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Possible shift in the ENSO-Indian 
monsoon rainfall relationship under 
future global warming
Sarita Azad1 & M. Rajeevan2

EI Nino-Southern Oscillation (ENSO) and Indian monsoon rainfall are known to have an inverse 
relationship, which we have observed in the rainfall spectrum exhibiting a spectral dip in 3–5 y period 
band. It is well documented that El Nino events are known to be associated with deficit rainfall. Our 
analysis reveals that this spectral dip (3–5 y) is likely to shift to shorter periods (2.5–3 y) in future, 
suggesting a possible shift in the relationship between ENSO and monsoon rainfall. Spectral analysis of 
future climate projections by 20 Coupled Model Intercomparison project 5 (CMIP5) models are employed 
in order to corroborate our findings. Change in spectral dip speculates early occurrence of drought 
events in future due to multiple factors of global warming.

The ENSO phenomenon is known to affect the inter-annual variability of the tropical climate system, including 
the Indian monsoon. As per the definition, El Nino refers to a situation where five consecutive three month 
moving average Oceanic Nino Index Average (ONIA) values exceed 0.5 °C. Analysis of observational data reveals 
that inverse relationship between ENSO events and Indian summer monsoon rainfall (ISMR) is statistically sig-
nificant1–5 even though there is no one to one correspondence between them6–8. There are normal monsoon years 
associated with ENSO but most of the severe droughts in India are associated with the ENSO events. According to 
Saini and Gulati9 as per the defining conditions in terms of ONI, there have been 7 El Nino years (1980 onwards) 
of which five converted to Indian droughts. Therefore, seasonal prediction of ISMR is estimated based on its 
inverse relationship with ENSO10,11.

Observational temperature data for the past 100 years or so suggest an increasing trend in global mean tem-
perature. The projections using the Intergovernmental Panel on Climate Change (IPCC) models suggest contin-
uation of warming over the next 100 years, even though there is an uncertainty in the magnitude12. The ensuing 
global warming may have serious implications for the tropics, including changes in circulation and rainfall pat-
terns over the monsoon regions. For example, global warming is likely to cause an increase in mean Indian mon-
soon rainfall13, accompanied by an increase in the frequency of extreme precipitation events14–16. A recent study 
by Cai et al.17 has reported that global warming will have a significant impact on ENSO behaviour by causing a 
pronounced eastward extension of the west Pacific warm front pool. Reorganization of atmospheric convention 
currents at such a massive scale will lead to enhanced frequency of extreme El Niño events almost doubling the 
occurrence over the next half of the 21st century. As a result tropical precipitation would be adversely affected; 
this is credited to the projected surface warming over the eastern equatorial pacific which occurs faster than in 
the surrounding waters. This will facilitate rapid occurrence of atmospheric convection in the eastern equatorial 
region. However, previously some other studies have reported the weakening of ENSO-ISMR relationship18,19.

Variation in rainfall has a huge impact on the agricultural output in India. Both the extremes, floods and 
droughts, affect adversely food security, inflation and GDP of the country20. With the global warming, it is an 
important to examine how the ENSO-monsoon relationship changes in future climate. The present analysis is 
important exercise to understand the possible changes in predictability of monsoon rainfall based on the rela-
tionship with ENSO. Recently, it has been observed that the spectrum of Indian monsoon rainfall exhibits a dip 
in the 3–5 y period band21. It has been hypothesised that this phenomenon could be a consequence of the El Niño 
effect. In this context, several attempts have been made to describe the temporal variability of the ENSO-ISMR 
relationship on a 2–7 year timescale22. A spectral wavelet analysis revealed that the net effect of solar processes on 
rainfall operates in part indirectly through ENSO.
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Under global warming scenarios, many studies have speculated the changes in ENSO and related precipitation 
variability23. In this regard, the present article aims to explore the ENSO-monsoon relationship with respect to 
global warming scenario RCP-8.5 24. To the best of our knowledge such studies have not been reported in the 
literature.

Results
The power spectral density (PSD) function of seven sub-divisions of a spectrally homogenous region (SHR7) 
rainfall for the time period 1871–2005 are estimated using Welch technique25,26 and shown in Fig. 1. It is clearly 
seen from the Fig. 1 that all the constituent sub-divisions show a spectral dip in the 3–5 y period band, centred 
around 4 y period. In our previous work, we have found that spectral peaks in the seven sub-divisions which con-
stitute SHR7 are in near-coincidence with those from other sub-divisions, and such remarkable symmetry is not 
because of any statistical fluctuations21. This spectral dip is an indication of deficit rainfall and is also observed in 
ISMR (inset in Fig.1) and other homogenous regions (not shown in Fig.1). The main focus of this work is to show 
the inverse relation between ENSO and monsoon rainfall in the spectral domain. The Fig. 2 evidently depicts this 
relation, where it is shown that between 3–5 y period band, SHR7 rainfall shows low spectral density (defined 
as a spectral dip) whereas Nino 3 SST index shows significant high power density at 90% confidence level. To 
check if this inverse relation persists in future projections provided by CMIP5 data sets, firstly, we select models 
for rainfall in the historical time period (1871–2005) whose spectra match best with the observations using two 
statistical tests. These are defined as follows: (a) in order to confirm the existence of spectral dip in the model 
spectrum, we pose a criteria that there should not be any significant periods (above 90% confidence line) in the 
3–5 y period band; (b) we define a null hypothesis that the mean of significant periods (above 90% confidence 
line) in the observed spectrum is same as model. This hypothesis is further accepted or rejected using Student’s 
t-test at 90% confidence level.

It is shown in Fig. 3 that the spectral dip which is present in the observed spectrum in the 3–5 y period 
band is captured by eight models, namely BCC.CSM1.1, CSIRO-Mk3.6.0, INM-CM4, IPSL-CM5A-MR, 
MIROC-ESM-CHEM, MPI-ESM-LR, GFDL-ESM-2M, HadGEM2-ES. In all of these eight models, there 
are no significant peaks above 90% confidence line with slight exception at the boundaries in INM-CM4, 

Figure 1.  PSD of seven sub-divisional rainfall of SHR7 region and ISMR (inset) demonstrating spectral 
dip in the 3–5 y period band. India’s map is created using shape file which is available at survey of India website 
www.surveyofindia.gov.in.

Figure 2.  Inverse relation between ENSO-SHR7 rainfall in observed spectra during the time period  
1871–2005. 
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MIROC-ESM-CHEM, GFDL-ESM2M. We further perform the null hypothesis defined in (b). It is found that 
the null hypothesis is accepted for these eight models, i.e. mean of significant peaks (above 90% confidence level) 
in model spectra is same as observed. It is important to note that spectra of all the 20 models are not in corrob-
orations with observations. However, some of these models are able to capture rainfall spectral contents upto 
some acceptable level which are used in this study. Similar concern has been reported on El Nino data27 where 
six models (out of 20 models) have shown superior performance and have been used for predicting the results. 
To examine the behaviour of the spectral dip in future, we estimate the PSD of projected rainfall of 20 models as 
shown in Fig. 4. It is seen from the figure that five out of the eight models mentioned above exhibit a shift in the 
spectral dip from 3–5 y period to 2.5–3.3 y period. Hence, projections reveal that the spectral dip which is centred 
at period 4 y in the historical data is likely to shift to 3 y period. It is interesting to note that 5 y periods which is 
not significant in the historic data is found to be significant in the projections of INM-CM4, IPSL-CM5A-MR, 

Figure 3.  PSD of SHR7 rainfall from 20 CMIP5 models (red) against observations (blue). The eight models 
whose spectra match well with the observed are marked in circle.

Figure 4.  PSD of projected SHR7 rainfall from 20 CMIP5 models. The five models which show shift in the 
spectral dip are marked in circle.
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and MIROC-ESM-CHEM. Figure 5 demonstrates these two properties more explicitly. It is seen from the figure 
that the 5 y period which comes under spectral dip in the historic period of observations (Fig. 5(a)) as well as 
model (Fig. 5(b)) is 95% significant in the projection of model IPSL-CM5A-MR (Fig. 5(c)). Also, the spectral dip 
is shifted towards shorter periods, centred at 3 y period, and no periods are found to be significant in this dip 
(Fig. 5(c)). It is to note that this shift is observed in both SHR7 and ISMR rainfall. We wish to verify it further by 
analysing PSD of seven sub-divisions of SHR7.

As mentioned earlier, although spectral dip is present in ISMR and other homogenous Indian monsoon 
regions, we have selected SHR7 as a prime region for our analysis as it contains seven observations unlike sin-
gle observation of ISMR. Therefore to confirm this shift in future, we estimate the PSD of seven sub-divisions 
of SHR7 and shown in Supplementary Fig. S1 (See the Supplementary Information) for the historic period 
1871–2005 and for the projected period 2006–2100 is shown in Supplementary Fig. S2. To assess the similar-
ities in the seven spectra of observed and model we check the two criteria as before. Particularly we examine 
the seven sub-divisions of eight models selected in previous section, namely, BCC.CSM1.1, CSIRO-Mk3.6.0, 
INM-CM4, IPSL-CM5A-MR, MIROC-ESM-CHEM, MPI-ESM-LR, GFDL-ESM-2M, and HadGEM2-ES and 
we found that the null hypothesis is accepted for these models. Particularly, the seven sub-divisional spectra of 
model IPSL-CM5A-MR are shown in Supplementary Fig. S3. It is interesting to note that the seven spectra in this 
model coincide well with other sub-divisions as witnessed in observations. This confirms the reliability of model 
performance as we have mentioned in our previous work21 that such spectral symmetry cannot be a result of any 
statistical fluctuations. Also outputs of this model show a shift in the spectral dip and 5 y period is significant in 
the projected data.

In order to further understand the inverse relation between ENSO and  Indian monsoon rainfall, the similar 
analysis is performed on Nino 3 SST model simulations. We aim to find the models which are able to capture 
the high power density in the 3–5 y period band. These eight models are, CCSM4, CISRO, INMCM4, MIROC, 
MRI-CGCM3, GFDL-CM3, GFDL-ESM-2M and GISS-E2. Out of these eight models, it is found that four 
models exhibit a shift of spectral density toward shorter periods as seen in the case of rainfall. These four mod-
els are, CISRO , MRI-CGCM3, GFDL-CM3, and GFDL-ESM-2M. Figure 6 demonstrates this shift for model 
GFDL-CM3. The similar power spectral density approach has been employed recently to estimate the PSD of 
ENSO28. The most interesting result of our study is that the inverse relation between ENSO-monsoon rainfall is 
likely to persist in future as shown in Figures 5  and 6  for rainfall and ENSO, respectively.

Discussion
The shift of Nino 3 SST power density towards shorter periods suggests more frequent El Nino events in future 
climate. Cai et al.17 has presented climate modelling evidence for a doubling in the occurrences of El Nino events 
in the future in response to greenhouse warming. The increase in frequency of El Nino events including extreme 
events could be related to diminished or reversed meridional SST gradient over the equatorial Pacific. This is 
associated with more occurrences of maximum SSTs in the eastern equatorial Pacific for a given SST anomaly, 
to increased extreme El Nino occurrences. The CMIP model simulations suggest a stable inverse relationship 
between El Nino and the Indian monsoon so that more frequent El Nino events could trigger more droughts over 
India.

The results of this study are expected to benefit the policies in place for agricultural and other managements 
and improve upon the existing plans for calamity mitigation arising from shifting of deficient rainfall events in 
shorter time band.

Figure 5.  PSD of (a) observed; (b) model IPSL-CM5A; and (c) comparison of SHR7 rainfall and ISMR 
projected.
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Data
The set of data analysed in our work includes the time series for global SST ENSO index, Nino 3, the ISMR, and 
SHR7 rainfall as defined in Azad et al. (2010)21 over the historical time period 1871–2005. The raw SST data is 
from the NOAA Climate Prediction Center at the website http://www.cpc.ncep.noaa.gov/data/.

We basically analyse the spectral characteristics of Indian monsoon rainfall and Nino 3 SST. The ISMR is the 
weighted average over 36 meteorological sub-divisions and all of them do not exhibit the spectral dip in the 3–5 y  
period band. In fact other regions too ( for example homogenous Indian monsoon (HIM ) which covers central 
and north western parts of India amounting to 55% of the total land area of the country) show spectral dip in 
this band. Since the HIM rainfall is the weighted average over 14 sub-divisions and all of them do not exhibit the 
spectral dip in the 3–5 y period band, therefore we selected our region of analysis to be SHR7 which spans the 
northern west coast to the northern part of the peninsula. This region is of particular interest as all the seven con-
stituent sub-divisions show a spectral dip around the period of 4 y, and most of the spectral peaks in the different 
sub-divisions nearly coincide with each other. The SHR7 rainfall time series is obtained by area-weighted aver-
age of seven sub-divisions namely, Konkan, Madhya Maharashtra, Marathwada, Vidarbha, Telangana, Coastal 
Karnataka, North interior Karnataka.

We employ multi-model ensemble simulations from the world climate research program (WCRP) Coupled 
Model Intercomparison project 5 (CMIP5) over a period of 1871–2100 23. Annual historical simulations are 
analyzed and compared with observations from the Indian Institute of Tropical Meteorology (IITM) for the 
period (1871–2005). The future changes are analysed in 21st century (RCP8.5, 2005–2100) projected simula-
tions. The detailed documentation of CMIP5 models can be found at: http://www.earthsystemgrid.org/search? 
Type= Simulation%2bMetadata.

Thus the SHR7 data are used to compare the annual rainfall from models during historical periods with obser-
vations. The analysis periods from the CMIP5 and India Meteorological Department (IMD) data sets are similar. 
The historical data cover a period from 1871–2005, whereas projected data cover a period from 2006–2100. This 
is followed by an analysis of projected rainfall using the models that have reproduced past data best.

Method
Spectral analysis and significance test.  Estimation of the power spectral density (PSD) of a stationary 
random process is usually based on procedures employing the fast Fourier transform (FFT)25. For a discrete-time 
series x(t) with unit time interval (so the Nyquist frequency is 1/2) the spectral representation is a periodogram 
defined as
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where ωk =  2Πk/N, N is the sample size and k =  0, 1, … ,N/2 is the frequency index. The value of x(ωk) is a measure 
of the contribution to the “energy” of x by the frequency ωk. As in our previous work, we use the Welch technique 
with Hamming window to estimate x(ωk). This technique uses the powerful idea of the averaged periodogram of 
overlapped, windowed segments of a time series, and reduces the variance associated with the standard periodo-
gram by cutting the data into blocks and then averaging over their periodograms. To test the significance of peaks, 
we use the method of Torrence and Compo29.
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