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Special Section

Imagine a day in the future when a person with diabetes 
arrives at a restaurant that she is visiting for the first time. As 
she is being seated, her smartwatch displays several recom-
mended menu items alongside suggested insulin dosing 
strategies and predicted postprandial glycemic responses. 
This automated guidance is based on real-time and historic 
data from her diabetes devices and health records, biometric 
readings from sensors in her clothing, and data from her 
smartphone; and personalized to her health and lifestyle 
goals that she recently set in consultation with her physician. 
How far in the future will this scenario be commonplace? 
Perhaps not as far as one might think—most of the elements 
already exist in some form, and current and emerging tech-
nologies are beginning to coalesce as a “digital ecosystem” 
in the diabetes management space. Similar to a biological 
ecosystem, defined as “a biological community of interact-
ing organisms and their physical environment,” the digital 
ecosystem of diabetes management involves hardware and 
software capable of collecting, transmitting, displaying, and 
interpreting data about the physiology, behavior, and envi-
ronment of the individual with diabetes. Vital to this digital 
ecosystem are the pathways by which data enter it and the 
sources of the data, which are the focus of this review.

The rapidly growing number of connected consumer tech-
nologies has given rise to the so-called Internet of things (IoT), 
defined by the International Telecommunication Union as “a 
global infrastructure for the information society, enabling 
advanced services by interconnecting (physical and virtual) 
things based on existing and evolving interoperable informa-
tion and communication technologies.”1 In principle, every 
“thing” in the physical world can be equipped with electronics 
and software that enable connectivity to the internet, and hence 
data can flow continuously between embedded systems/sen-
sors and remote computers/servers/controllers. The connected 
thing itself, while executing its intended function, may auto-
matically report data (including measurements, performance, 
and status) to a remote computer where the data can be 
archived and interpreted, and then updated instructions, fea-
tures, and functions may be deployed from the computer back 
to the connected thing. A popular example in the consumer 
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Abstract
The management of type 1 diabetes (T1D) ideally involves regimented measurement of various health signals; constant 
interpretation of diverse kinds of data; and consistent cohesion between patients, caregivers, and health care professionals 
(HCPs). In the context of myriad factors that influence blood glucose dynamics for each individual patient (eg, medication, 
activity, diet, stress, sleep quality, hormones, environment), such coordination of self-management and clinical care is a great 
challenge, amplified by the routine unavailability of many types of data thought to be useful in diabetes decision-making. 
While much remains to be understood about the physiology of diabetes and blood glucose dynamics at the level of the 
individual, recent and emerging medical and consumer technologies are helping the diabetes community to take great strides 
toward truly personalized, real-time, data-driven management of this chronic disease. This review describes “connected” 
technologies—such as smartphone apps, and wearable devices and sensors—which comprise part of a new digital ecosystem 
of data-driven tools that can link patients and their care teams for precision management of diabetes. These connected 
technologies are rich sources of physiologic, behavioral, and contextual data that can be integrated and analyzed in “the 
cloud” for research into personal models of glycemic dynamics, and employed in a multitude of applications for mobile health 
(mHealth) and telemedicine in diabetes care.
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domain is the Nest Learning Thermostat,2 a Wi-Fi-enabled 
temperature control device for homes and businesses which 
can be programmed and controlled by the owner from a smart-
phone app or a website, and remotely updated by the vendor 
when new software and firmware are available. Connected 
things are emerging in many other products in the consumer 
and industry domains,3,4 and leverage an ever expanding 
global capacity for “cloud computing,” defined as “a model 
for enabling ubiquitous, convenient, on-demand network 
access to a shared pool of configurable computing resources 
(eg, networks, servers, storage, applications, and services) that 
can be rapidly provisioned and released with minimal man-
agement effort or service provider interaction.”5

Now, connected devices have entered the health and well-
ness space, hatching the Healthcare IoT. It is suggested that 
digital health, including connected things, can “revolutionize 
the healthcare industry by making diagnosis, treatment, and 
prevention widely accessible at a fraction of current costs,” 
with great impact in particular on management of chronic 
diseases including diabetes.6 Connected glucometers, for 
example, are available as physical attachments to smart-
phones,7 devices paired with smartphones via Bluetooth,8-10 
and stand-alone devices with a dedicated cellular connec-
tion,11,12 complemented by devices designed to wirelessly 
sync data from many nonconnected glucometers.13 More 
recently, the first smartphone-connected continuous glucose 
monitor (CGM) was introduced,14 and additional connected 
diabetes devices are soon to follow, including insulin pumps 
and pens.15-19 Data from connected diabetes devices can be 
collected and combined with data from other sources for 
many applications in both self-management and clinical 
care.20

Of course, diabetes management is about more than blood 
glucose readings and insulin doses—a host of factors influ-
ence glycemia, and impact each individual with diabetes dif-
ferently. Data for many of these factors are increasingly 
available from a variety of technologies designed for con-
sumer use, and as they enter the diabetes digital ecosystem 
more pervasively, they may be employed to deepen our 
understanding of diabetes at the level of the individual, and 
hence enable truly personalized diabetes care.

There’s an App for That

With nearly ubiquitous cellular and Wi-Fi connections to the 
internet and ever increasing processing capability, the smart-
phone now serves as a powerful mobile computing platform 
with rich data collection capacity not only through its built-in 
sensors but also by virtue of software in the form of native 
applications, or “apps.” As of October 2014, 64% of 
American adults owned a smartphone,21 and millions of apps 
are currently available for consumers to download for a vari-
ety of purposes including gaming, shopping, and social 
media.22 Apps for mobile health (mHealth) have proliferated 
in recent years—more than 165,000 health and wellness apps 

are now offered in online marketplaces.23,24 Independent 
efforts have been made to curate an mHealth app repository 
and database,25 and the Ochsner Health System (New 
Orleans, LA) even maintains a center for in-person learning 
about health and wellness apps.26 There are many hundreds 
of diabetes mHealth apps (extensively reviewed else-
where),27-31 and many thousands of apps for tracking various 
types of “nondiabetes” data that are relevant to diabetes man-
agement, including exercise, sleep, stress and mood, men-
strual cycle, diet, medications, and more. The regulatory 
environment has evolved to accommodate these apps, includ-
ing the publication of FDA guidance for mobile medical 
apps,32 though concerns persist as to their safety and efficacy 
in diabetes management.

While most apps for diabetes management involve man-
ual logging of blood glucose and insulin data (ie, serving as 
digital equivalents of the more burdensome and error-prone 
paper journals of old), some apps feature games, challenges, 
and social and educational content to incentivize users to 
keep up with data entry, for example the various apps from 
mySugr (mySugr GmbH, Vienna, Austria), Sugar Streak 
(Streak Inc, San Diego, CA), and OneDrop (Informed Data 
Systems Inc, Austin, TX). As decision making and data 
tracking in diabetes management already constitute a sub-
stantial burden on the individual with diabetes, apps that 
prove successful over the longer term are likely to combine 
such interactive incentives with more passive means of data 
collection (including integration of data from connected dia-
betes devices with complementary data from built-in smart-
phone sensors and wearables—currently 10% of mHealth 
apps can link to a sensor or device24) and personalized, con-
text-aware feedback powered by analytics running on the 
smartphone or in the cloud, delivered to the user via the 
smartphone itself or another display interface, such as a 
wearable technology.

Wearables Aren’t Just for the Wrist

The era of smart, connected wrist-worn technology has 
arrived, with a plethora of options available to the consumer 
from the likes of Apple, FitBit, Garmin, Google, Intel, 
Jawbone, Microsoft, Misfit, Pebble Technologies, Polar, 
Samsung, and many others. Frequently referred to as “wear-
ables,” these sensor-packed devices range from simple activity 
trackers to feature-rich smartwatches, and typically include 
capabilities for both collecting and displaying many types of 
data (eg, steps taken, heart rate, sleep, location). The wrist-
worn wearable is usually complemented by companion smart-
phone apps and/or computer software for more sophisticated 
data analysis and visualization, often in connection with cloud 
storage and computing on the collected data. The glanceability 
of the wrist-worn display is notable for the convenience and 
discretion it offers to the person with diabetes, for example 
reducing the need to frequently retrieve a medical device from 
a pocket or purse to view a glucose reading.33
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While much attention is focused on the current and emerg-
ing crop of smartwatches and wrist-worn fitness trackers, a 
new generation of smart garments (eg, shirts,34-36 socks,37 
and underwear38,39) is also entering the market, building on 
years of academic research on textile-based sensing and 
smart garment design.40-42 Incorporating smart fabric sensor 
and electronic textile technologies to passively collect data 
on a host of important physiological and behavioral factors, 
such smart garments have applications in sports, defense, 
and public safety, and even iconic fashion brands have 
entered the smart garment space.43 Adoption of smart gar-
ments may be commonplace in the near future, including for 
people with diabetes, providing a source of rich biometric 
data that unobtrusively fits individual preferences and 
lifestyles.

Even closer to the body than clothing are sensors that 
adhere directly to the skin, for example single-lead electro-
cardiogram (ECG) patches that continuously record heart 
rhythm data and can, in some cases, outperform the tradi-
tional Holter monitor in detecting arrhythmias at a fraction of 
the cost.44 While some such devices still require post hoc 
data analysis (ie, the data are retrieved following temporary 
or episodic usage of the device), new skin-adherent biomet-
ric sensing modalities are being developed in increasingly 
smaller and more flexible form factors, and leveraging 
advances in low-power computing and networking to con-
tinuously sense and transmit a variety of physiologic param-
eters45-48 that could be analyzed in near real-time on a 
smartphone or in the cloud. Even the eye presents real estate 
for sensing, as companies like Google and Novartis team up 
to develop and commercialize contact lenses capable of 
detecting analytes present in tears,49 and sensor-loaded 
smartglasses are likely to stay in the game, as well.50

While wrist-worn wearables are in the spotlight today, the 
garment-integrated and body-worn sensors of tomorrow will 
provide many additional channels of multidimensional con-
tinuous data through increasingly seamless integrations of 
technology, fashion, and lifestyle. These data may be 
employed to tailor an individual’s diabetes treatment regi-
men around his personal exercise habits, stress triggers, and 
circadian rhythms, even as they change throughout the indi-
vidual’s life.

Location, Location, Location

Once the domain of dedicated GPS devices, geolocation tech-
nology is now widespread in consumer devices like smart-
phones and wearables, enabling a variety of services from 
location-aware restaurant recommendations to mapping hikes 
and outdoor workouts. In the diabetes context, studies have 
evaluated the relationship between location (eg, home versus 
work) and glycemia,51,52 and open-source tools, such as 
GlucoMap, have been developed to enable the display of con-
tinuous glucose and physiologic data in geographical con-
text.53 Knowledge of an individual’s time-stamped location 

enables the retrieval of a host of other data types linked to 
geography, including elevation, temperature, sunlight/UV 
exposure, air quality, urban versus rural, proximity to busi-
nesses or clinical facilities, and more. Access to such inte-
grated data may finally enable researchers to quantitatively 
measure the impact of geospatial and environmental vari-
ables on glycemia, providing new dimensions of understand-
ing for individual diabetes management. Beyond research, 
the integration of glucose and location data has applications 
in patient health and safety, including emergency services.54

The Meal Challenge

Information about meals is particularly important to diabetes 
management, yet these data are problematic to obtain. Active 
dietary self-monitoring, such as paper-based or app-enabled 
food journaling, is burdensome for the individual to maintain 
and labor-intensive for the HCP to review, and thus sustained 
adherence is poor. From an analytics perspective, carbohy-
drate intake may be approximated post hoc from data manu-
ally entered into a bolus calculator (eg, on an insulin pump or 
glucometer, or within an app), though the difficulty of accu-
rately counting carbs can render these data unreliable, and 
incomplete in the sense that other macronutrient content (eg, 
fat or protein) is typically not accounted for. If these devices 
are connected, some analytical value may be realized by 
inferring eating moments from the time-stamps of insulin 
bolus data, though not every bolus is administered to cover 
food intake, likely leading to false positive calls of meal 
events and diminishing confidence in any therapeutic insights 
gained from these data.

Recognizing the usefulness of passively tracking eating 
moments (ie, with little or no burden on the user), ongoing 
research is developing methods to detect an individual’s con-
sumption of meals and snacks via data from sensors embed-
ded in wearable technologies, most recently including a 
smartwatch,55 smartglasses,56 or an earpiece.57 Using 
machine learning techniques to analyze the continuous time-
series sensor data, these approaches are increasingly accurate 
in distinguishing true eating moments throughout an indi-
vidual’s daily activity, and hold great potential for passively 
tracking meal and snack events, as the technologies mature 
toward commercialization.

In the meantime, people with diabetes have options for 
actively logging meals beyond entering carbs into a device or 
a smartphone app, such as capturing images with a smart-
phone or wearable camera.58,59 For example, the Meal 
Memory app (Databetes Inc, Brooklyn, NY) provides a sim-
ple procedure for capturing meal images using the smart-
phone camera, with the additional capability of passively 
integrating blood glucose data that are collected to the user’s 
smartphone.60 Other smartphone apps also include photo-
based meal logging, and looking beyond meal images as a 
simple visual record, research is ongoing toward automated 
annotation of meal content from photos.61,62 Someday, 
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individuals may even carry miniaturized spectroscopy-based 
devices capable of quantitatively characterizing the content 
of everything they eat.63,64

Meal information collected by these tools, if sufficiently 
accurate, could be employed by a next-generation bolus cal-
culator (in this case, the burden of active meal-tracking with 
a camera or other device may be offset by alleviation of the 
mental math and guesswork currently associated with deter-
mining an insulin dose) or by a closed-loop artificial pan-
creas system to enhance the proactive delivery of insulin at 
meal times. Even a visual record of nutrition habits is useful 
in reviewing and refining diabetes management strategies.

Consumption and Synthesis of Data for 
Information, Insight, and Action

For years, data collected by diabetes devices (and other 
devices, for that matter) have been difficult to make full use 
of, requiring specialized (usually vendor-specific) hardware 
and software to retrieve and visualize the data.65 This chal-
lenge has been tackled in the diabetes space by companies 
developing device-agnostic platforms for data retrieval, 
analysis, and transmission,66-68 and now the trend toward 
device connectivity offers an unprecedented opportunity for 
diabetes data to be more thoroughly utilized for applications 
in patient self-management and clinical care, independently 
or joined with data from other sources such as described 
above. For example, the HealthKit utility on Apple’s mobile 
operating system (iOS) allows a user to share data between 
mHealth apps on her iPhone,69 enabling data from her con-
nected CGM to be integrated with other apps (eg, meal-
tracking70) and even directly into an electronic medical 
record (EMR) system.71

The fitness tracking device industry provides useful prec-
edent for how data in the cloud can be accessed in a standard-
ized fashion, typically via an application programming 
interface (API) accompanied by documentation and even 
software developer kits (SDKs) for use by third-party soft-
ware developers.72-75 By making the data more systemati-
cally portable, APIs enable consumption of data into tools 
and services that integrate diverse data for visualization and 
analysis by individuals76,77 and enterprise,78-80 including 
health care providers and payors. As the diabetes industry 
follows suit with connected devices and APIs, increased data 
availability will enable the “big data” approach to revolu-
tionizing diabetes management,81 helping to address some 
acknowledged gaps in the application of information tech-
nology to diabetes care including EMR integrations and 
decision support capabilities,82 such as data-driven adjust-
ments to an individual’s insulin doses83,84 and automated pat-
tern recognition of problematic glucose trends.85

To date, the development of artificial pancreas (AP) tech-
nology has been one of the major drivers for integrating data 
to improve diabetes management, as years of research and 

inpatient studies have recently progressed to numerous out-
patient studies of systems wherein patients’ blood glucose 
levels are under automated closed-loop control via glycemia-
responsive delivery of insulin or insulin and glucagon.86,87 
Connected consumer devices play a role in the expansion of 
this work, for example the use of a smartphone as a hub for a 
“mobile medical network,” serving as both the computing 
platform for AP algorithms (wirelessly receiving CGM data 
and controlling hormone delivery) and the user interface (UI) 
for the patient,88,89 and the smartphone’s inherent connectiv-
ity to the cloud facilitates the monitoring of AP study partici-
pants as part of a telemedicine infrastructure.90-92 As such, a 
smartphone-based, cloud-connected AP system may be aug-
mented by data from many of the sources noted previously, 
both to better understand influencers of glycemia in real 
world settings, and to drive the adaptation of more individu-
alized AP control algorithms.

While issues of device interoperability93 and data stan-
dards94 are yet to be fully resolved, and data privacy and 
security will require constant vigilance,95,96 today one can 
readily envision precision diabetes management driven by 
robust data collection, synthesis, and analysis (retrospective 
and real-time), with context-aware individualized guidance 
presented to the patient and caregivers in a coordinated fash-
ion. A person with diabetes may receive personalized meal 
and insulin recommendations as in the aforementioned sce-
nario. Furthermore, her spouse may be automatically noti-
fied several hours later that her postprandial glycemia was 
in-range, and may send her a congratulatory text message. In 
addition, her endocrinologist may receive regular reports 
including her detailed diet and exercise information along-
side all of her diabetes device data, accompanied by a narra-
tive of patterns identified in the data by specialized analytics 
as well as algorithm-based suggestions for changes to her 
treatment regimen to optimize her glucose control—without 
waiting months for an in-person visit at the clinic. All the 
while, the person with diabetes may elect to have her data 
anonymized and made available to researchers developing 
the next generation of personalized closed-loop AP technolo-
gies and other precision medicine innovations leveraging 
unprecedented, massively parallel n-of-1 data sets.97 To 
achieve this vision, a collaborative approach is needed: 
researchers must continue their efforts to understand blood 
glucose dynamics and diabetes management at the level of 
the individual, industry must design secure connected prod-
ucts with interoperability and personalization as basic fea-
tures, and regulatory bodies must accommodate the inclusion 
of diverse consumer and enterprise technologies that will 
benefit people with diabetes and their caregivers. The real-
ization of this digital ecosystem of tools for diabetes care is 
underpinned by the current trends toward device connectiv-
ity and data openness, which hold great promise to reduce 
the burdens of diabetes for individuals, caregivers, and 
society.
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