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SUMMARY

Hydroxyproline O-arabinosyltransferases (HPATs) are members of a small, deeply conserved family of plant-

specific glycosyltransferases that add arabinose sugars to diverse proteins including cell wall-associated

extensins and small signaling peptides. Recent genetic studies in flowering plants suggest that different

HPAT homologs have been co-opted to function in diverse species-specific developmental contexts. How-

ever, nothing is known about the roles of HPATs in basal plants. We show that complete loss of HPAT func-

tion in Arabidopsis thaliana and the moss Physcomitrella patens results in a shared defect in gametophytic

tip cell growth. Arabidopsis hpat1/2/3 triple knockout mutants suffer from a strong male sterility defect as

a consequence of pollen tubes that fail to fully elongate following pollination. Knocking out the two HPAT

genes of Physcomitrella results in larger multicellular filamentous networks due to increased elongation of

protonemal tip cells. Physcomitrella hpat mutants lack cell-wall associated hydroxyproline arabinosides and

can be rescued with exogenous cellulose, while global expression profiling shows that cell wall-associated

genes are severely misexpressed, implicating a defect in cell wall formation during tip growth. Our findings

point to a major role for HPATs in influencing cell elongation during tip growth in plants.

Keywords: Arabidopsis thaliana, Physcomitrella patens, cell wall, tip growth, glycosylation, arabinosylation,

development, extensins, pollination, protonema.

INTRODUCTION

Glycosylation, or the addition of sugars to proteins, is a

common post-translational modification that serves sev-

eral functions including regulation of protein folding, sta-

bility and structure (Varki et al., 2009). The plant-specific

modification, hydroyxyproline O-arabinosylation, occurs as

linear oligoarabinoside chains primarily on hydroxypro-

line-rich glycoproteins (HRGPs), specifically members of

the extensin subgroup, as well as secreted signaling pep-

tides including the stem cell regulator CLAVATA3 (CLV3)

and related CLE (CLAVATA3/ENDOSPERM SURROUNDING

REGION) peptides (Roberts et al., 1985; Ohyama et al.,

2009; Hijazi et al., 2014). Though hydroxyproline O-arabi-

nosylation has been known for decades (Lamport et al.,

2011), the enzymes responsible for initiating oligoarabi-

nose chains, the hydroxyproline O-arabinosyltransferases

(HPATs), have only recently been identified (Ogawa-

Ohnishi et al., 2013). A genetic analysis of individual loss-

of-function mutations in the three Arabidopsis HPAT-

encoding genes initially revealed no phenotypes; however,

HPAT1 and HPAT3 were found to be redundantly required

for male gamete transmission and hpat1 hpat2 double

knockout mutant plants exhibited a wide range of develop-

mental defects, including longer hypocotyls for light-

grown seedlings, early flowering under long-day condi-

tions and precocious leaf senescence (Ogawa-Ohnishi

et al., 2013). Recently, the single hpat mutants and the

hpat1 hpat2 double mutant were further shown to be nec-

essary for full root hair elongation (Velasquez et al., 2015).

These pleiotropic phenotypes may be caused by cell wall

defects owing to under-arabinosylation of extensins
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(Ogawa-Ohnishi et al., 2013). Following glycosylation of

characteristic repeated Ser(Hyp)3–5 motifs (where Hyp is

hydroxyproline), extensins are secreted into the cell wall

and progressively cross-linked into a network that may

serve as a scaffold for further cell wall assembly (Epstein

and Lamport, 1984; Everdeen et al., 1988; Kieliszewski and

Lamport, 1994; Held et al., 2004; Cannon et al., 2008;

Showalter et al., 2010; Lamport et al., 2011). Extensin3/-

root-shoot-hypocotyl defective (ext3/rsh) is among the few

extensins with a reported mutant phenotype; cell plate for-

mation is disrupted in this mutant, leading to severe

embryonic growth defects (Hall and Cannon, 2002). In

hpat1 hpat2 double and hpat3 single mutants, the level of

arabinosylation of EXT3 is reduced, and hypocotyls of

hpat1 hpat2 double mutants exhibit thinner cell walls than

their wild-type counterparts (Ogawa-Ohnishi et al., 2013).

Other extensins with described mutant phenotypes include

ext6, -7, -10 and -12, which all exhibit shorter root hairs.

Similarly, in the root the function of other extensin-modify-

ing enzymes is also required for full root hair elongation

(Velasquez et al., 2011).

Our interest in HPATs and their roles in development

arose from our recent finding that mutations in the closest

tomato homolog of HPAT3, FASCIATED INFLORESCENCE

(FIN), cause dramatically enlarged shoot meristems that

result in branched inflorescences and flowers and fruits

with more organs, similar to Arabidopsis clavata3 (clv3)

mutants (Xu et al., 2015). The mature 12-amino-acid CLV3

peptide carries a linear triarabinose chain on a Hyp residue

at position 7 (Hyp7), and the presence of these sugars

increases the biological activity of exogenously added pep-

tide (Ohyama et al., 2009; Okamoto et al., 2013; Shinohara

and Matsubayashi, 2013). Likewise, application of [Ara3]

SlCLV3 can rescue fin meristem enlargement, demonstrat-

ing a critical role for HPATs in controlling stem cell prolifer-

ation (Xu et al., 2015). Notably, members of the CLE family

also regulate Rhizobia-induced nodule formation in

legumes (Reid et al., 2011; Okamoto et al., 2013), and a

supernodulating mutant from Medicago truncatula, root

determined nodulation1 (rdn1), and its pea ortholog (nod3)

are defective in the closest homolog of HPAT3 (Schnabel

et al., 2011). As HPAT3 has been shown to be largely

responsible for arabinosylation of CLE2, which is struc-

turally similar to Rhizobia-induced CLE peptides, loss of

CLE peptide arabinosylation is the likely basis of the rdn1/

nod3 phenotype (Ogawa-Ohnishi et al., 2013). Collectively,

these findings indicate that HPATs control many diverse

aspects of development in flowering plants.

Given that CLV3 arabinosylation was first discovered in

Arabidopsis and that the arabinose chain increases peptide

activity in vitro (Ohyama et al., 2009), we found it surpris-

ing that none of the single hpat mutants, or the reported

double mutant combinations, have defects in shoot meris-

tem size (Ogawa-Ohnishi et al., 2013). However, the diffi-

culty in recovering hpat1 hpat3 double mutant or hpat1

hpat2 hpat 3 triple mutant plants due to the male transmis-

sion defect has precluded a full exploration of possible

redundancy among the Arabidopsis HPAT genes. To

address this issue, we generated and characterized a com-

plete loss-of-function HPAT triple mutant. Simultaneously,

we knocked out the two HPAT genes in the model moss

Physcomitrella patens (Figures 1a and S1) to investigate

HPAT redundancy and specialization in plants more

broadly. The simple body plan of Physcomitrella lacks the

organs and tissues that are altered in angiosperm hpat

mutants, including multicellular meristems (fin), nodules

(rdn1) and pollen (hpat1 hpat3). Moreover, despite having

diverged from angiosperms about 450 million years ago,

the Physcomitrella and Arabidopsis HPAT proteins share

60–65% sequence identity (Figure S1b; Lang et al., 2008).

The stark contrast between the strong HPAT sequence con-

servation and the diverse pleiotropic hpat angiosperm

mutant phenotypes raises the question of the ancestral

function of hydroxyproline O-arabinosylation, and how

that role was co-opted into different developmental con-

texts over evolutionary time and in different plant lineages.

RESULTS

Arabidopsis hpat1 hpat3 double mutants are partially

male sterile due to a defect in pollen tube elongation

Individual T-DNA insertion mutations that eliminated tran-

scription of each of the three Arabidopsis HPAT genes

resulted in morphologically normal plants, as reported for

Figure 1. HPAT1 and HPAT3 function redundantly in pollen tube growth.(a) Maximum parsimony phylogenetic tree of the hydroxyproline O-arabinosyltransfer-

ase (HPAT) proteins from Arabidopsis, tomato (Solyc), Physcomitrella patens (Pp) and Selaginella moellendorffii (Smo) with bootstrap support values in nodes.

Arabidopsis and Physcomitrella proteins are marked in light and dark grey respectively. (b) Wild type (WT, Columbia-0), hpat1, hpat3 and hpat1 hpat3 mutant

plants all appear morphologically normal. (c) Fully expanded siliques from WT (top) and hpat1 hpat3 double mutants (bottom). (d) Number of seeds per silique

(mean � SD, n = 25) for WT (black bar), single mutants (dark grey bars) and hpat1 hpat3 double mutants (light grey bars), with and without pollination using

WT pollen. (e)–(h) HPAT expression. Though generally broadly expressed, HPAT3 transcripts are not detected in mature WT pollen (e), in hpat1 pollen (f), or in

WT in vitro germinated pollen (g). However, transcripts are detected in a mixture of developing pollen stages (h), like those shown in (i). (j), (k) qrt1 pollen tet-

rads stained with simplified Alexander’s viability stain. Like qrt1 alone (j), all members of a tetrad from qrt1 hpat1/+ hpat3 plants appear morphologically normal

(k). (l) Pollen tubes from WT and hpat1 hpat3 genotypes (inset) grown for 8 h in vitro. Arrows mark the tip of the pollen tube. (m) Distribution of pollen tube

lengths after 8 h of in vitro pollen tube growth (n = 250 tubes per genotype). (n)–(p) hpat3-2 mutants carry a pollen-specific GUS reporter within the T-DNA con-

struct allowing mutant pollen to stain blue. Seven hours after pollination of emasculated WT stigmas with hpat3-2 (n, o) blue pollen tubes can be seen in the

ovary and targeting ovules (arrows) and dissection of the style reveals GUS deposition in the ovule upon fertilization (o). After pollination with hpat1 hpat3-2/+
pollen, the double mutant pollen tubes penetrate poorly and fail to target ovules (p).
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both the original null alleles (hpat1-1, hpat2-1 and hpat3-1)

and those in use here (hpat1-2, hpat2-2, hpat3-1 and hpat3-

2; Ogawa-Ohnishi et al., 2013; Figure S2). A redundant

requirement for HPAT1 and HPAT3 in male transmission

has prevented the recovery of hpat1 hpat3 double mutant

plants, which could have sporophytic phenotypes such as

a defect in meristem size (Ogawa-Ohnishi et al., 2013).

HPAT1 and HPAT3 are linked on chromosome 5 (approxi-

mately 4 Mb apart corresponding to 15 cM), and due to

the reported transmission defect (Ogawa-Ohnishi et al.,

2013) homozygous hpat1 hpat3 double mutants would be

expected at very low frequencies in F2 populations segre-

gating for mutations in both genes. Therefore, we first iso-

lated recombinants in which one mutation was

homozygous and the other heterozygous. From 446 total

progeny from self-pollination of both hpat1-2/+ hpat3-1

plants (hereafter these alleles are designated hpat1 and

hpat3 unless otherwise noted, n = 240) and hpat1 hpat3/+
(n = 206) plants, we recovered a single hpat1 hpat3 double

mutant plant. This double mutant appeared morphologi-

cally normal during the vegetative and early reproductive

phases (Figure 1b), but developed shorter siliques com-

pared with wild type (WT) plants due to a reduced number

of seeds per silique (Figures 1c,d and S3a). Full seed set

could be achieved by applying WT pollen to hpat1 hpat3

stigmas (Figure 1d) or by expressing either HPAT1 or

HPAT3 under a pollen-specific promoter in the double

mutants (Schneidereit et al., 2003; Figure S3b). When pol-

len from hpat1/+ or hpat3/+ plants was used to pollinate

the WT, we observed no defect in the transmission of the

single mutant gametes relative to WT, confirming that

these genes act redundantly in pollen function (Table S1).

The redundant requirement for HPAT1 and HPAT3 for

efficient transmission of male gametes suggested that both

genes control pollen development. We therefore expected

to detect expression of both genes in developing pollen

grains and/or pollen tubes. HPAT gene transcripts are

detected in several tissues by RT-PCR (Ogawa-Ohnishi

et al., 2013), but we failed to detect expression of HPAT2

or, more surprisingly, HPAT3 in mature pollen (Figure 1e).

To test if HPAT3 expression is induced in the absence of

HPAT1 through a compensation mechanism, we checked

for expression of HPAT3 in hpat1 pollen, but still saw no

expression (Figure 1f). Similarly, HPAT3 expression was

not induced upon in vitro pollen germination (Figure 1g).

However, HPAT3 was expressed in a mixture of developing

pollen stages (Figure 1h,i), and microarrays analysis of

several precise stages of pollen development showed

HPAT3 expression in uninucleate microspores and bicellu-

lar pollen but not in immature tricellular pollen or mature

pollen grains (Honys and Twell, 2004), in agreement with

our observations. A few possible explanations exist for the

absence of HPAT3 expression in mature pollen when it is

redundantly required for pollen transmission. For example,

the HPAT3 protein may be sufficiently stable to maintain

activity during later pollen stages in the absence of detect-

able mRNA, it may be required during earlier developmen-

tal stages to modify a target protein that is then stored for

later use or HPAT3 could be induced in the pollen only

upon interaction with the female tissue. To better under-

stand the function of HPAT in male gamete transmission,

we next examined a number of stages of pollen develop-

ment and function.

Fertilization is a complex process requiring the success-

ful execution of a number of steps in order for the sperm

nuclei of the pollen tube to fuse with the egg and central

cells of the ovule to ultimately produce a viable seed

(Bleckmann et al., 2014). Pollen that fails to properly

develop, germinate, elongate or target ovules can lead to

unfertilized ovules and siliques with reduced seed set.

Therefore, we examined hpat1 hpat3 pollen at several

stages. To facilitate these observations, we crossed hpat1/+
hpat3 plants to the quartet1 (qrt1) mutant, whose products

of male meiosis fail to separate, resulting in fused pollen

tetrads (Preuss et al., 1994). Like qrt1 alone, pollen from

hpat1/+ hpat3 qrt1 plants produced four morphologically

normal grains per tetrad (Figure 1j,k), suggesting that, at

the level of gross morphology, the initial stages of pollen

development are unaffected by mutations in HPAT1 and

HPAT3.

We next germinated hpat1 hpat3 and WT pollen in vitro

and observed that the double mutant pollen tubes were

substantially shorter than WT pollen tubes (Figure 1l,m), in

agreement with previous observations of pollen from

plants segregating for hpat1 hpat3 double mutant pollen

(Ogawa-Ohnishi et al., 2013). To evaluate pollen function

in vivo we recovered a second transcriptionally null allele

of hpat3 (hpat3-2) from the Syngenta Arabidopsis Insertion

Library (SAIL) collection (Figure S2). A subset of SAIL lines,

including hpat3-2, carries a pollen-specific promoter driv-

ing b-glucuronidase within the T-DNA. Pollen and pollen

tubes carrying this T-DNA stain blue in the presence of X-

glucuronide, allowing discrimination between WT and

mutant pollen (Sessions et al., 2002). Like the original

allele of hpat3, hpat1 hpat3-2 pollen transmitted poorly,

making it difficult to recover double mutants (no double

mutants were recovered among 123 progeny from hpat1

hpat3-2/+ plants). To determine if shorter hpat1 hpat3 pol-

len tubes were responsible for the male transmission

defect, we pollinated WT stigmas with hpat1 hpat3-2/+ or

hpat3-2 pollen and stained pistils for GUS activity after 7 h.

By this time, pollen tubes from hpat3-2 single mutants had

reached ovules and successfully fertilized them, as seen by

blue staining in ovules (Figure 1n,o). In contrast, double

mutant pollen segregating from hpat1 hpat3-2/+ flowers

germinated and penetrated the top of WT ovaries but no

ovules were targeted for fertilization (Figure 1p). At this

point, all ovules were probably already fertilized by the
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hpat1 single mutant pollen. Thus, although at least some

double mutant pollen is capable of fertilization, as evi-

denced from the few seeds produced by homozygous

hpat1 hpat3 plants (Figures 1d and S3a), our results sug-

gest that hpat1 hpat3 pollen, due to a defect in pollen tube

elongation, is at a strong competitive disadvantage in the

presence of WT or single hpat1 or hpat3 mutant pollen.

Arabidopsis hpat triple mutants are not fasciated

Our work in tomato identified the FIN/HPAT3 gene as a

major regulator of shoot meristem size acting through the

arabinosylation of SlCLV3 (Xu et al., 2015). Meristem

enlargement, as seen in tomato fin mutants and the Ara-

bidopsis and tomato clv3 mutants, causes thickened

stems, branched inflorescences and the formation of extra

flowers and floral organs (Clark et al., 1995; Xu et al., 2015;

Figure 2e). None of the single Arabidopsis hpat mutants

showed a similar defect (Figure 2f–j). To address potential

redundancy between HPAT family members, we used our

hpat1 hpat3 double mutant to generate hpat1 hpat2 hpat3

triple mutant plants (Figure S4a–c). Like hpat1 hpat3 dou-

ble mutant plants, we found that hpat1 hpat2 hpat3 triple

mutants exhibited low fertility (Figure S4d,e) and shorter

pollen tubes in vitro (Figure S4f). Surprisingly, however,

both vegetative and inflorescence shoots were normal (Fig-

ure 2a–c), and flowers did not produce extra organs even

when grown under short-day conditions to prolong the

activity of the shoot meristem (Figure 2n). Other hpat1

hpat2 phenotypes reported previously (Ogawa-Ohnishi

et al., 2013) were not apparent in our double or triple

mutants, possibly due to differences in growth conditions.

Thus, the most severe phenotype observed in our com-

plete set of Arabidopsis single and higher-order hpat

mutants was a defect of pollen tube elongation.

clv3-2 (LD)

Ler (LD)2 mm

(a) (b) (c)

Col
hpat1
hpat3

hpat1
hpat2
hpat3

5 cm

hpat1 hpat3 (SD)

Col-0 (SD) hpat1 (SD) hpat2 (SD)

hpat1 hpat2 hpat3 (SD)

hpat1 hpat2 (SD)

hpat2 hpat3-2 (SD)

hpat3 (SD) hpat3-2 (SD)

(d)

(e)

(f) (g) (h)

(i) (j) (k)

(l) (m) (n)

Figure 2. hpat single, double and triple mutants are

not fasciated.(a)–(c) Wild type (WT) Columbia-0 (a),

hpat1 hpat3 double mutants (b), and hpat1 hpat2

hpat3 triple mutants (c) show similar growth and

morphologies under standard conditions. (d), (e)

Compared with the WT background, (Ler, d) clv3-2

shoots become progressively and severely fasciated

due to enlarged meristems, resulting in the initia-

tion of extra floral buds and floral organs in stan-

dard long-day (LD) conditions (e). (f)–(n) Even when

flowering and senescence are delayed by growth in

short-day (SD) conditions, hpat single, double and

triple mutant inflorescences appear normal and do

not initiate extra floral buds or floral organs relative

to WT plants (Columbia-0, f).
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Disrupted HPAT function in Physcomitrella patens

enhances vegetative network growth

The redundant role of Arabidopsis HPAT1 and HPAT3 in

pollen tube growth is in stark contrast with the tomato fin

meristem and Medicago rdn1 nodulation phenotypes

(Schnabel et al., 2011; Xu et al., 2015). These species-speci-

fic mutant phenotypes, which probably reflect loss of ara-

binosylation on extensins (hpat1 hpat3) and CLV3/CLE

proteins (fin and rdn1), suggest that HPATs have been co-

opted to function in distinct developmental contexts in

flowering plants. Yet the deep conservation of the HPATs

suggests critical functions across the plant kingdom and

raises questions about the roles of HPATs in distantly

related plants. To address this, we used the model moss

P. patens.

Early development in Physcomitrella involves the forma-

tion of a branching network of filaments that are collec-

tively known as protonema. Protonema, like pollen tubes,

root hairs and rhizoids, elongate by a ‘tip-growth’ mecha-

nism, in which secretion of new cell wall material is highly

polarized and directed to a single growing point, while the

remainder of the cell wall does not expand (Rounds and

Bezanilla, 2013; Becker et al., 2014). This contrasts with the

diffuse growth of other cell types, in which expansion hap-

pens more broadly (Braidwood et al., 2013). The protone-

mal network is composed of two cell types, chloronema

and caulonema, that are distinguished by their growth rate,

cell length, morphology and further developmental poten-

tial (Menand et al., 2007a). Chloronema are produced first

following spore germination or subculture, and are distin-

guished by their larger and more numerous chloroplasts, a

slower rate of cell elongation and division, and perpendicu-

lar rather than oblique end walls. Interconversion between

cell types occurs based on environmental conditions, and

because the transition is often gradual, cells of intermedi-

ate identity may exist (Jang and Dolan, 2011). Caulonema

are further distinguished by their greater ability to initiate

the buds that develop into leafy gametophores, which will

form anchoring rhizoid filaments and eventually the

archegonia and antheridia needed for sexual reproduction.

The Physcomitrella genome contains two members of

the HPAT family, HPATa (Pp1s145_88V6.1) and HPATb

(Pp1s48_116V6.1), which share 87.0% protein identity (Fig-

ures 1a and S1). Both genes are expressed in several tis-

sues, with HPATa expression being consistently higher

than that of HPATb (Figure S5a; Hiss et al., 2014). To inves-

tigate the role of the HPATa and HPATb genes in moss

development, we generated single and double knockout

mutants by homologous recombination, which we vali-

dated by quantitative PCR (Figure S5; Cove et al., 2009).

Since our mutant lines replaced the coding sequences with

a selection cassette including a GFP-GUS reporter, we

were able to detect expression from the native promoter

by staining for GUS activity. In agreement with the

microarray results (Figure S5a), we saw broad GUS

expression in the single copy HPATa insertion line #41

(Figure S5c,d).

In multiple hpata mutant lines we observed a significant

increase in the diameter of the protonemal network. In

contrast, we observed no change in network size in any

hpatb mutant lines, and there was no further increase in

size in hpata hpatb double mutants relative to hpata (Fig-

ures 3a–d and S5e,f). Following a single reference line for

each genotype (Figure S5), we observed that the increase

in protonemal network size occurred early in development

(Figure 3e), and was visible in young networks as an

increase in the number and length of filaments leaving the

denser central network (Figure 3f,g). This increase in diam-

eter also translated to an increased dry weight biomass at

21 days post-subculture (Figure 3h). The size and composi-

tion of the Physcomitrella protonemal network is con-

trolled by endogenous and environmental cues including

hormone and nutrient status (Cove et al., 2006). We found

that the larger network phenotype of hpata was robust to

variation in media composition (Figure S6a,b), and to treat-

ments with synthetic auxin or cytokinin plant growth regu-

lators (Figure S6c,d), despite major changes in network

morphology, suggesting that the larger networks of hpata

are not due to disturbances in these pathways.

hpata mutants produce longer, faster-growing protonemal

cells

To understand the developmental basis for the increased

network size in hpata mutants, we looked more closely at

the morphology and behavior of individual cells in devel-

oping protonemal networks. hpata mutants produced cells

with typical chloronemal and caulonemal morphologies

(Figure 3i–l); however, they were more prone to rare mor-

phological defects. In all genotypes, including the WT, we

observed some side branch initial cells with enlarged basal

regions (Figure 3m,n). In hpata and hpata hpatb plants this

phenotype was sometimes more severe, occasionally

resulting in spherical side branch initials that failed to elon-

gate into tip cells (Figure 3o). We also observed rare swel-

ling of cells at the filament tips in the mutants (Figure 3p).

Mutants were largely able to initiate side branches like WT

plants, however (Figure 3q,r), and also formed morpholog-

ically normal gametophores (Figure 3s,t). These observa-

tions suggest that hpata plants, though generally able to

maintain normal filament growth, were more prone to cell

shape disruption.

We further noted that individual filament cells were

longer in hpata networks than in WT networks. Wild-type

chloronemal and caulonemal cells have average lengths of

75–80 lm and 180–200 lm, respectively (Perroud and

Quatrano, 2006). Beginning at the branch initial cell of a
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Figure 3. Physcomitrella patens hpata mutants show enhanced protonemal growth.

(a)–(d) Representative plants 21-days post-subculture (dps): (a) wild type (WT, Gransden 2004), (b) hpata, (c) hpatb, (d) hpata hpatb. (e) Diameter of the protone-

mal network over time (mean � SD, n = 6). Black asterisks mark significant differences from WT at the same time point (P < 0.05) based on Student’s t-tests

using the Bonferroni correction for multiple testing. (f), (g) Expanding protonemal networks of WT (f) and hpata mutants (g) showing the extent of filament

growth (arrowhead). (h) Dry weight biomass (mg) at 21 dps (mean � SD, n = 6). Black asterisks mark significant differences compared with WT (P < 0.05) based

on Bonferroni corrected Student’s t-tests. (i), (j) Chloronemal tip cells from WT (i) and hpata (j). (k), (l) Caulonemal tip cells from WT (k) and hpata (l). (m)–(p) Cell
shape abnormalities. Whereas both WT (m) and hpata (n) plants occasionally produce swollen cells at the initiation of a new branch, hpata mutants occasionally

also produce more severe abnormalities, including spherical initial cells (o) and swollen filament cells at filament tips (p). (q), (r) Caulonemal filaments initiate

branching in both WT (q) and hpata (r). (s), (t) Gametophores from WT (s) and hpata (t) both appear normal.
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new filament (position 0 in Figure 4a) we measured cells

from the +1 to +7 positions, excluding the elongating tip

cells and highly variable branch initial cells. A new filament

typically initiates as chloronema, with the tip cell convert-

ing to caulonema under appropriate conditions. Average

WT cell lengths did not exceed 90 lm at any measured fila-

ment positions. However, hpata hpatb cells were signifi-

cantly longer than WT cells at the +1 position

(94.4 � 16.6 lm), and this size difference was enhanced in

later-formed cells, with +7 position cells in the double

mutant reaching 128.6 � 34.7 lm (Figure 4b). To deter-

mine if there was an indiscriminate increase in cell length

in hpata mutants, we examined rhizoid cells. Like chloro-

nema and caulonema, rhizoids are tip-growing filaments,

but rhizoids are derived from epidermal cells at the base of

gametophores and achieve greater total lengths. We found

no significant difference in rhizoid cell length between WT

and hpata hpatb double mutants, indicating that only a

subset of tip-growing cells are longer in the mutants (Fig-

ure 4c).

We next measured the growth rate of WT and hpata

filaments, taking advantage of the response of filaments

to different light conditions. When grown under unidi-

rectional red light, filaments adopt a caulonemal iden-

tity, grow toward the light and do not initiate side

branches (Figure 4d,e, left; Aoyama et al., 2012). Follow-

ing transfer to white light, tip cells switch to a chlorone-

mal identity and new side branches initiate from young

sub-apical cells (Figure 4d,e, right). We measured indi-

vidual filament tip positions at 24-h intervals during

growth in red light and after transfer to white light.

These measures were done using small fragments of

protonema in the absence of gametophores, thus elimi-

nating any potential confounding effects of gametophore

development on filament growth. For both red-light-

grown caulonema and white light-grown main and side

branch chloronema, the hpata filaments elongated at a

greater average rate than the WT (Figure 4f), suggesting

that the increased network size of hpata is due to a gen-

eral increase in elongation rates of protonemal filaments

and cell lengths.

HPATs are necessary for production of cell-wall-associated

hydroxyproline arabinosides

Tip-growing cells, like pollen tubes and protonema, are

particularly sensitive to cell wall perturbation. Based on

the cell morphology defects and faster growth rates of

hpata mutants (Figures 3n–p and 4f), we hypothesized that

the mutant phenotype was due to altered cell wall struc-

ture. Given that extensins are heavily hydroxyproline O-

arabinosylated and function in the cell wall (Velasquez

et al., 2012), these proteins would be the likely targets for

HPAT modification in protonema. However, the Physcomi-

trella genome is unusual among plants in that it does not

encode canonical extensins (Lawton and Saidasan, 2011).

In the absence of canonical extensins, we searched the

Physcomitrella genome for genes encoding the extensin

glycosylation motif and found 20 predicted extensin chi-

meras containing three or more Ser(Pro)3 motifs

(Table S2).
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Figure 4. Protonemal cells of hpata mutants grow

longer and faster.

(a) Calcoflour white-stained protonemal filament

with the cell positions marked relative to the initial

cell (position 0). (b) Cell lengths measured at the

indicated position (mean � SD, n = 11–60). Pro-

tonemal cells are initially longer in hpata mutants

and this effect enhances as filament growth contin-

ues. (c) Rhizoid cells, which are tip-growing and

similar in structure to caulonema, but ontogeneti-

cally distinct, are not significantly different in length

between mutant and wild type (WT) (mean � SD,

n = 62). (d), (e) Images of single growing filaments

from WT (d) and hpata mutants (e) taken at 24-h

intervals. The two left images are during filament

growth in unidirectional red light, and the two right

images are after movement to overhead white light.

Lines mark the position of the filament tip. (f) Fila-

ment growth rates for WT and hpata mutants

(mean � SD, n ≥ 100). In (b), (c) and (f):

***P < 0.0005 based on Student’s t-tests.
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Since we hypothesize that these extensin chimeras may

be targets of hydroxyproline O-arabinosylation functioning

in the cell wall, we next looked for changes in cell-wall-

associated Hyp-arabinoside levels in our mutants. Cell wall

fractions (alcohol-insoluble residue, AIR) were hydrolyzed

with Ba(OH)2 to cleave peptide, but not sugar–Hyp bonds.

The resulting amino acids were separated by high-voltage

paper electrophoresis (HVPE), a powerful, yet under-uti-

lized, technique that allows for analysis of small, hydrophi-

lic, ionic compounds, including Hyp and Hyp-arabinosides

(Fry, 2011) that can then be visualized by staining with isa-

tin/ninhydrin reagent (Kolor and Roberts, 1957). Both Ara-

bidopsis WT and Physcomitrella WT samples produced

weak but detectable levels of Hyp-arabinosides (Figure S7),

indicating that Physcomitrella harbors stable cell-wall-

associated proteins carrying this modification, despite the

absence of canonical extensins in the Physcomitrella gen-

ome. Notably, while Hyp-arabinosides were maintained in

the Arabidopsis hpat1, hpat2 and hpat3 single mutants,

this modification was completely lost in Arabidopsis triple

mutants and Physcomitrella hpata haptb double mutants,

indicating that other, unknown, enzymes are not catalyzing

hydroxyproline O-arabinosylation in the absence of the

HPATs, at least for cell-wall-associated proteins.

Expression of cell-wall-associated genes is altered in hpata

mutants

To test the hypothesis that hpata cell walls were disrupted

despite the absence of canonical extensins, we compared

the transcriptomes of developing networks from hpata

mutants and the WT using custom Physcomitrella Nim-

bleGen microarrays. Because tip-growing cell types exhibit

clear transcriptomic signatures at the level of cell wall

genes (Becker et al., 2014), we expected to see signs of

altered cell wall gene expression if disruption of the cell

wall was the basis of the phenotype. We identified 224

genes that were downregulated in hpata [false discovery

rate (FDR) <10%; Table S3]. At FDR < 10% we did not iden-

tify any significantly upregulated genes, but at the less

stringent FDR < 25%, we identified 58 such genes which

included several members of the same gene families

(Table S4). We further validated differential expression for

four of the upregulated and five of the downregulated

genes by quantitative (q)RT-PCR (Figure S8a).

We next used Gene Ontology (GO) analysis to identify

overrepresented functional categories among our differen-

tially expressed genes. Though the small number of upreg-

ulated genes did not yield any enriched categories, the

hpata downregulated genes yielded 15 enriched terms,

eight of which were directly related to the cell wall includ-

ing the biological process term ‘plant-type cell wall organi-

zation’ (23.4-fold enrichment) and the cellular component

term ‘extracellular region’ (4.8-fold enrichment; Figure 5a,

Table S5). We also found weaker enrichment of vesicle-

associated terms which may be due to the higher growth

rate of the hpata mutants relative to the WT (Figure 4f),

since tip growth is dependent on vesicle trafficking both to

deliver new wall material and to recycle excess membrane

(Hepler et al., 2001; Cheung and Wu, 2008).

The structure of the Physcomitrella cell wall is similar to

that of angiosperms; both are largely composed of cellu-

lose, the major load-bearing polymer, hemicellulose and

pectin (Moller et al., 2007; Roberts et al., 2012). The speci-

fic genes differentially expressed fell into categories relat-

ing to all of the major cell wall polymers. For example, a

cellulose synthase family member was downregulated in

hpata, and we identified an up- and a downregulated pair

of leucine-rich repeat (LRR) receptor kinases homologous

to the Arabidopsis FEI1 protein (Figure S8). Arabidopsis

fei1 fei2 double mutants are defective in anisotropic cell

expansion and cellulose biosynthesis (Xu et al., 2008).

Expansins promote cell expansion by loosening cell walls

by non-hydrolytically disrupting hemicellulose binding

(McQueen-Mason and Cosgrove, 1995). Of the 34 Physco-

mitrella expansins (Carey and Cosgrove, 2007), six were

downregulated in hpata mutants. We also found several

downregulated pectin-digesting pectate lyases (Marin-

Rodriguez, 2002). The variety of polymers affected by the

genes misregulated in hpata mutants suggests that many

aspects of wall structure are altered and that a complex

regulatory change has occurred to compensate for the loss

of hydroxyproline O-arabinosylation.

Given these changes in cell-wall-associated gene expres-

sion, we next examined cell wall structure by transmission

electron microscopy. At this level, however, there were no

visible changes in wall structure, consistent with the gen-

eral maintenance of cell wall function and cell viability in

the mutants (Figure S9).

Addition of exogenous cellulose can rescue hpat mutants

Despite the far-ranging changes in cell-wall-associated

gene expression in hpata mutants, we fortuitously found

that the simple addition of cellulose can rescue the mutant

phenotype. Cellophane sheets composed of regenerated

cellulose are commonly used in moss culture to provide a

diffusible barrier to invasion of the growth media by fila-

ments. When WT and hpata networks were grown on cel-

lophane over standard media, we found the network size

difference was abolished (Figure 5b,c). To determine if this

effect was simply the result of physical blockage of media

invasion, we grew WT and hpata mutants on media in

which the concentration of agar varied from the standard

0.8% (w/v) to between 0.2% and 6%. A significant differ-

ence in network diameter was maintained under all condi-

tions, even though filament invasion was blocked and

overall network size was reduced at higher concentrations

(Figure 5d). We also blocked filament invasion by growth

on a 0.45-lm pore nylon membrane. Nylon is not derived
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from cellulose and did not share the ability of cellophane

to rescue the mutant phenotype (Figure 5d,e). However,

direct supplementation of the medium with cellulose using

carboxymethyl cellulose, a solubilized cellulose derivative,

was also able to rescue the mutant phenotype at concen-

trations of 0.5% (w/v) and greater (Figure 5f, top, g). In

contrast, addition of cellobiose, a disaccharide of b(1?4)-

linked glucose did not rescue the size difference (Figure 5f,

bottom), indicating that larger polymer fragments are nec-

essary for rescue. Furthermore, we could disrupt the res-

cue effect of growth on cellophane by either physically

moving the developing network to a new position daily

(Figure 5h) or by daily addition of just 5 ll of liquid growth

medium over the developing network (Figure 5h,i). There-

fore, despite its lack of canonical extensins, Physcomitrella

relies on HPATs to maintain normal protonemal cell expan-

sion and network morphology, possibly acting through

control of cell wall composition.

Though we observed a rescue effect of cellophane on

the size of the Physcomitrella mutant network, cellophane

was not able to rescue the Arabidopsis pollen tube defect.

Our in vitro pollen tube growth method uses cellophane

sheets to simulate the dry stigma of Arabidopsis (Fig-

ure 1l,m; Rodriguez-Enriquez et al., 2013), and our results

agree with previously reported in vitro data, which did not

use cellophane (Ogawa-Ohnishi et al., 2013), and our

in vivo growth observations (Figure 1n,p). The ability to

rescue the hpat mutant phenotype with exogenous cellu-

lose in Physcomitrella but not Arabidopsis highlights

another difference between these two systems in the con-

text of the loss of HPAT function.

DISCUSSION

Hydroxyproline O-arabinosylation occurs across the plant

kingdom (Lamport and Miller, 1971), and HPATs remain

the only identified enzymes capable of initiating an

oligoarabinoside chain on hydroxyprolines (Ogawa-

Ohnishi et al., 2013). Results from tomato and Medicago

point to roles for HPATs in homeostasis of meristem size

and control of nodule numbers, acting through modifica-

tion of CLE signaling peptides (Schnabel et al., 2011; Oka-

moto et al., 2013; Xu et al., 2015). Although CLV3 is a

major regulator of meristem size in Arabidopsis (Clark

et al., 1995), disruption of arabinosylation by the triple hpat

mutants did not alter meristem size in this species (Fig-

ure 2). This striking phenotypic difference between tomato

and Arabidopsis hpat mutants could be due to either an

unknown enzyme functioning in the absence of the HPATs

to modify CLV3, or to the non-arabinosylated peptide

maintaining sufficient signaling activity to limit meristem

size. While our observation that the triple hpat mutants

failed to produce detectable levels of Hyp-arabinosides

(Figure S7) suggests that, at least for cell-wall-associated

targets, there are no other enzymes acting in the absence

of the HPATs, we cannot formally exclude the possibility

that other enzymes are acting to modify the CLE peptides.

However, previously reported evidence also supports a

non-essential role for this modification in CLV3 function.

Though exogenously applied [Ara3]CLV3 reduces meris-

tem size more strongly than unmodified peptide (Ohyama

et al., 2009), the proline-7 that carries this modification can

be changed to an alanine and is still capable of rescuing

clv3 mutants transgenically (Song et al., 2012). Thus,

although arabinosylation enhances CLV3 activity, the sig-

nificance of this modification for controlling stem cell pro-

liferation and meristem size seems to vary between

species.

While the CLE peptides have been employed in a num-

ber of developmental processes (Miyawaki et al., 2013),

the extensins, as critical cell wall structural proteins, have

a deeply conserved function and are probably ancient in

origin (Bollig et al., 2007). Due to their structure, tip-grow-

ing cell types are particularly sensitive to cell wall disrup-

tion. In Arabidopsis and Physcomitrella hpat mutants, we

observed alteration in cell length of tip-growing pollen and

protonema. Interestingly, the phenotypic effects of loss of

HPAT function were opposite in these species, with hpat1

hpat3 pollen tubes being shorter and hpata protonemal

cells being longer than their WT counterparts. Why these

two systems exhibit opposite responses to loss of HPAT

function is not clear, but may be related to differences in (i)

growth rate, (ii) cell wall composition, or (iii) potential tar-

get proteins. First, Arabidopsis pollen tubes grow more

quickly than either chloronema or caulonema, by about an

Figure 5. hpata mutants mis-express cell wall associated genes and can be rescued by exogenous cellulose.

(a) Heat map of the fold enrichment for Gene Ontology terms significantly overrepresented among the genes differentially expressed between the wild type

(WT) and hpata mutants (Table S5). (b) The appearance of cellophane-grown networks of WT (left) and hpata (right) plants. (c) The diameter of the protonemal

network after 21 days of growth on standard medium overlaid with cellophane shows no significant differences between genotypes, indicating rescue of the

hpata mutant phenotype (mean � SD, n = 6). (d) Blocking filament invasion by increasing the agar concentration of the medium or by growing on nylon mem-

brane is not sufficient to rescue the hpata phenotype (mean of network diameter � SD, n = 6). (e) Nylon membrane-grown WT (left) and hpata (right). (f) Net-

works grown on medium supplemented with carboxymethyl cellulose (CMC), a soluble cellulose derivative, also show rescue of the hpata at concentrations of

0.5–1% at 21-days post-subculture (top). However, plants grown on cellobiose, a disaccharide of b(1?4) linked glucose were not rescued (bottom, mean � SD,

n = 6). (g) The appearance of WT (left) and hpata hpatb (right) networks grown on control medium (top) or 1% CMC (bottom). (h) Plants grown for 17 days on

cellophane overlay plates that were either physically moved to a virgin position on the cellophane once a day or received a daily addition of 5 ll of liquid growth

medium were not rescued by cellophane, suggesting that a stable interaction is necessary for rescue. (i) Networks that were grown on cellophane for 17 days to

which 5 ll of liquid growth medium was added directly over the developing network at 24-h intervals. In (c), (d), (f) and (h): *P < 0.05; **P < 0.005; ***P < 0.0005

based on Student’s t-tests.
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order of magnitude (Rounds and Bezanilla, 2013). Given

the competitive nature of fertilization, with multiple pollen

tubes racing to reach a limited number of ovules, there is a

clear selective advantage to achieving the maximum possi-

ble growth rate. In such a system any genetic perturbation

of the cell wall would either reduce elongation or cause

premature tube rupture. Meanwhile, protonema do not suf-

fer the same selective pressure to maximize growth rate,

and in these cells the relevant HPAT targets may help sta-

bilize the cell wall and therefore limit elongation. Disrupted

glycosylation of these targets would reduce wall stability,

causing growth abnormalities (Figure 3n–p) and an

increased growth rate, as the checks on elongation are

removed (Figure 4f).

Second, cell wall composition differs between pollen

tubes and protonema. Pollen tube cell walls are unusual in

that they contain little cellulose (b-1,4-glucan) but an abun-

dance of callose (b-1,3-glucan) (Galway, 2006; Chebli et al.,

2012). Physcomitrella cell walls contain similar wall gly-

cans to those found in higher plants (Moller et al., 2007),

and though Physcomitrella does produce callose it is not

reported as a typical wall constituent in expanding pro-

tonema (Roberts et al., 2012). Apart from callose, other

wall components are likely to vary between these systems

as well, and how the different milieus of the cell wall will

respond to disrupting hydroxyproline O-arabinosylation is

difficult to predict, since much remains unknown about

how wall components interact in vivo. These differences in

cell wall composition may also account for the ability of

cellulose to rescue the hpat mutant phenotype in

Physcomitrella protonema, but not Arabidopsis pollen

(Figure 5b–g).
Third, the HPATs, as members of glycosyltransferase

superfamily, will exert their effects through the proteins

they target for modification. Despite the lack of canonical

extensins (Lawton and Saidasan, 2011), the Physcomitrella

genome encodes not only the HPATs, members of the GT8

glycosyltransferase family (Nikolovski et al., 2012, Carbo-

hydrate Active enZYmes Database; http://www.cazy.org/),

but also all known glycosyltransferases associated with

extensin modification including the later-acting arabinosyl-

transferases of the GT77 family, RRA1-3 and XEG113 (Ege-

lund et al., 2007; Gille et al., 2009; Velasquez et al., 2011;

Harholt et al., 2012). Serine in the Ser(Hyp)4 context is also

modified with a single galactose by SGT1 (Lamport et al.,

1973; Saito et al., 2014), two homologs of which are

encoded in the Physcomitrella genome. In the absence of

canonical extensins, extensin chimeras carrying regions

with several extensin-like Ser(Pro)3–5 motifs may be tar-

geted by the above enzymes and account for the Hyp-ara-

binosides detected in the Physcomitrella cell wall fraction

(Figure S7).

Among the extensin chimeras we identified was a small

group similar to LRR-extensin (LRX) proteins (Figure S10,

Table S5). The LRXs are frequently associated with tip-

growing cell types; Arabidopsis LRX1 and LRX2 have a

demonstrated role in maintaining root hair structure

(Baumberger et al., 2001, 2003a), and several LRX family

members are expressed specifically in pollen (Rubinstein

et al., 1995; Stratford et al., 2001; Baumberger et al.,

2003b). However, there are important differences between

the angiosperm and Physcomitrella LRXs. The Physcomi-

trella proteins have shorter extensin-like regions that lack

the tyrosines needed for covalent cross-linking (Stratford

et al., 2001; Held et al., 2004) and four of the five Physco-

mitrella proteins also contain a c-type lectin domain at the

C-terminus (Figure S8b,c). Though common in mammals,

where they often function in carbohydrate recognition and

immune response (Cambi et al., 2005; Dambuza and

Brown, 2015), the calcium-dependent c-type lectin domain

is rare in plants, with only a single example of unknown

function in Arabidopsis and no other examples in Physco-

mitrella (Bouwmeester and Govers, 2009). Though changes

in gene expression and the ability of exogenous cellulose

to rescue the phenotype suggest a critical role for the cell

wall and, presumably, cell-wall-associated HPAT targets, in

the mutant phenotype, we cannot rule out the possibility

that other targets, particularly the CLE signaling peptides,

could be responsible for the Physcomitrella hpata mutant

phenotype. Future molecular analyses of modifications on

these and/or other potential target proteins should help

reveal precisely how cell walls are disrupted in Physcomi-

trella hpat mutants and provide a foundation for future

comparative evolutionary studies between the roles of

HPAT genes and glycosylation in controlling tip growth in

different developmental contexts in flowering and basal

plants.

EXPERIMENTAL PROCEDURES

Phylogenetic analysis

Protein sequences were aligned using Clustal Omega, and maxi-
mum parsimony phylogenetic trees were generated with PHYLIP

with 1000 bootstrap replicates with 10 global rearrangements per
replicate. A consensus tree was calculated by extended majority
rule. Gene identification numbers for the Selaginella moellendorf-
fii HPATs are, in order of numbering in Figure 1(a): 235499,
150302 and 231983. For LRX-like proteins, only the conserved N-
terminal 450 amino acids were used since the C-terminal extensin-
like region aligns poorly (Baumberger et al., 2003b).

Arabidopsis material and growth conditions

The following lines were obtained from the Arabidopsis Biological
Resource Center: hpat1-2 (Salk_120066C), hpat2-2 (SM_3_38225),
hpat3-1 (Salk_047668), hpat3-2 (SAIL_301_C09), qrt1-1 and clv3-2.
Genotypes were confirmed by PCR using the primers in Table S6.
We noted that seed recovered from hpat1 hpat3 plants is prone to
contamination due to fertilization by ambient non-mutant pollen.
Therefore, all double or triple mutant individuals were genotyped
before subsequent use in assays or seed collection.

© 2015 The Authors
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.,

The Plant Journal, (2016), 85, 193–208

204 Cora A. MacAlister et al.

http://www.cazy.org/


RT-PCR

For RT-PCR of hpat alleles (Figure S2) total RNA was extracted
from 7 day-old seedlings by an RNeasy Mini Kit (Qiagen, http://
www.qiagen.com/). One microgram was converted to cDNA using
oligo (dT) primers and a Superscript III First Strand Synthesis Kit
(Invitrogen, http://www.invitrogen.com/). One microliter of cDNA
(corresponding to 50 ng input RNA) was used per 20 ll Phusion
polymerase (New England BioLabs, https://www.neb.com/) reac-
tion for the following cycle numbers: HPAT1 = 23, HPAT2 = 32,
HPAT3 = 23, Actin = 26. The protocol was the same for RT-PCR for
different tissues (Figure 1e) except that, due to limiting amounts
of starting material, 500 ng (Figure 1f) or 100 ng (Figure 1g,h) of
total RNA was used, and reactions proceeded for 27 cycles. Devel-
oping pollen of various stages was extracted from unopened flow-
ers by coarse mechanical disruption followed by filtering through
a 70-lm nylon membrane to remove floral debris and centrifuga-
tion at 106g for 30 sec to pellet the pollen. Isolated pollen was
then washed three times in water before RNA extraction as above.

Pollen methods

qrt1 pollen tetrads were stained with simplified Alexander’s viabil-
ity stain (Peterson et al., 2010) before imaging (Figure 1j,k). For
in vitro pollen germination we used the protocol described by
Rodriguez-Enriquez et al. (2013). Pollen from five flowers that had
opened less than 24 h previously was applied to solid growth
media overlaid with cellophane and allowed to grow for 8 h at
which point the pollen was fixed in 10% sucrose, 100 mm piper-
azine-N,N0-bis(2-ethanesulfonic acid) (PIPES) buffer pH 6.9, 4 mM

MgSO4 and 5% formaldehyde. Tubes were stained with calcofluor
white stain (Fluka Analytical, Sigma), then imaged under UV light
and measured in IMAGEJ. For in vivo staining of hpat3-2 (Fig-
ure 1n–p), unopened flowers were emasculated, allowed to
mature for 24 h then pollinated with either hpat3-2 or hpat1
hpat3-2/+ pollen. Seven hours after pollination, flowers were
stained for GUS activity overnight (16 h) and then cleared in 70%
ethanol.

Generation of transgenic Arabidopsis

The DNA cloning was done using the Gateway system (Invitro-
gen). Fragments were amplified using the primers in Table S6 and
recombined into the appropriate pDONR vector. For HPAT expres-
sion under the pollen-specific AtSTP9 promoter, the promoter
(first fragment) and cDNA (second fragment) were recombined
into pMDC99 (Curtis and Grossniklaus, 2003). Transgenic Ara-
bidopsis plants were generated using the standard floral dip
method.

Generation of Physcomitrella mutants

Physcomitrella knockout cassettes were generated using the pri-
mers in Table S6 with approximately 1 kb of sequence from the
left and right sides of the targeted coding region. Selection cas-
settes were amplified from BNRF or BHSNR plasmids (Menand
et al., 2007b), using G418 resistance for HPATa and hygromycin B
resistance for HPATb transformation. A GFP–GUS coding region
was added 50 to the resistance cassette by overlap PCR. The flank-
ing regions and selection cassettes were cloned into the appropri-
ate pDONR vector and recombined into pMDC99 (Curtis and
Grossniklaus, 2003). The full knockout cassettes were PCR ampli-
fied from the resulting plasmids using Phusion DNA polymerase
(New England BioLabs) and the primers in Table S6. The selection
cassette fragments were purified by phenol extraction and alcohol

precipitation and transformed into Gransden 2004 protoplasts by
polyethylene glycol (PEG)-mediated transformation (Cove et al.,
2009). Proper insertion (Figure S5b) was confirmed by PCR using
the primers in Table S6, and disrupted gene expression (Fig-
ure S5g) was confirmed by RT-PCR using the same method as
above for the Arabidopsis alleles. Insert copy number was esti-
mated by qPCR using the ΔΔCt method (Livak and Schmittgen,
2001) with the primers in Table S6. The amplification of a frag-
ment of the left border homology region was compared between
mutant strains and WT with normalization to a single locus con-
trol gene.

Physcomitrella growth conditions and assays

The standard medium used in this study was BCDAT (1 mM

MgSO, 1 mM CaCl2, 10 mM KNO3, 45 lM FeSO4, 1.8 mM KH2PO4

[pH 6.5 adjusted with KOH], 5 mM di- ammonium (+)-tartrate,
0.22 lM CuSO4, 0.19 lM ZnSO4, 10 lM H3BO3, 0.10 lM Na2MoO4,
2 lM MnCl2, 0.23 lM CoCl2, and 0.17 lM KI solidified with 0.8%
agar) (Nishiyama et al., 2000). Low-phosphate and low-nitrate
media contained 5% of the standard amount of KH2PO4 or KNO3.
Media with carboxymethyl cellulose were supplemented with the
indicated concentration (w/v) of low-viscosity carboxymethyl cel-
lulose sodium salt, as was D-(+)-cellobiose (Sigma-Aldrich, http://
www.sigmaaldrich.com/). Plants were grown in a Percival Scien-
tific (http://www.percival-scientific.com/) chamber at 24°C in 12-h
light, 12-h dark cycles. For network diameter measurements,
plates were inoculated with protonema fragments of approxi-
mately 2 mm, and network diameter (extending from the filament
tips and passing through the middle of the network) was mea-
sured for six plants per genotype at 21 days post-inoculation
using IMAGEJ software. Values for the WT and mutants were com-
pared by Student’s t-test, using the Bonferroni correction for mul-
tiple testing. To determine dry weight biomass, 21-day post-
subculture networks were extracted from the agar by room-tem-
perature (25�C) incubation with QC buffer (Qiagen), washed four
times with distilled water and then dried under heat in vacuo. To
determine filament growth rate, small fragments of isolated fila-
ments were grown on BCDAT medium with 0.5% glucose in unidi-
rectional red-light chambers in the absence of gametophores.
Filaments were imaged at 24-h intervals over several days fol-
lowed by several more days of imaging in overhead white light.
The positions of individual filament tips were compared between
subsequent images to determine the growth rate.

Hyp-oligoarabinoside detection by high-voltage paper

electrophoresis

Tissue samples of Arabidopsis inflorescences and leaves and
developing protonemal networks grown on solid BCDAT medium
overlaid with a 0.45-lm pore nylon membrane (Amersham
Hybond �N+; GE Healthcare, http://www.gehealthcare.com/) for
5 days were harvested into 70% ethanol. Further sample prepara-
tion and HVPE were carried out at EDIPOS (http://fry.bio.ed.ac.uk//
edipos.html) by Professor Stephen C. Fry (Fry, 2011). Briefly, AIR
corresponding to the cell wall fraction was prepared by tissue
incubation in 70% ethanol at 70°C for 2 9 2 h then 1 9 16 h. The
resulting residue was rinsed with acetone and dried. The AIR (9–
44 mg) was then subjected to alkaline hydrolysis in 3.0 ml of
233 mM Ba(OH)2 for 17 h at 105°C, then 5 h at 110°C. A sample of
cultured tomato cell AIR, an abundant source of Hyp-oligoarabino-
sides, was processed in parallel. The hydrolyzed components
were isolated by an anion exchange column following the addi-
tion of 0.1 kBq [14C]proline to monitor recovery, along with suffi-
cient H2SO4 to reduce the pH to 2.5. After centrifugation, the
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supernatant and 2.5 ml of water wash were brought to 6.0 ml with
water. The sample was passed through a 1.2-ml Dowex 50 column
(H+ form), and non-cations were washed out with 15 ml of 10 mM

formic acid followed by 10 ml of water. Cations were then eluted
with 3.5 ml of 1 M NH4OH (recovery of [14C]proline = 61.6 � 2.7%,
mean � SD). The remainder of the eluate was dried in vacuo and
re-dissolved in 0.2 M NH4OH, using 10 ll per mg of starting AIR.
Next, Asp, Glu, Lys, Arg and His were removed by preparative
electrophoresis at pH 6.5. A portion of the remaining ‘no-net-
charge’ fraction (equivalent to 2.5 mg of input AIR) along with an
added internal marker of 1.5 lg Ne-(2,4-dinitrophenyl)-L-lysine
(DNP-Lys) and an external marker mixture (Hyp, Asp, Pro, Ser,
2 lg each) were then electrophoresed in pH 2.0 buffer at 4.5 kV for
40 min. The yellow DNP-Lys spots were circled in pencil, then the
paper was treated with mild acid to hydrolyze Hyp-Arans to free
Hyp in situ (S. C. Fry, University of Edingurgh, Scotland, UK, pers.
comm.) and stained with isatin/ninhydrin reagent (Kolor and
Roberts, 1957). The paper was then washed in running tap-water
for 1 h, dried and scanned.

Physcomitrella transcriptome profiling

Three biological replicates of hpata mutants and WT plants were
grown as for HVPE and RNA was extracted with a Qiagen RNeasy
plant RNA extraction kit. Samples were treated with TURBO DNase
at 37°C for 30 min (Ambion, Life Technologies, http://www.thermo
fisher.com/us/en/home/brands/invitrogen/ambion.html). The integ-
rity and quantity of RNA were assessed on an Agilent 2100 Bioana-
lyzer using a 6000 Pico Assay (Agilent Technologies, http://
www.agilent.com/). On average 7.5 ng of RNA was used to synthe-
size cDNA with an Ovation Pico WTA System V2� amplification kit
(NuGen Technologies, Inc., http://www.nugen.com/). The concen-
tration of cDNA obtained was in the same range (220–260 ng ll�1)
for all samples, and the quality of the cDNA was confirmed using a
Bioanalyzer. Seven hundred and fifty nanograms of cDNA was
used for labeling and hybridization on custom Nimblegen
12 9 135K arrays (Roche NimbleGen, Inc., http://sequencing.
roche.com/) following the manufacturer’s instructions in the IRB
Barcelona Functional Genomics Core Facility (FGC). Raw data were
obtained using the DEVA software, applying robust multichip aver-
age (RMA) normalization to all arrays (Roche NimbleGen, Inc.).
Differential expression analysis was conducted using DCHIP soft-
ware (Li and Wong, 2001).

To determine differentially expressed genes, pair-wise compar-
isons of normalized data were conducted. A lower-confidence
bound fold-change (LCB FC) cutoff was estimated for each com-
parison, ranging from 2 to 2.6, according the lowest false discov-
ery rate (FDR) possible: below 10% for downregulated genes and
25% for upregulated genes. The FDR was estimated by applying
LCB FC to sample-wise comparison permutations as described by
Tusher et al. (2001). At least 100 permutations were done for each
comparison. The P. patens genome annotation v.1.6 release
2012.3 was used (http://cosmoss.org/), combined with annotations
obtained through several alignments against non-plant organisms
and STRING information (http://string-db.org/) (Franceschini et al.,
2013). Functional enrichment analysis was performed using the
FatiGO functions (Al-Shahrour et al., 2004) integrated into Blas-
t2GO (Conesa et al., 2005). Physcomitrella GO annotations were
downloaded from http://cosmoss.org/ as a reference set (nightly
build as of 11 February 2015). Enrichment of GO annotation func-
tional categories between hpata versus WT differentially
expressed gene lists was analyzed by Fisher’s exact test with a
significance cut-off of a FDR corrected P-value <0.05. We con-
firmed differential expression of a subset of identified genes using
triplicate independent RNA samples by quantitative RT-PCR using

the KAPA SYBR FAST qPCR kit and the primers in Table S6 and
adenine phosphoribosyltransferase as a normalization control (Le
Bail et al., 2013).

Transmission electron microscopy

Filaments were grown in the same manner as for transcriptome
profiling and were fixed in 2.5% glutaraldehyde, 4%
paraformaldehyde, 0.18 M sucrose, 100 mM sodium phosphate
buffer pH 7.0 for 24 h at 4°C followed by post-fixation in 1%
osmium tetroxide at 25°C for 4 h. After washing in 100 mM

sodium phosphate buffer, samples were dehydrated in an ace-
tone series for 20–30 min (for each step) before exchange to
propylene oxide. Dehydrated samples were embedded in Spurr’s
resin (Electron Microscopy Sciences, https://www.emsdiasum.-
com/microscopy/) before sectioning and mounting to grids. Grids
were stained with uranyl acetate replacement stain (Electron
Microscopy Sciences) and lead citrate before imaging on an FEI/
Philips CM100 Biotwin transmission electron microscope (http://
www.fei.com/) with a Kodak 4.2i, bottom-mount digital camera
(http://www.kodak.com).
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Figure S9. Transmission electron micrographs of wild-type and
hpata hpatb filaments.

Figure S10. The Physcomitrella genome encodes leucine-rich
repeat extensin (LRX)-like extensin chimeras.

Table S1. Transmission rate of hpat1 hpat3 mutations.

Table S2. Physcomitrella genes containing Ser(Pro)3–5 motifs.
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