betes research and targets for intervention. Kaplan–Meier 
plots for time to prediabetes by these factors are displayed in 
Figure 5. The corresponding AUC for the ensemble 

predicting progression from normoglycemia to prediabetes 
was 0.70 (testing set, AUC = 0.72).

Table 2 also summarizes the prediction model ensemble 
for progression from prediabetes to T2D (n = 10  616). 
Hypertension, income, and insurance status were uniformly 
represented. Additional predictors included triglycerides 
(98%), heart disease (92%), cerebrovascular disease (73%), 
race (31%), and diastolic blood pressure (29%). Positive 
associations with progression from prediabetes to T2D were 
observed for hypertension, low income, triglycerides, and 
African American race. Whereas this baseline model ensem-
ble performed reasonably well in predicting progression 
within the training set (AUC = 0.71), it was not replicated in 
the testing set (AUC = 0.58). A possible explanation for this 
phenomenon could be a higher proportion of unspecified 
information on race in the non-IDN study population (51% 
vs 24%).

Figure 2.  Kaplan–Meier plots for time to T2D by selected (potentially modifiable) patient factors: baseline blood glucose measures, 
triglycerides, systolic blood pressure, and history of lipid disorders, Humedica electronic health records data sample, 2007-2012.
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Discussion

Using a hypothesis-free machine learning ensemble 
approach, we have constructed a series of prediction models 
that identify the patient factors most associated with progres-
sion to T2D in real-world EHR data. Despite inherent noise 
that generally afflicts such data, predictive accuracy was 
relatively strong. The ensemble for progression from normo-
glycemia to T2D showed high predictive value in particular, 
and was replicated in the testing data set. Performance of our 
models was comparable to prediction models that have pre-
viously been reported (range, 0.71 to 0.88), though a valida-
tion study conducted by Abbasi et al suggested that nearly all 
models considered had overestimated T2D risk.5 Given the 
size of our data sample, we expect that accuracy would be 
stable across external data sets, though further validation is 
warranted.

Although the REFS platform learns models directly from 
data without prespecified hypotheses, several patient factors 
considered to be established correlates of T2D were selected. 
Specifically, blood glucose measures, age, race, triglycerides, 
BMI, and blood pressure/hypertension have consistently been 

identified as risk factors for development of T2D, and were 
confirmed to varying degrees in our study.3 Identification of 
such factors serves to qualitatively validate both the analyti-
cal methods and the source data, while strengthening the body 
of evidence that these factors are mechanistically linked to 
diabetes progression. Conversely, other factors previously 
thought to associate with T2D were not replicated here. Some 
of these variables may not have been selected because they 
were not widely available (ie, family history, lifestyle fac-
tors); others may not have additional explanatory value once 
other factors are accounted for (ie, gender). We expect that 
more complete data on relevant covariates would further 
improve the accuracy of similar prediction models.

In addition to established risk factors, relatively novel 
predictors were also identified, particularly in prediabetes 
models. First, HDL was consistently selected throughout 
progressive iterations of modeling. Although HDL only 
appeared in 19% of primary ensemble models for progres-
sion to prediabetes, results from survival analysis suggested 
a moderate inverse relationship between HDL and rate of 
progression to prediabetes, including a 24% slower rate of 

Figure 3.  Receiver operating characteristic curves for accuracy of the REFS ensemble in predicting progression to diabetes (from 
normoglycemia) in the training and testing data sets, Humedica electronic health records data sample, 2007-2012.
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Figure 4.  Individual 3.5-year risk of diabetes for 2 selected patients, Humedica electronic health records data sample, 2007-2012.

progression among those within the highest level of HDL 
versus the (gender-specific) lowest HDL category. This find-
ing is consistent with emerging evidence for a role for HDL 
in diabetes pathophysiology, with several plausible mecha-
nisms of action having been proposed.14 An association 
between the B1B1 Taq1B genotype, which leads to marked 
decrease in HDL levels, and T2D has been reported (odds 
ratio, 1.83; 95% CI, 1.12, 2.99).15 In a post hoc analysis of 
the ILLUMINATE trial, a lower proportion of participants 
on atorvastatin plus torcetrapib (a drug that elevates HDL 
levels) developed T2D, relative to those on atorvastatin 
alone.16 This difference was only marginally significant (P = 
.09), likely due to few events. Taken together, HDL repre-
sents an intriguing opportunity for identification of individ-
ual diabetes risk and for clinical intervention.

Elevated ALT was also selected as a predictor of predia-
betes, associated with a 19% faster rate of progression. A 
hepatic enzyme, ALT is used as a biomarker to assess sever-
ity of liver dysfunction, and some investigators have sug-
gested a link with T2D. Vozarova et al reported a nearly 
2-fold increased hazard of diabetes associated with the 90th 
versus 10th percentile of ALT (HR = 1.9, 95% CI: 1.1, 3.3).17 
In a recent meta-analysis, investigators calculated a pooled 
adjusted relative risk of diabetes of 1.26 (95% CI: 1.14, 1.41) 
per standard deviation change in log-transformed ALT. 
However, after a statistical correction for publication bias 
was applied, this estimate became nonsignificant.18 Thus the 
role of ALT in diabetes is not yet established. ALT is a marker 

of nonalcoholic fatty liver disease, which has been associ-
ated with insulin resistance, therefore the connection is plau-
sible.19 Our findings suggest that the magnitude of the effect 
of ALT may be low, and may be unique in having a large 
enough sample size to detect this association.

Two other factors, CRP and body temperature, also 
emerged as predictors of prediabetes, although these mea-
sures were not consistently documented (6% and 11% respec-
tively). CRP, a marker of systemic inflammation, may be 
elevated in obese individuals, and has been linked to T2D. 
Investigators in the Rotterdam Study reported a 67% increased 
hazard of T2D in individuals with elevated CRP, consistent 
with our findings (>3 vs <1 mg/dL, HR = 1.63, 95% CI: 1.39, 
1.90), and estimated that one-third of diabetes in the Dutch 
population may be attributable to CRP.20 Evidence for a 
mechanistic role of body temperature in diabetes is currently 
limited. A recent study in a rodent model demonstrated that 
direct injection of insulin into the hypothalamus resulted in 
dose-dependent increases in core body temperature.21 As pro-
gressive declines in insulin sensitivity lead to greater levels of 
circulating insulin, a link between diabetes pathophysiology 
and higher core body temperature is plausible. Further 
research is warranted to establish the clinical significance of 
CRP and body temperature in diabetes.

Limitations of our study were primarily related to the avail-
ability of data. First, patients were not observed uniformly. 
Changes in status are not always recorded, and availability of 
clinical data itself may not be a random process. In some cases, 
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variables that are likely to be associated with diabetes (ie, fam-
ily history, smoking, adiposity measures) were not widely 
available in the data sample. For others (ie, BMI, CRP), avail-
able measures were not frequently updated. It is likely that a 
similar analysis in a more comprehensive data set would result 
in improved accuracy for resulting prediction models. Still, our 
prediction model ensembles performed strongly in an EHR 
sample that is representative of real-world clinical data. Last, 
interpretation of our baseline prediction models may be some-
what limited in that they were not designed to assume direct 
causality, and patient measures were not updated in follow-up.

Although specific to diabetes, our study illustrates the value 
of applying machine learning to identify and characterize risk 
factors for health care outcomes from EHR data. These meth-
ods could be especially valuable in contexts where disease 
processes or interventions are not well established. Last, our 
method of real-world data-driven modeling could have an 

impact on health care by identifying at-risk patients early 
enough to present opportunities for prevention and clinical 
management. For example, in this report we closely examined 
2 patients, and projected their individual risk profiles. 
Incorporation of personalized risk profiles such as these into 
standard clinical evaluation could have potential for increas-
ing the specificity and success of targeted interventions.

Conclusions

We constructed accurate prediction model ensembles for 
progression to T2D using a novel machine learning platform 
based on Bayesian mathematics and an extensive EHR data-
base. These results confirmed established risk factors for 
T2D and identified novel factors, for which roles in diabetes 
pathophysiology are plausible. Our approach has potential 
wide-ranging applications in several disease areas, and could 

Figure 5.  Kaplan–Meier plots for time to prediabetes by selected patient factors, Humedica electronic health records data sample, 
2007-2012.
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be developed into powerful tools for health care research, as 
well as for clinical applications related to personalized risk 
assessment and targeted interventions.

Appendix

Building Predictive Model Ensembles Using REFS

Model Space.  Modern “big-data” problems suffer from “the 
curse of dimensionality”: the number of variables is very 
large, and the dimension of the space of statistical models 
depends on it exponentially. This means that any statistical 
model is necessarily underdetermined, even if we have many 
observations. In this situation, even the best model has rela-
tively little explanatory power. A human expert could per-
haps handle several dozen models, but this is clearly not a 
scalable solution; and generating random models using pre-
determined hypotheses generally leads to bias and overfit-
ting. Instead, REFS aims to discover the data generating 
process by building models in a hypothesis-free way.

We start by defining the hypothesis space under consider-
ation. This should be a rich enough space to plausibly con-
tain models that are close to the “true” data generating 
process, but not so large as to become computationally 
intractable. The reverse engineering (RE) part of the REFS 
procedure explores this space, and the result is an ensemble 
of Bayesian predictive models. In the second stage, models 
are queried using forward simulation (FS), to produce pre-
dictions and study inference questions.

Specifically, consider a multivariate system X = (X
1
, . . . , 

X
N
), where each random variable may take on values from a 

discrete or continuous domain, and an outcome variable y. 
As our hypothesis space we choose a space of generalized 
linear models,22 where each model M = (M, Θ

M
) consists of 

an interaction form M and parameters Θ. The interaction 
form is a polynomial function in the covariates Xi, and it 
determines which covariates and which interactions between 
them are part of the model. In our current implementation we 
allow cross terms, but not higher order interactions. For a 
given interaction form M we denote by l(M) the total number 
of terms in M (linear and interactions), and by L the total 
number of possible terms and cross terms derived from X.

The interaction form M determines the design matrix for 
the generalized linear model M. The link function is chosen 
based on the type of the outcome; for binary outcomes for 
this study we use a logit link function. The parameters of the 
model are encoded by Θ.

Model Scoring.  Under the Bayesian framework, we are inter-
ested in the Bayesian posterior of a model M given data D:

	 P D P D P P DM P M
M

M M M| | |( ) ∝ ( ) ( ) = ( ) ( )∑ 	 (1)

	 P DM P DM P M dM M M| | |( ) = ( ) ( )∫ ,Θ Θ Θ 	 (2)

In (1), P(M) is the structural prior, encoding our assump-
tions about the structure of the interaction form (number of 
terms, interaction terms, etc) before seeing the data. We use 
the following maximum entropy prior with respect to the 
average number of terms in M,13,23 which also acts as a strong 
regularizer:

P M
L

l M
( ) ∝ ( )











−1

In (2), P(Θ
M

) is the parameter prior, encoding our assump-
tions about the parameters of the model given the interaction 
form. We use noninformative parameter priors when the inte-
gral (2) can be solved analytically.24 When a closed-form 
solution is not available, we may approximate the Bayesian 
integral via Schwartz’s Bayesian information criterion 
(BIC):25

− ( ) ≈ ( ) +log
( )

logP DM S M
M

nMLE|
κ
2

where S
MLE

 is the maximum log-likelihood, computed via an 
iteratively reweighted least squares (IRLS) method; κ (M) is 
the number of model parameters, also equal to the number of 
columns in the design matrix (and closely related, though not 
necessarily equal to, l(M)); n is the number of observations.

A more accurate approximation can be obtained follow-
ing Gull26 as follows. Once the MLE for Θ has been found, 
we use a Laplace approximation for the likelihood function. 
We choose a maximum entropy prior for Θ, while using the 
mean of the outcome y as a constraint. The result is a Gaussian 
prior, and the integral against the approximated likelihood 
function is analytic.

Model Sampling.  Since the space of models is combinatori-
ally large, the sum (1) cannot be evaluated in practice. To 
approximate it, we use a Monte Carlo method and build an 
ensemble of models representing a sample from the Bayes-
ian posterior.27-29 Strong signal in the data leads to low model 
uncertainty, since few models contribute meaningfully to the 
posterior. The variance in predictions obtained from the 
ensemble will therefore be low. Conversely, a weak signal 
leads to much broader posterior distributions. Thus, the 
ensemble method naturally provides a measure of the uncer-
tainty in the predictions we make. The details on the con-
struction of the ensemble are explained in the next section.

Each member of the ensemble consists of the interaction 
form M alone; the parameters Θ

M
 in (2) are integrated out as 

explained above. To produce the ensemble, the space of 
models is sampled using a Markov chain Monte Carlo 
(MCMC) method to generate samples from an equilibrium 
Boltzmann distribution π of candidate model structures 
from P(M|D).13,29 Each step in the Metropolis Markov chain 
corresponds to a small perturbation such as adding or delet-
ing a term from the model. Let q(M → M’) be the probabil-
ity of proposing the transition from a model M to M’. We 
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define the acceptance probability according to the Metropolis 
criterion,30

P Accept M M
M q M M

M q M M
→( )( ) = ( ) →

( ) →















’

’ ’

’
,

( )

( )
min 1

π

π

and the transition probability by p(M → M’) = q(M → M’)
P(Accept(M → M’)). It is now easy to check the detailed bal-
ance condition

π πM p M M
,
 = M

,
p M

,
M ,( ) →( ) ( ) →( )

guaranteeing that π is indeed the stationary distribution for 
the Markov chain.31

To accelerate convergence we use a simulated annealing 
procedure, where we apply the Metropolis method to a 
sequence of Boltzmann distributions with

Pr M Pr M D T S M Tj j( ) = ∝ − ( )( | , ) ( / ),exp

and decreasing annealing temperature Tj. Here,

S M P D M P M( ) = − − ( )  log log( | ) ,

where the first term is approximated as described in the pre-
vious section and P(M) is the structural prior. At each stage j 
the equilibrated samples from T

j
 initialize the Metropolis 

method at T
j+1

. The initial temperature is chosen sufficiently 
high that probability distribution over models is flat and 
there are no score barriers to the acceptance, whereas the last 
temperature is T = 1, where we are in fact sampling from the 
Bayesian posterior.

The cooling schedule for the simulated annealing is deter-
mined self-consistently from P(M|D,T) by maintaining a 
fixed overlap between P(M|D,T’) and P(M|D,T) where T and 
T’ are the current and next temperatures in the cooling sched-
ule. When P(M|D,T) is changing rapidly with T, this cooling 
scheduling takes small steps concentrating the sampling 
where the problem is most difficult. More precisely, we 
select T’ so that the overlap, defined as

Ω T T S S T T, ′( ) = − −( ) ′ −( )( )− −exp min
1 1 ,

is equal to a predetermined value, 80% in our implementa-
tion (note that Ω is a monotonic function of 0 < T’ ≤ T, with 
values in the interval [0, 1]). This process of maintaining 
overlap helps ensure that the sampling will be correct when 
T = 1 is reached.

Inference.  Once an ensemble of models has been produced, 
samples from the posterior distribution may be obtained by 
selecting a random model structure M and values for Θ

M
 

from the parameter posterior. Drawing a large number of 
samples, we readily derive estimators for various properties 

of the posterior. Namely, to estimate a property f of the pos-
terior, dependent on M = (M, Θ), we have

P f D
P D f

P D
( | )

( )
≈

( )
( )

∑
∑
M

M

M M

M

|

|

where the sum is over the posterior draws.13,27-29 A simple 
example is the recovery of training data: setting the values of 
input variables in the model to values in the training data set, 
and comparing them to the experimentally observed values. 
By holding out a portion of the data as a test set, we can 
obtain out-of-sample predictions and compare them to in-
sample results to ensure that no overfitting occurs.

A more interesting application for the analysis of the pos-
terior is given by the interventional derivative. For a continu-
ous covariate X, we can obtain samples from the posterior of 
y conditioned on X by drawing samples while holding X con-
stant. The response derivative is then defined as

βx
P y X x

x
=
∂ =

∂
( | )

For a categorical variable X taking values in {x
0
, x

1
, . . . , x

m
} 

we can instead compute the difference derivative

βij i jP y X x P y X x= =( ) − =| ( | )

These statistics and their distributions are a measure of the 
effect of a given covariate on the outcome in the full 
ensemble.
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