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Two betweenness centrality 
measures based on Randomized 
Shortest Paths
Ilkka Kivimäki1,2, Bertrand Lebichot1, Jari Saramäki2 & Marco Saerens1

This paper introduces two new closely related betweenness centrality measures based on the 
Randomized Shortest Paths (RSP) framework, which fill a gap between traditional network centrality 
measures based on shortest paths and more recent methods considering random walks or current flows. 
The framework defines Boltzmann probability distributions over paths of the network which focus 
on the shortest paths, but also take into account longer paths depending on an inverse temperature 
parameter. RSP’s have previously proven to be useful in defining distance measures on networks. In 
this work we study their utility in quantifying the importance of the nodes of a network. The proposed 
RSP betweenness centralities combine, in an optimal way, the ideas of using the shortest and purely 
random paths for analysing the roles of network nodes, avoiding issues involving these two paradigms. 
We present the derivations of these measures and how they can be computed in an efficient way. 
In addition, we show with real world examples the potential of the RSP betweenness centralities in 
identifying interesting nodes of a network that more traditional methods might fail to notice.

One of the most fundamental and popular topics in network science is determining the centrality of a node in a 
network according to the structure of the network. The concept of centrality can be interpreted in many ways and 
a vast number of measures have been proposed based on different interpretations. One commonly used interpre-
tation is betweenness centrality, which reflects the extent to which a node lies in between pairs or groups of other 
nodes of the graph. This can be also stated as the extent to which a node is an intermediate in communication over 
the network. Different models have been proposed to measure the participation of a node in this communication 
ranging from the shortest path betweenness centrality of Freeman1–3, which considers communication flowing only 
along the shortest paths, to the current flow betweenness centrality4,5, which interprets communication flowing as 
electric current or as random walks in the network.

In this article we propose two families of betweenness centrality measures based on the Randomized Shortest 
Paths (RSP) framework6–8. The framework is based on Boltzmann probability distributions over paths between 
the nodes of a network which focus on short, optimal paths, but give some probability mass also to longer paths. 
The extent of focus on optimal paths is controlled by an inverse temperature parameter β. The RSP framework 
has previously been shown to function well when defining distance measures on networks for clustering and clas-
sification of network nodes8. In this work we extend the study of RSP’s by showing their potential also in defining 
centrality measures. The two RSP betweenness centralities presented in this paper measure the involvement of 
each node in RSP’s between the nodes of the graph. The first measure, which we call the simple RSP betweenness, 
measures the expected number of visits to a node during RSP’s, while the second one, called the RSP net between-
ness is the sum of expected net flows over the edges connected to a node.

The proposed RSP betweenness measures are attractive both theoretically as well as in practice. Theoretical 
interest is ensured by the fact that both measures can be seen as generalizations of classical betweenness measures. 
With large values of the parameter β, both RSP betweenness measures converge to a measure that we introduce 
as the shortest path likelihood betweenness, which is very closely related to the original betweenness centrality 
defined by Freeman1–3 and its other similar variant, the load centrality9. The reason for defining two different 
betweenness measures with RSP’s is in their behaviour as β is decreased. Namely, the simple RSP betweenness 
then converges to the stationary distribution of a random walk on the network (multiplied by a constant), whereas 
the RSP net betweenness converges to the current flow betweenness4,5. The definition, as well as the computation, 
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of the simple RSP betweenness are more straightforward than for its counterpart, the RSP net betweenness, which 
can also be stated of their corresponding limit functions. In addition, our experiments indicate that the simple 
RSP betweenness can in practice be more useful than the RSP net betweenness or the current flow betweenness. 
However, the choice of which definition to rely on in the end depends on the application domain.

Considering betweenness based on RSP’s is motivated by the fact that measures based only on shortest paths 
or on random walks alone often involve undesirable features. Shortest paths in a complex network tend to pass 
through only a small fraction of the nodes of the network, which can cause highly skewed betweenness score dis-
tributions and fail in differentiating between the other nodes of the network9,10. Also, when considering commu-
nication or navigation in networks, it is not always even realistic to consider that they would occur along only the 
shortest, nor completely random paths. Instead, movement may follow a partly random route, with a drift towards 
a destination, for example when the navigating agent does not know the optimal way or wants to add secrecy and 
unpredictability to its route. As a result, the trajectories that are actually used in the network can be more spread 
over different nodes in areas of the network that contain many connections. Because of this, RSP’s can help, for 
instance, in detecting bottlenecks of the network, where there exist no alternatives for the shortest path.

Measures based solely on random walks do take into account the abundance of connections between nodes. 
However, they may in many situations depend heavily on local features of a graph, especially for large graphs11–13 
instead of capturing its interesting global properties. Thus, some regularisation over the degree of randomness is 
needed, which in the RSP framework is controlled by the inverse temperature parameter β.

Models that find a compromise between the optimal shortest path and a random walk have recently received 
a lot of attention. Compared to these, the attractive aspect in using the RSP framework is that the compromise 
between the shortest and random paths is optimal by definition, as the Boltzmann distribution minimizes the 
expected cost of paths subject to a fixed relative entropy6,7. The minimization can also be expressed with respect to 
free energy8. In addition to the optimality aspect, the computation of quantities related to RSP’s is fairly straight-
forward and efficient. A drawback of the algorithms presented in the paper is that as such they are not tractable 
with very large networks. However, in the future we plan to develop more specialized methods that will enable the 
RSP quantities to be computed with large networks as well.

Ideas similar to the RSP framework of interpolating between the two extremes can be found in the work of 
Alamgir and von Luxburg14, involving p-resistances and graph node distances based on them, of Chebotarev 
involving distances based on the matrix forest theorem15,16, of Zhang and Boley17 with focus on routing schemes, 
of Estrada, who has defined the subgraph centrality18 and the communicability betweenness19. Even more related 
to this paper are the recent works of Bavaud and Guex20 and Lebichot et al.21. In fact, the two betweenness central-
ity measures presented in this paper can be shown equal to the betweenness measures proposed by Bavaud and 
Guex20, although the relation between the two works is not entirely obvious. We will discuss this relation and the 
relation between the RSP betweenness measures and other previously proposed betweenness measures in more 
detail later. To sum up, the contributions of this paper are:

•	 We define two betweenness centrality measures which form a spectrum between measures based on shortest 
paths and pure random walks, therefore integrating information about both the optimality and the abun-
dance of paths between nodes of the network,

•	 We derive algorithms for computing these measures in a convenient and efficient way, and
•	 We demonstrate with example networks that the proposed RSP betweenness measures may provide a more 

interesting ranking of the network nodes than the classical measures that they generalize.

Notation and terminology
In the paper we consider weighted directed graphs G =  (V, E) with node set V =  {1, 2, …, n} and edge set E =  {(i, j)} 
of m edges. We define a path, or walk, interchangeably, as a sequence of nodes ℘ = ( , …, )i iT0 , where T >  0 and 
(iτ, iτ+1) ∈  E for all τ =  0, …, T −  1. A path is absorbing, if the last node of the path appears on the path only once. 
We denote the set of all absorbing paths starting from node s and ending in node t, i.e. s-t-paths or s-t-walks, by 
Pst.

The weights on edges, aij, (i, j) ∈  E, reflect the similarity or strength of connection between adjacent nodes and 
form the adjacency matrix A of the graph. The edge weights define the reference transition probabilities of the 
unbiased random walk as = /∑p a aij ij j ij

ref . The transition probabilities form the reference transition probability 
matrix Pref, which can be computed as Pref =  D−1A, where D is the diagonal matrix containing the row sums of A. 
The reference path probability (℘)Pst

ref  of a path ℘ ∈ Pst is simply defined as the product of the transition proba-
bilities along the path. In addition to the weights, the edges are also assigned costs cij, which, in contrast to 
weights, can be considered also as the dissimilarity or distance of adjacent nodes. The cost of a path ℘ is then 
simply defined as (℘) = ∑( , )∈℘c̃ ci j ij. Accordingly, we use the term shortest path to mean the path between two 
nodes with the lowest cost over all paths between the nodes. We denote the set of shortest paths from node s to 
node t by ⁎Pst, the total number of such paths by ⁎Pst  and the cost of the shortest path from s to t by ˜⁎cst. The 
directed graph that consists only of the nodes and directed edges that belong to the shortest paths from s to t is 
called the directed shortest path graph from s to t.

In many situations the edge costs and edge weights can be defined based on one another, for example, as recip-
rocals cij =  1/aij, which corresponds to the interpretation of costs as resistances and weights as conductances in 
an electric circuit. This convention is also normally used when computing centrality measures on weighted net-
works. However, in general in the RSP framework the weights can be independent of the costs, as long as cij <  ∞ 
whenever aij >  0. Accordingly, the transition probabilities and thus the unbiased random walk can be independ-
ent of the costs. This means that the edge costs define the interpretation of shortest paths, i.e. the low temperature 
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behavior of the system, whereas the edge weights determine the interpretation of a random walk, i.e. the high 
temperature behavior. The interplay between weights and costs is thus similar to a tradeoff between exploration, 
based on local possible movements, and exploitation, based on long-term preferred movements.

Graph node centrality
The concept of graph node centrality has many interpretations, and for most of the interpretations there exists 
a lengthy catalog of different proposed measures, which are often derived for different application purposes. In 
addition there have been efforts of stating axioms that a centrality measure should have22,23. Also, as discussed 
by Kolaczyk24, there have been attempts to define a typology of centrality measures, for instance by Borgatti25. 
In an interesting recent work, Brandes and Hildenbrand study the problem of finding minimal graphs for which 
different centrality measures rank different nodes as the most central26. In this section, we make a brief survey of 
the different centrality measures with special focus on betweenness centrality measures.

There are different possibilities in whether or not the source and target nodes, s and t should be considered 
also as intermediate nodes of a path for centrality considerations. In this paper we use the convention where the 
first and last node of a path do affect the betweenness scores. For betweenness measures based on shortest paths 
this choice only changes the overall betweenness scores by an additive constant in a strongly connected graph, 
and thus only affects the ranking of nodes when the network has several components. In contrast, when meas-
uring betweenness based on random walks, further visits to the starting node s after the first step may increase 
the betweenness score of node s and thus may also affect the rankings. Betweenness measures are also often nor-
malized, e.g., according to the number of possible node pairs, when considering shortest paths between nodes. 
However, in this paper we leave the normalization out of consideration in all the definitions, because it never 
affects the rankings of nodes within a strongly connected network.

Betweenness centralities.
Betweenness based on shortest paths. Possibly the best-known centrality measure of all is the original between-
ness centrality of Freeman1–3, which counts the fraction of shortest paths between a pair of nodes that an interme-
diate node lies on and sums these fractions over all node pairs. We will also refer to it as shortest path betweenness, 
for specificity. Formally, the shortest path betweenness centrality of node i can be expressed as

∑=
( ∈ )

,
( ), =

⁎

⁎
P

P
C

n i
1

i
s t

n
st

st1

where ( ∈ )⁎Pn i st  means the number of paths that contain node i. Notice that if there are more than one shortest 
path connecting s to t, each of these paths will contribute a score of / ⁎P1 st  to the betweenness of the nodes on 
them.

There are several variations of the shortest path betweenness defined above. A thorough review of these 
variants and their efficient computation was provided by Brandes27. One variant, called the load centrality9,27,28, 
replaces the fractional term inside the sum in (1) with the branching probability of a path, i.e. the probability 
that a random walker moving in the directed shortest path graph from s to t follows a path that contains node i, 
when at each branching point in this graph it selects the edge to follow with uniform probability over all outgo-
ing edges. For illustration of the difference between the shortest path betweenness and load betweenness, see27. 
With weighted graphs the two measures are usually equal, as there often exists a unique shortest path between all 
nodes, especially if the weights are real-valued.

In what follows, we will need to consider another variant of the shortest path betweenness, which we have not 
encountered in the literature previously. We call this measure the shortest path likelihood betweenness. Similarly to 
the load centrality, we define the likelihood betweenness by replacing the term inside the sum in (1) with the 
normalized likelihood of a shortest path containing node i. The likelihood of a shortest path ℘ ∈⁎ Pst is the product 
of the reference transition probabilities along that path, i.e. the same as its reference path probability (℘ )

⁎Pst
ref . 

Note, that the likelihood is different from the branching probability which is based on transition probabilities in 
the directed shortest path graph from s to t, instead of the whole graph. The normalized likelihood of ℘⁎ is then 
obtained by normalizing by the sum of likelihoods of all shortest paths, (℘ )/∑ (℘)℘∈ 

⁎ ⁎PP Pst st
ref ref

st
, which is also the 

contribution of ℘⁎ to the shortest path likelihood betweenness of all the nodes along it. The shortest path likeli-
hood betweenness is introduced here for the sake of completeness because it is the limiting function of both RSP 
betweenness measures presented in this paper. However, the differences between the three variants of shortest 
path betweenness presented above are very small, and in practice they provide very similar rankings of the nodes 
of a network.

Betweenness based on random walks. Betweenness has also been considered with respect to other than just 
shortest paths, namely by considering random walks or flows on a network. The first such measure was proposed 
by Freeman29, who defined the flow betweenness centrality as the amount of flow through a node over maximum 
flows between all node pairs. The idea of considering flows was developed further by Newman4, who defined the 
current flow betweenness centrality, which measures the centrality of a node as the total sum of electrical current 
that flows through it, when considering all node pairs as source-sink pairs of a unit current flow. The current flow 
betweenness was also coined the random walk betweenness centrality because of the well-established connection 
between electric current flows and random walks30. Indeed, it can also be interpreted as the sum of expected 
net flows of a random walk over the edges connected to a node, meaning that the number of times that the walk 
enters or leaves the node along an edge cancel each other out. Brandes and Fleischer5 developed an algorithm 
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which improves the efficiency of computing the current flow betweenness for all nodes of a network. The proper-
ties and computation of the current flow betweenness have also been studied by Bozzo and Franceschet31.

Instead of considering net flows, a more straightforward definition of betweenness based on random walks is 
simply the overall expected number of visits to a node during a random walk. For arbitrary, non-absorbing walks, 
this quantity is not well-defined. However, it is possible to compute the proportion of steps of such a walk that the 
walker spends in a node. This is equal to the probability of finding the walker at the node after a long walk, i.e. the 
stationary probability of the node. The stationary probabilities define the stationary distribution, which is the 
unique vector π that satisfies the equation π π= ( )Pref  , given that the network is strongly connected and aperi-
odic. It is well known that for such graphs the stationary probabilities are proportional to the recurrence times 
and, if the graph is undirected, to the degree centralities (or strength, for weighted graphs)32. For other graphs, the 
stationary distribution is not necessarily unique or may not even exist. To overcome this issue, for instance, the 
PageRank algorithm33 uses a teleportation probability which transforms any kind of a graph into a strongly con-
nected approximation and computes the stationary distribution on the transformed graph.

Even though the expected number of visits to a node is not well-defined for arbitrary walks, it is well-defined 
for absorbing walks. A bit surprisingly, we have discovered that when computed over all absorbing random walks 
on a strongly connected aperiodic directed graph, this measure is equal to the stationary distribution, up to a 
multiplying constant. The multiplying constant is the sum, over all s-t-pairs of the graph, of average hitting times, 
i.e. the expected number of steps along an absorbing path from s to t, denoted by 〈 ~c〉 st. This result is not com-
pletely obvious and we have not found it mentioned explicitly in the literature. The proof of the result is omitted 
from the paper, as it is not relevant for this work, although the result itself is relevant for considering the 
RSP-based betweenness measures.

The RSP betweenness centrality measures proposed in this paper are also based on random walks, more par-
ticularly on the RSP framework. The first betweenness measure is based on counting the expected number of 
passages through a node of a random walker moving according to the RSP probabilities, while the other computes 
the expected net flow of walkers going through the node.

In fact, the RSP betweenness measures coincide with betweenness measures proposed recently, independently 
of our work, by Bavaud and Guex20. They propose a framework which interpolates between shortest paths and 
random walks by the minimization of free energy in a similar fashion as the free energy derivation of the RSP 
framework of Kivimäki et al.8. One main difference in the work of Bavaud and Guex20, compared to the deriva-
tion of RSP’s, is that a more general form of energy functionals, besides the expected length (or cost) of a path, is 
considered. In addition to that the relative entropy is considered with respect to transition probabilities instead 
of path probabilities, as is done in the definition of RSP’s. The path distribution derived by Bavaud and Guex20 
can, however, be shown to equal the path distribution defined in the RSP framework, although this requires some 
lengthy and uninteresting derivations and is left out of this paper. The relation between the two approaches has 
also been studied by in the more recent work of Guex and Bavaud34. Compared to the work of Bavaud and Guex20, 
our work focuses more on the computational and practical aspects of the methodology. Thanks to the recent 
developments in the RSP framework8, we are also able to present efficient algorithms for computing the quantities 
in question and illustrate the use of the methodology with practical examples.

Also closely related to the idea behind the RSP betweenness centralities is the bag-of-paths (BoP) betweenness 
centrality21. It is based on the BoP framework, which also defines a Boltzmann distribution on the paths of a 
graph in a similar way as the RSP framework. The BoP betweenness is then defined as the a posteriori probability 
that a path selected according to the Boltzmann distribution visits an intermediate node i, when it walks from 
node s to node t according to the BoP probabilities. The BoP betweenness is also defined for groups and used for 
semi-supervised classification of graph nodes. A similar group betweenness measure can be defined from the RSP 
betweenness measures proposed here, but this is left out of the scope of this paper. The node classification task 
was also tackled by Devooght et al.35 by using a modularity measure derived from the BoP framework.

Other centralities. Besides betweenness, centrality has also been characterized with other additional terms 
such as closeness, feedback and vitality, to name a few36. There have also been many efforts for stating axioms that 
would define centrality starting from the work of Sabidussi22 and recently by Boldi and Vigna37. The concept of 
centrality can also be considered with respect to edges, instead of nodes. Although in this work we focus on cen-
trality according to the betweenness interpretation, we nonetheless mention some of the other interpretations in 
this section, as the RSP framework could be combined with many of them too.

Closeness centrality measures are based on some interpretation of overall proximity of a node to the other 
nodes of a network. The shortest path closeness centrality of node i is classically defined as = /∑ ∆=C 1i j

n
ij1 , where 

Δ ij is the shortest path distance between nodes i and j22,38. Considering communication on a network, between-
ness centrality can be interpreted as the amount of control of a node, whereas closeness centrality measures the 
efficiency of the communication of the node2,39. Instead of using the shortest path distance to define closeness 
centrality, other distances can be used too. For instance, White and Smyth40 define Markov centrality by replacing 
the shortest path distance in the closeness centrality definition with the average hitting time of an unbiased ran-
dom walker, i.e., essentially the (unsymmetrized) commute time distance. Related to that, Brandes and Fleischer5 
considered a current flow analogy of closeness centrality by replacing the distance between two nodes with their 
potential difference. They managed to show that the current flow closeness centrality is equivalent to the informa-
tion centrality defined by Stephenson and Zelen41. The equivalence has been confirmed with another proof by 
Bozzo and Franseschet31. One subject for future research will be to extend closeness centrality by replacing the 
shortest path distance with RSP-based distance measures.

Feedback centrality measures are in many ways related to random walk based centrality measures. The eigen-
vector centrality42 is the archetype feedback measure and is based on the idea that the centrality of a node should 
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be the sum of the centralities of its neighbors. The solution of the formulation is the eigenvector of the adjacency 
matrix corresponding to the largest eigenvalue. The previously mentioned PageRank33 can also be considered 
in this sense and formulated as an eigenvector. The Katz centrality43 is based on the same idea of feedback, but 
considers also longer dependencies than only the neighbors of a node. The effect of longer dependencies decays 
according to the distance between nodes. The subgraph centrality18 and communicability betweenness19 are based 
on similar ideas using the matrix exponential of the adjacency matrix. The relationship between all the feedback 
centrality measures listed above has been studied by Benzi and Klymko44.

Randomized shortest paths betweenness centralities
In this section we introduce two betweenness measures based on the randomized shortest paths (RSP) frame-
work6–8. These measures both generalize the shortest path likelihood betweenness measure defined in the section 
“Betweenness based on shortest paths”. In addition to that, one of the two measures also generalizes the stationary 
distribution of the graph while the other generalizes the current flow betweenness centrality. The RSP framework 
has previously been used for defining distance measures between graph nodes, which has proven useful for many 
data analysis tasks such as clustering and classification of graph nodes6,8.

Randomized shortest paths. In its core, the RSP framework6–8,45 is based on a probability distribution 
over paths between two nodes of a graph. The framework can also be formulated considering all paths, contain-
ing non-absorbing paths, but in this work, for simplicity, we restrict the framework to absorbing paths. The RSP 
probability distribution can be defined through either minimization of expected cost subject to a relative entropy 
constraint, or minimization of free energy8,20. Here we recall the former definition of minimization of expected 
cost, which is perhaps a more intuitive one.

The RSP framework is based on the probability distribution over the set Pst of absorbing s-t-walks for which 
the expected cost of the walks is minimal, when constrained with a fixed relative entropy with respect to the ref-
erence path probability distribution. Formally, we seek for the solution to the following problem

∑ ∑(℘) (℘)










( || ) =

(℘) =
( )

℘∈
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J J
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stP

ref
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st st
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where (℘)Pst
ref  is the reference path probability, (℘)c̃  the overall cost of path ℘ and ( || ) J P Pst st

ref  is the relative entropy, 
or Kullback-Leibler divergence, which is set to a desired level J0.

The solution of this minimization is a Boltzmann distribution (for details, see6,7):
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( )℘∈

 ˜Z
P
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4
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is the partition function of absorbing walks from s to t and the inverse temperature parameter β controls the diver-
gence from the unbiased random walk probabilities. When applying the framework, the user is supposed to input 
the value for β, instead of the relative entropy J0. Low and high values of β correspond, respectively, to low and 
high values of J0 and, inversely, to high and low temperature. In other words, for high values of β (low tempera-
ture), the path distribution Pst focuses on shortest paths, whereas for low values of β (high temperature) more 
random paths are also preferred. It is also possible to find the model corresponding to a particular value of J0, for 
instance, with a binary search over different values of β.

The partition function Zst plays an important role in the derivation of the computation of many quantities 
related to the RSP framework, as can be seen in the following. Concerning the computation of Zst, we refer to 
earlier work8,46 which shows that it can be expressed as

= ,
( )

Z
z
z 5st

st

tt

where zst is the element (s, t) of the fundamental matrix of non-absorbing paths, defined as

β= ( − ) , = (− ), ( )−
Z I W W P Cwith exp 61 ref

where ○ and exp denote the element-wise matrix multiplication and exponential, respectively. The matrix W, 
defined from the reference transition probability matrix Pref and the cost matrix C, is a substochastic matrix and 
can be interpreted as defining a killed random walk. Consequently, the partition function Zst can then be inter-
preted as the probability of a walker surviving the walk from s to t (see8,46 for details).

The simple RSP betweenness. We first define the simple RSP betweenness centrality of a node i with 
respect to absorbing paths from s to t, as the expected number of visits through i over all s-t-walks, denoted by 
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( , )n s ti , with respect to the RSP probabilities of Equation (3). This can further be expressed based on the expected 
number of passages through edges leaving from node i over all s-t-walks, denoted by η ( , )s tij , as:

∑ η( , ) = ( , ) = ( , )
( )( , )∈

s t n s t s tbet
7

i i
j i j E

ij
RSP

:

The function beti
RSP can be useful for visualizing path distributions and for path planning tasks between two fixed 

nodes of the graph45,47. Moreover, it can be used to investigate how central an intermediate actor is with respect 
to, for instance, the communication between two other actors in a social network.

We then define the overall simple RSP betweenness centrality of node i as the sum of contributions over all 
source-target pairs, on the graph:
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Next, we derive the method for computing this quantity in closed form. Let us denote by η( → ∈ ℘)i j  the 
number of times that the edge (i, j) is traversed along the path ℘. Then, by writing out the expression of η ( , )s tij , 
the use of the partition function in the computation of the RSP quantities becomes evident:
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Thus, the expected number of transitions i →  j over s-t-walks can be computed by differentiating the logarithm of 
the partition function, which is common knowledge in statistical physics (see, e.g.,48). Note that (9) holds only if 
there exists a path from s to t. Otherwise, naturally, η ( , ) =s t 0ij .

By combining Equations (5) and (9), the computation of ( , )n s tij  can be written as:
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Therefore, we need to compute ∂zst/∂cij, which can be achieved using matrix formalism. If we denote by ei the 
(n ×  1)-vector whose element i is 1 and others are 0, then
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 (see, e.g.,49,50). Equation (10) can therefore be rewritten as
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Furthermore, the total flow transiting through node i, given that i ≠ t, is
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The expression on the right-hand side of Equation (13) can be further simplified in the following way. We 
know that (I −  W)−1(I −  W) =  I, which implies that Z(I −  W) =  I and therefore that Z =  ZW +  I, or element-wise, 

δ= ∑ +=z w zit j
n

ij jt it1 , where δit is the Kronecker delta. However, the term δit can be discarded, when considering 
Equation (13), because when i =  t, we anyway have (zsi/zst −  zti/ztt) =  0. Thus, Equation (13) simplifies to
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Finally, the simple RSP betweenness centrality (Eq. (8)) can be computed with matrix manipulation as
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where diag(X) and Diag(X) are, respectively, a column vector and a diagonal matrix containing the diagonal of 
X, X÷ denotes the element-wise reciprocal matrix, i.e., = /÷x x1ij ij and the superscript t denotes elements from 
the transposed matrix, i.e., =z zij ji

t . The vector betRSP of all betweenness values is computed accordingly.
The pseudocode for computing the simple RSP betweenness for all nodes is presented in Algorithm 1. In con-

clusion, the simple RSP betweenness scores of all nodes can be computed by performing the matrix inversion 
Z =  (I −  W)−1 and then simple matrix operations according to Equation (15). Thus, the computational bottleneck 
of the algorithm is the matrix inversion, which, in general, has time complexity ( )O n3  and space complexity ( )O n2 , 
because of which the method is currently not practical with very large networks.

Algorithm 1-Computing the simple RSP betweenness vector of a graph G.
Input:
  – A directed strongly connected graph G with n nodes.
  – The n ×  n reference transition probability matrix Pref (defined from the adjacency matrix as Pref =  D−1A) 
  – The n ×  n non-negative cost matrix C 
  – The inverse temperature parameter β.
Output:
  – The n ×  1 simple RSP betweenness vector betRSP.
 1. W ←  Pref ○ exp[− βC] 
 2. Z ←  (I −  W)−1 
 3. Z÷ ←  eeT ÷  Z 
 4. betRSP ←  diag(Z(Z÷ −  nDiag(Z÷))TZ) 
 5. return betRSP 

RSP net betweenness. Instead of only considering the overall outgoing flow of random walkers, as in the 
definition of Equation (8), it may in some cases make more sense to compute the net outgoing flow6, i.e. so that 
the outgoing and ingoing flows through one edge neutralize each other. This corresponds to the random walk 
interpretation of the current flow betweenness in undirected graphs4,5,31. According to this approach, we define 
the RSP net betweenness centrality of node i as

∑∑ ∑ η η= ( , ) − ( , )
( )= = ( , )∈

s t s tbet
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j i j E
ij ji
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The computation of this quantity for all nodes at once is a bit more involved than in the case of the simple RSP 
betweenness, because of the absolute value in the expression. A naïve algorithm would loop over all s-t-pairs and 
compute the contribution of the corresponding paths to each intermediate node. However, a more efficient solu-
tion is to perform a loop over each edge of the network, compute separately the net flow through that edge over 
all s-t-paths, and to add this net flow to the betweenness score of the starting node of the edge. This change in 
looping strategy improves the complexity by a factor from (n2) to (m), which makes a big difference, when 
dealing with a sparse network. The faster computation can be achieved by writing out the matrix Nij, whose ele-
ment (s, t) is η ( , )s tij  from Equation (12):
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−




=






÷ − ÷ ( )





,

( )
s t

z z
z

z z
z

w wN z z Z e z z diag Z[ ]
17

ij
st ij

si jt

st

ti jt

tt
ij i j i j

st
ij

c r T c r T

where ○ and ÷  denote elementwise matrix multiplication and division, respectively, zi
c and z j

r  denote the 
(n ×  1)-vectors corresponding, respectively, to the i-th column and j-th row of matrix Z and e is the (n ×  1)-vector 
whose all elements are 1.

The overall net flow through edge (i, j) can then be computed as
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after which the betweenness score of each node can be simply computed by summing up the contributions of each 
edge connected to the node:
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Algorithm 2 contains the pseudocode for computing the RSP net betweenness. In principle, the algorithm can 
be used with directed graphs and the result can be interpreted according to the net flow of random walks, even 
though the electric current interpretation only makes sense with undirected graphs. With undirected graphs, 
Algorithm 2 should be altered so that it only considers each undirected edge only once and increments also the 
betweenness of node j in addition to node i at step 10. This reduces the computation time on undirected networks 
by a half. Algorithm 2 also contains the same matrix inversion as Algorithm 1 of time complexity ( )O n3 . In addi-
tion to this, the other consuming task is the loop over all m edges of the graph in steps 4.–11., inside which ele-
mentary matrix operations of time complexity ( )O n2  have to be performed. Thus, the total time complexity of the 
algorithm is ( + )O n mn3 2 .

Although the RSP net betweenness can be computed for directed graphs, we have not found a good use case 
for this purpose. The definition on directed graphs is not as intuitive as the simple betweenness and, moreover, 
current flows and the current flow betweenness are normally defined only for undirected graphs. Nevertheless, it 
is possible to use Algorithm 2 with directed graphs, in addition to which it is possible to derive a similar algorithm 
for computing the directed version of the current flow betweenness based on the pseudoinverse of the Laplacian 
matrix of the graph.

Algorithm 2-The RSP net betweenness vector of a graph G.
Input:
  Same as Algorithm 1.
Output:
  – The n ×  1 RSP net betweenness vector betRSPnet.
 1. W ←  Pref ○ exp[− βC] 
 2. Z ←  (I −  W)−1 
 3. betRSPnet ←  0 
 4. for i =  1 to n do

 5.  ←Z Zei i
c , ←Z Z ej j

r 

 6.  for all j such that (i, j) ∈  E do

 7.   ←Z Zej j
c , ←Z Z ej j

r   
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 10.   ← + −bet bet e N N ei i
ij jiRSPnet RSPnet  

 11.   end for
 12. end for
 13. return betRSPnet 

RSP betweenness centralities at the limit β → ∞. The simple RSP betweenness centrality counts the 
expected number of visits to each node during RSP’s between all source-target pairs of the graph. In the low tem-
perature limit, i.e. when β →  ∞, the RSP probability distribution of Equation (3) focuses solely on the shortest 
paths of the graph and the expected number of visits to a node on a shortest path approaches the probability of 
following that particular path. Moreover, when β →  ∞, for all paths ℘ ∈ Pst , whose cost (℘) >˜ ˜⁎c cst , 

β β(− (℘)) (− )˜ ˜⁎c cexp exp st , because of which the partition function Zst of Equation (4) becomes dominated by 
the terms determined by the shortest paths. As a result,
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In other words, the RSP probability of a shortest path approaches the normalized likelihood of the path, which 
is also the contribution to the betweenness scores of the nodes along the path. Thus, the simple RSP betweenness 
converges to the shortest path likelihood betweenness.

The same result holds for the RSP net betweenness. Intuitively, as the path distribution focuses more and more 
on the shortest paths, one of the two terms in the net flow in Equation (16) becomes zero, as the walker will only 
move in one direction along each edge for a given s-t-pair. Thus, the RSP net betweenness also approaches the 
shortest path likelihood betweenness, as β →  ∞.

RSP betweenness centralities at the limit β → 0+. In the high temperature limit, as β →  0+, 
β(− (℘)) →c̃exp 1 for all ℘, and the RSP probabilities of Equation (3) converge to the unbiased random walk 

probabilities, determined by the reference transition probabilities, i.e.

→ . ( )β→ +
 P P 21st st0

ref

This means that the simple RSP betweenness converges to the expected number of visits to a node over all 
absorbing walks with respect to the unbiased random walk probabilities. As presented in the section “Betweenness 
based on random walks”, this measure is proportional to the stationary distribution, if the network is strongly 
connected and aperiodic, where the multiplicative factor is the sum of average hitting times between all s-t-pairs. 
Thus, for undirected networks, the measure becomes proportional to the degree (or strength) centrality. In the 
same limit, as β →  0+, the RSP net flow converges to the current flow betweenness centrality4,5, as the edge flows 
η ( , )s tij  converge to the potential differences of adjacent nodes.

Experiments
The interpolation between common centrality measures already makes the simple RSP and RSP net betweenness 
centralities interesting. Furthermore, there are also cases in which the RSP betweenness centralities can be more 
relevant than their limit functions, the shortest path likelihood betweenness, the current flow betweenness and 
the stationary distribution. In this section these benefits will be illustrated, first with artificially generated net-
works, and later with two real networks of very different nature. The artificial examples show the behavior of the 
RSP betweenness measures in a network consisting of communities. The first real network is the street network of 
Lower and Midtown Manhattan, which serves as an example of an undirected network. The second is a subset of 
the directed Wikipedia hyperlink network.

All of the example cases presented here indicate benefits of using the RSP betweenness measures over the 
shortest path and random walk based betweenness measures. The benefits are clearer in the case of the simple 
RSP betweenness than the RSP net betweenness. The simple RSP betweenness is also more preferable in terms of 
interpretability and computational efficiency compared to the net betweenness. However, the decision of which 
approach to use depends on the actual application and its premises. We have also experimented with several 
other types of graphs, including, for instance, examples presented by Brandes and Hildenbrand26, which have 
been designed to differentiate centrality measures. However, for these, and other simple cases, there is no clear 
difference in considering RSPs, but rather the ranking of nodes with intermediate values of β are in essence the 
same as with the limit values of β.

Overall betweenness of an in-between community. One possible use for the RSP betweenness meas-
ures is the detection of groups of nodes that are central in a network. Consider a network consisting of three 
disjoint communities, A, B and C which are highly intraconnected but loosely interconnected. In addition, com-
munity B is connected to communities A and C, which, however, do not share any edges with each other. In other 
words, community B is in between communities A and C and all paths between nodes of communities A and C 
have to go through community B. Such an organization is possible, for instance, in a hierarchical social network, 
where community B could represent a directoral board of a company. If, moreover, the graph is in general suffi-
ciently sparse, then the shortest paths between communities A and C will run through only a few of the nodes of 
community B. Thus, betweenness measures based on shortest paths will only highlight those nodes of community 
B, whereas the other nodes of community B will get no contribution from the connections between communities 
A and C. For some applications, however, the nodes of community B should, in general, be considered more 
in-between than the nodes of communities A and C. Defining betweenness based on random walks, and espe-
cially RSP’s can help in this matter, as will be demonstrated next.

We first consider a simple example of a regular graph with communities organized in the order described 
above. The example is depicted in Fig. 1 which shows a 5-regular graph containing three communities of 6 nodes, 
where one of the communities is connected to the other two. The graph has been constructed by considering 
three cliques of 6 nodes, and by removing and adding appropriate links to obtain the desired structure. Figure 1 
contains the heat plots of the betweenness values of the nodes with the simple RSP betweenness (Fig. 1(b)) and its 
limit functions, i.e. the shortest path likelihood betweenness (Fig. 1(a)), which in this example equals the standard 
shortest path betweenness, and the stationary distribution multiplied by the sum of average hitting times (see 
section “RSP betweenness centralities at the limit β →  0+”), which – as the network is undirected – corresponds 
to the degree centrality (Fig. 1(c)) up to a scaling factor.

The heat plots show that the simple RSP betweenness highlights the nodes of the central community more 
than its limit functions. The low temperature limit function, i.e. the shortest path likelihood betweenness high-
lights the nodes connecting the different communities, but the betweenness scores of the two other nodes in the 
central community are of the same magnitude as the scores of the other nodes in the peripheral communities. In 
the high temperature limit the simple RSP betweenness converges to the degree centrality, which is constant for 
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all nodes, as the graph is regular. Although the heat plots show the actual betweenness scores, and not the rank-
ings of the nodes according to them, the rankings also comply with the above findings.

Using the RSP net betweenness (for which the results are not illustrated here), however, brings no benefit in 
this example, when compared to its limit functions. Namely, the current flow betweenness ranks the nodes of 
the central community a bit higher than the shortest path likelihood betweenness, but the RSP net betweenness 
does not increase those ranks with any intermediate values of β. On the other hand, the current flow betweenness 
values of the central community nodes are relatively much lower than the simple RSP betweenness values of 
Fig. 1(b). However, the RSP net betweenness, can be beneficial in a similar setting, but with a bit of more com-
plexity, which will be shown next.

For a more complex example, we generate random networks with the LFR algorithm of Lancichinetti et al.51 
designed to construct scale-free networks with a community structure. This experiment confirms further the 
usefulness of the simple RSP, as well as the RSP net betweenness measure. We generated graphs consisting of three 
communities, A, B and C, and then simply removed the edges between two of the communities A and C. The size 
of the communities was set to 120 nodes, resulting in networks with 360 nodes, the average degree of the network 
was set to 10, the maximum degree to 120 and the power-law exponent of the degree distribution to − 2. We tested 
three different values of the mixing coefficient μ =  {0.01, 0.05, 0.1}, which essentially determines the probability of 
having an edge between two communities after the degrees of nodes have been fixed. For each generated network, 
we computed the shortest path likelihood betweenness, the degree centrality, the current flow betweenness as well 
as the simple RSP and RSP net betweenness scores with several different values of the parameter β. We then rank 
the nodes according to each list of betweenness scores (with rank 1 naturally meaning the node with the highest 
score) and compute the average rank of the nodes in the central community B. We repeat the graph generation 
and the computation of average ranks 200 times and report the mean average rank of the nodes in the in-between 
community over these 200 runs.

The results are plotted in Fig. 2, which shows that in most cases both the simple RSP and the RSP net between-
ness, with some intermediate values of β, rank the nodes of the in-between community more central than their 
limiting functions. The plots show the mean average rank, as well as the standard error of the mean, of the nodes 
of the central community B with different values of the inverse temperature β. The values at the extremes of 
the plots correspond to the results obtained with the limiting functions, with the left end corresponding to the 
low-temperature (high β) case, i.e. the shortest path likelihood betweenness in both plots, and the right end to the 
high-temperature (low β) case, i.e. the degree centrality in Fig. 2(a), and the current flow betweenness Fig. 2(b). 
It is evident from the figures that with some intermediate value of β the RSP betweenness measures in this setting 
often manage to rank the nodes of the central group B higher than the limit functions by taking into account other 
connections besides only the shortest ones. Note that this does not mean that the RSP betweenness rankings are 
lower than the rankings with the limit functions on each individual network, but that the result holds on average 
over the 200 generated networks. The fluctuations of the rankings are indicated by the error bars showing the 
standard error of the mean over the 200 networks.

Manhattan street network. One promising application area for RSP’s are routing or path planning prob-
lems. RSP’s allow the modeling of routing in situations that include an element of randomness, such as navigation 

Figure 1. A 5-regular graph with three communities, and the heat plots of its betweenness values with the 
shortest path likelihood betweenness (a), the simple RSP betweenness (b), and the degree centrality (c).
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of people or animals in an environment. On the other hand, by definition, RSP’s can be used for planning paths in 
an optimal way while keeping the predictability of the path at a desired level. RSP’s could also be used for avoiding 
congestion problems in transportation and traffic networks.

We illustrate the use of RSP’s for routing in a network by analyzing the street network of Midtown and Lower 
Manhattan. We have extracted this network from http://www.openstreetmap.org52 (see Materials). The nodes in 
the network correspond to intersections and the edges are the street segments between the intersections. We treat 
the network as undirected, and analyze the network using both the simple RSP and the RSP net betweenness.

The length of each street segment is assigned as the cost of the corresponding edge. Accordingly, the overall 
cost of a path is its overall length. However, we define here the reference transition probabilities of the random 
walk according to the degree of each node, = /p d1ij i

ref , i.e. only according to the number of edges connected to 
the node and independent of the edge costs. This seems like a reasonable choice for moving in a street network, if 
we consider that the decision of direction of the random walker in an intersection is not affected by the lengths of 
the street segments. Remember that this means that the shortest path likelihood betweenness on the graph is 
based on the edge costs, whereas the random walk based betweenness measures do not depend on the costs, but 
only the degrees of nodes.

The heat plots of the simple RSP and the RSP net betweenness measures and their limit functions on the 
Manhattan street network are depicted in Fig. 3. At low temperatures (large β), both RSP based betweenness 
measures converge to the shortest path likelihood betweenness, shown in Fig. 3(a). Figure 3(b,d,f) show the 
betweenness values obtained with the simple RSP betweenness, and Fig. 3(c,e,g) the values obtained with the RSP 
net betweenness with different values of β. As the network is undirected and connected, and because we use refer-
ence probabilities based only on degrees, instead of costs, the limit function of the simple RSP betweenness, when 
β →  0+, is equal to the degree centrality multiplied by a constant, shown in Fig. 3(h). Finally, the limit function of 
the RSP net betweenness is the current flow betweenness, which is presented in Fig. 3(i).

This example shows one strength of both of the RSP betweenness measures. It is evident from the plot that the 
shortest path betweenness is focused on Broadway, which functions as a diagonal shortcut in many routes on the 
grid-like Midtown. However, when β is decreased, both RSP based measures rank highest the intersections along 
the FDR Drive on the eastern shore. This is mainly caused by the sparsity of streets on the east shore close to the 
residential areas of Stuyvesant Town and Peter Cooper Village. As a result, the FDR Drive is a vital connection 
between the upper and lower eastern parts of the map. This aspect is not clear from the shortest path likelihood 
betweenness, but becomes apparent by computing the RSP-based betweenness values. The current flow between-
ness also ranks high the intersections of FDR Drive, but as a drawback the importance of Broadway is not as 
apparent as it perhaps deserves.

Thus, it seems that the RSP based betweenness measures, by assuming suboptimal navigation between points 
in the network, can highlight bottlenecks such as the FDR Drive on the Manhattan network better than the 
deterministic shortest path betweenness or the unbiased current flow betweenness. Comparing between the two 
RSP betweenness, it is hard to find any major differences. However, in a street network, when considering the 
movement of people or vehicles, the simple RSP betweenness has a more sensible physical interpretation than the 
net betweenness. Moreover, again, the computation of the simple RSP betweenness is much more efficient and its 
interpretation clearer than the net betweenness, which make it a more preferable candidate. On the other hand, 
there may also appear applications, for which the net flow interpretation is more relevant, in which case the net 
betweenness should be used.

A subnetwork of Wikipedia. Here we illustrate the behavior of the simple RSP betweenness on a directed 
real network. The network is a subnetwork of the hyperlink network of Wikipedia. It consists of the Wikipedia 
page on Network Science and the pages that contain a hyperlink to it, or are linked to from it. We only consider 
the largest strongly connected component of this network which contains 151 nodes. We only report the results 

Figure 2. The mean average rank ρB of the nodes of community B which lies in between two other communities, 
A and C, based on the nodes’ RSP betweenness (a) and RSP net betweenness values (b) over 200 networks of 360 
nodes generated using the LFR algorithm, as described in the body text (with low rank meaning a high 
betweenness score). The results are plotted for varying values of β and for three values of the mixing parameter μ 
with error bars indicating the standard error of the mean over the 200 runs. In both plots, the values at the left end 
of the curves (as β →  ∞) show the results with the shortest path likelihood betweenness and at the right end (as 
β →  0+) the results with the degree centrality in (a), and the current flow betweenness in (b).

http://www.openstreetmap.org
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obtained with the simple RSP betweenness, and not the RSP net betweenness, because the net flow interpreta-
tion is not particularly suitable when studying the World Wide Web, and in this example it does not provide any 
interesting results.

Figure 4 shows the change in the rankings of the nodes of the Wikipedia subnetwork with the simple RSP 
betweenness centrality (Fig. 4(b)), as well as with its limiting functions, the shortest path likelihood betweenness 

Figure 3. The interpolation between the shortest path and random walk betweenness measures with the 
simple RSP and the RSP net betwenness measures on the Midtown and Lower Manhattan street network. 
The network has been extracted from http://www.openstreetmap.org52 (for the data and code, see Materials).

Figure 4. The interpolation between the shortest path likelihood betweenness the stationary distribution 
with the simple RSP betwenness on the subnetwork of Wikipedia. The color of a node in the plots indicates 
its rank w.r.t. the betwenness measure; red and blue indicate high and low rank (i.e. high and low betweenness 
values), respectively. The dense cluster of nodes in the lower left corner consists mostly of nodes related to social 
networks. Below the plots, the 10 highest-ranked nodes are listed.

http://www.openstreetmap.org/
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(Fig. 4(a)), and the stationary distribution (Fig. 4(c)). In addition to the heat plots, there are lists of the top ten 
nodes according to each betweenness centrality. The plots directly illustrate the general structure of the net-
work, with a division to a tightly intra-connected cluster, appearing on the lower left corner of the plots, and a 
more sparsely connected peripheral part. The dense cluster comprises of nodes related mostly to social networks, 
whereas the other nodes correspond to more general concepts.

The shortest path likelihood betweenness ranks quite high many nodes from both of the two groups of nodes, 
i.e. general nodes such as the seed node ‘Network science’, whereas the stationary distribution focuses mostly on 
the dense cluster of nodes related to social networks, highlighting especially particular social networking web-
sites, such as ‘Myspace’ and ‘Pinterest’. Interestingly, even the seed node ‘Network science’ is not on the top ten 
nodes according to the stationary distribution. Here, again, the simple RSP betweenness makes an interesting 
compromise between these two extremes by respecting the high connectivity of the social networks cluster while 
also highlighting important, general nodes, such as ‘Mathematics’ and ‘Computer Science’ from the peripheral 
group.

This example indicates the potential of the simple RSP betweenness in analyzing and exploiting semantic and 
associative networks, as in53. Moreover, the example can help in applications of web design and marketing, for 
instance, considering situations where a user tries to find a certain page on a web site by following hyperlinks 
of that site. This can happen, for example by browsing videos on http://www.youtube.com, or when playing the  
http://www.thewikigame.com, in which the purpose is to find a target Wikipedia page from a starting page only 
by clicking the hyperlinks on the pages.

Conclusion
We have presented two new graph node betweenness centrality measures based on Randomized Shortest Paths. 
The first measure, the simple RSP betweenness centrality, counts the expected number of visits to a node, while 
the second, the RSP net betweenness, is based on the overall net flow over edges connected to a node. Both of 
these measures are parametrized generalizations of more traditional betweenness centrality measures. The RSP 
net betweenness and its high-temperature limit function, the current flow betweenness seem theoretically more 
elaborate than the simple RSP betweenness and its limit function, the stationary distribution. However, based 
on our experiments, the simple RSP betweenness seems to provide more satisfying and practical results than 
the net betweenness, in addition to which (and perhaps partly because) it is easier to interpret. In general, our 
experiments have shown that the RSP betweenness centralities can provide interesting insight into the role and 
importance of the nodes in a network in ways that the more traditional betweenness measures based on either 
shortest paths or unbiased random walks can not achieve.

The RSP betweenness measures could be further compared with other centrality measures, which could be 
a subject for future work. However, the main purpose of this paper is only to focus on betweenness centrality 
measures, to introduce the RSP based methods and their computation and to provide some examples where 
one could benefit from using them. Also, the paper only considers betweenness as a global measure on nodes, 
but the methods can easily be extended to other uses such as edge betweenness, betweenness w.r.t. a group of 
nodes or betweenness between groups of source and target nodes, all of which have relevant applications. One 
drawback of the RSP framework is that it often requires a full matrix inverse, because of which it is not currently 
practical for very large networks. One topic for future research is to develop methods that would allow estimat-
ing the RSP-based quantities for large networks either by using more specialized computational methods or by 
approximation.

Although the computational complexity of the RSP-based methods can be too high for very large problems, 
the implementation and the interpretation of the computations is quite straightforward. Moreover, the framework 
lies on solid theoretical grounds, and considering the generalization of shortest paths by randomization makes 
sense for many application scenarios. In our examples we have shown them to give promising results in high-
lighting nodes that belong to a central group of nodes, in detecting possible bottlenecks in street networks for 
navigation modeling and also in evaluating the visit rate of pages on the World Wide Web.

Materials. The Matlab code for the algorithms presented in the paper and the real world networks used in the 
experiments, along with a parser of the OpenStreetMap data, are available online at https://github.com/ikivimak/ 
RSP-betweenness.
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