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Abstract  
Following the passage of the Health Information Technology for Economic and Clinical Health 

(HITECH) Act of 2009, electronic health records were widely adopted by eligible physicians and 
hospitals in the United States. Stage 2 meaningful use menu objectives include a digital family history but 
no stipulation as to how that information should be used. A variety of data mining techniques now exist 
for these data, which include artificial neural networks (ANNs) for supervised or unsupervised machine 
learning. 

In this pilot study, we applied an ANN-based simulation to a previously reported digital family 
history to mine the database for trends. A graphical user interface was created to display the input of 
multiple conditions in the parents and output as the likelihood of diabetes, hypertension, and coronary 
artery disease in male and female offspring. The results of this pilot study show promise in using ANNs 
to data mine digital family histories for clinical and research purposes.  

Introduction 
One of the most significant scientific achievements of the past two decades was the completion of the 

Human Genome Project in 2003.1 As a result, genetic links to common diseases such as age-related 
macular degeneration, multiple sclerosis, and Alzheimer’s disease have been established.2 Despite the 
treasure trove of data generated from this effort and the decreasing cost of whole-genome sequencing, 
multiple ethical, legal, and social challenges exist. Furthermore, because of the complexity of the human 
genome, significant questions remain regarding how to interpret the results. Genetic tests are best for 
single gene disorders with high penetrance, but they account for only a tiny percentage of chronic 
disorders and are therefore poor tests for screening. The reality is that most chronic diseases are polygenic 
disorders that have low penetrance and are influenced by multiple environmental factors. Dr. Eric Green, 
the director of the National Human Genome Research Institute, stated in 2011, “At the moment, the 
biggest challenge is in data analysis. We can generate large amounts of data very inexpensively, but that 
overwhelms our capacity to understand it. At the other end of the spectrum, we need to infuse genomic 
information into medical practice, which is really hard. There are issues around confidentiality, education, 
electronic medical records, how to carry genomic information throughout lifespan and make it available 
to physicians.”3  

While the challenges of the Human Genome Project are being addressed and clarified, some experts 
recommend using the routine family health history to predict future diseases and conditions. Some have 
referred to the family history as the “first genetic test.”4 Additionally, the information from family 
histories has been shown to be important for investigation of diseases with a genetic component.5–7 For 
most chronic diseases, a positive family history increases the relative risk of disease in offspring two to 
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five times over the baseline risk, particularly if more than one first-degree relative has the condition and 
the age of onset is early.8 

Prior to the adoption of electronic health records, obtaining a family history was infrequent and time 
consuming, and the resulting data were not structured or computable. The situation changed with the 
Health Information Technology for Economic and Clinical Health (HITECH) Act of 2009, which 
established a reimbursement program for eligible professionals (EPs) and eligible hospitals (EHs) that 
used certified electronic health records (EHRs) and complied with meaningful use objectives.9 As of 
December 2014, 509,250 EPs and 4,801 EHs had registered for the Medicare and Medicaid EHR 
reimbursement program.10 

In stage 2 meaningful use, one of the menu objectives is to “record patient family health history as 
structured data,” and the measure standard is “more than 20 percent of all unique patients seen by the EP 
during the EHR reporting period have a structured data entry for one or more first-degree relatives.” Data 
standards required to support structured data are the HL7 Pedigree Standard and the Systematized 
Nomenclature of Medicine–Clinical Terms (SNOMED-CT).11 Therefore, digital family histories are 
expected to emerge as part of EHRs, but what will be done with the data? 

Digital family histories and whole-genome sequencing should be considered forms of clinical 
decision support, which is part of the EHR of the future. The goal would be to alert and inform clinicians 
and patients about the probabilities of future diseases and conditions. Data mining tools would be 
necessary to link a knowledge base with actual patient information in order to either describe a condition 
or make a prediction. The two main categories of data mining are supervised machine learning and 
unsupervised machine learning. In the former, one assumes that the data classes are known ahead of time, 
whereas in unsupervised learning the system is presented with data and develops classes or clusters. 
Supervised learning can perform predictive modeling based on dependent and independent variables, 
similar to logistic regression.12 

One interesting type of data mining involves the use of artificial neural networks (ANNs) or neural 
networks, which are capable of both supervised and unsupervised machine learning. Neural networks use 
computational units that are analogous to the biological neuron. Such computational neurons are 
connected unidirectionally, may operate in parallel, and behave as simple switching elements, which fire 
when supplied a threshold level of integrated input signal. The neuron can receive multiple inputs (similar 
to dendrites), which are processed and weighted to generate a single output (analogous to an axon). The 
overall network may be viewed as a nonlinear mathematical transformation that maps input to output 
patterns. 

In the supervised learning model, training patterns are repeatedly propagated through the net to 
produce outputs differing from those appearing in the training data. Such output error serves as the basis 
of a backward propagating wave that iteratively corrects connection weights until the net’s output pattern 
closely matches the patterns represented in the data.13 Neural networks are now in mainstream use, with 
common applications in voice and handwriting recognition. Neural networks have been applied to the 
field of medicine in four ways: predictive modeling, signal processing, diagnosing, and prognosticating. 
Neural networks have been used in almost every medical subspecialty field, such as radiology (image 
pattern recognition), cardiology (electrocardiogram analysis), and neurology (electroencephalogram 
analysis).14 

We previously reported our experience with a digital family history collected from a unique cohort of 
older men who were Vietnam-era repatriated prisoners of war and a comparison group. This article builds 
on the previous study, published in 2013.15 A digital family history of first-degree relatives was created 
using an online survey tool. The participant who took the survey reported on the health of parents, 
siblings, and children, and this information was exported to a spreadsheet, facilitating analysis with cross-
tabulation.16 This effort was labor intensive, so it was postulated that neural networks might be a means of 
mining this rich data. This pilot study reports on the results of evaluating the digital family health history 
database with neural networks, as compared to cross-tabulated results. 
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Methods 
Participants 

The study population consisted of 319 male Vietnam-era veterans, which included 253 who were 
repatriated prisoners of war as well as 66 in a comparison group, matched for gender, age, education, and 
combat roles in Vietnam. The average age at the time of survey completion was 70 ± 6 years. These 
individuals visited the Robert E. Mitchell Center for Prisoner of War Studies, located in Pensacola, 
Florida, on a near-annual basis. The program has been in existence since 1973, with some repatriated 
prisoners of war having 42 years of longitudinal physical and psychological data.17 This project was 
approved by the institutional review board, and all patients signed a consent form. Of 447 potential 
participants who were e-mailed, 319 (71 percent) agreed to complete the survey. 

The survey data included information on 2,412 individuals from three generations. With 709 children 
excluded, 1,703 male and female adults were included in the results. The data included 319 sets of parents 
(638 individuals) and 1,065 male and female offspring. 

The 319 adult male survey participants reported on the health of themselves, their parents, their 
siblings, and their children. Figure 1 shows the breakdown of participants by generation and gender. 
Children were excluded because the pilot neural network was designed to include only the parents and the 
parents’ male and female offspring.  

With children excluded, the baseline prevalence of type 2 diabetes (DM) in parents and their 
offspring was 10 percent, that of hypertension (HTN) was 31 percent, and that of coronary artery disease 
(CAD) was 6 percent. 

Survey Development 
To review the survey content and face validity, we convened an expert panel consisting of a 

university-based geneticist, a private genetic counselor, a neuropsychologist, and an experienced internal 
medicine physician to determine the appropriate survey design and the selection of common medical and 
psychiatric diseases with a genetic component. A literature review was also undertaken to determine the 
availability and relevance of existing family history questionnaires. We also benchmarked our efforts with 
the recommendations made by the 2008 American Health Information Community’s Family Health 
History Multi-Stakeholder Workgroup.18 A commercial survey instrument (SurveyMonkey) was used to 
create the web-based survey.19 The survey had the following sections:  
 

1. Demographic questions including gender, adopted status, twin status, and ethnicity, to be 
answered by all participants prior to proceeding. Adopted individuals were excluded. 

2. Personal health information divided into the following question categories. All categories had a 
free-text answer option. The number of questions in each category is in parentheses. In this 
section only, participants used a drop-down menu to specify the age at which they received the 
diagnosis.  

a. General condition questions (8)  
b. Heart condition questions (5)  
c. Cancer questions (14)  
d. Brain disease/neurodegenerative disease questions (6)  
e. Mental disorder related to learning disability questions (2)  
f. Mental disorder other than related to learning disability questions (8)  
g. Substance abuse questions (2)  

3. Mother’s health  
a. Living/deceased (drop-down menu); current age or age of death (drop-down menu); 

smoker status (drop-down menu); served in military (drop-down menu).  
b. The questions from section 2 (personal health) are again asked (total of 50 questions), but 

there is no option to record age of diagnosis.  
4. Father’s health; questions identical to the mother’s health section.  
5. Sibling health; questions identical to the mother’s health section.  
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6. Children’s health; questions identical to the mother’s health section.  
 

The data collection period was from May 2012 to June 2013. The collection tool was online, so 
participants could complete the survey at home, or they could complete the survey in Pensacola, Florida 
(a midsized city in the Southeast region of the country), during their annual medical follow-up 
examination. 

Further details regarding how the survey was created, tested, and privacy protected were reported in 
our 2013 study.20 

ANN Development 
Training data were largely converted to Boolean format, with 1s and 0s respectively denoting 

presence or absence of a disease, whereas other data were represented as real numbers in the range 
between 0 and 1. 

Using a proprietary neural network training package called PatternMaster, a thousand-trial ANN 
architecture, involving randomly generated hidden-layer architectures and learning parameters, was 
rapidly generated, trained, and tested on the basis of generalization accuracy using set-aside data. During 
this automated testing, a separate ANN learned to map all network and training parameters to the 
anticipated generalization accuracy. This latter net was then stochastically interrogated to determine the 
network architecture, learning rate, and momentum that provided the most accurate predictions.21 This 
optimal net was trained to a root-mean-square prediction error of 0.01 and exported both as a spreadsheet, 
whose cells functioned as neurons, and as a C-code function. 

The spreadsheet-based neural net allowed for transparency and rapid experimentation. The latter 
feature proved valuable in determining how best to vary free input parameters after certain parameters 
were chosen to be kept fixed in the model. To this end, we developed two approaches and wrote macros 
to systematically vary the free inputs. The first of these methodologies, called MonteCarlo, varied free 
parameters via a “loaded” computational coin flip that reflected the disease’s prevalence in the training 
data. Therefore, to simulate a condition occurring 20 percent of the time within the data, the disease 
parameter was set to 1 if a random number, in the range [0, 1], fell below 0.2. The other approach, called 
Variational, extracted Boolean values by randomly accessing a row of the original training data and 
extracting values from relevant data fields.  

In the end, we found that both approaches gave similar results, but the overhead of Microsoft Excel 
significantly slowed down the stochastic interrogation of the model to 5 to 15 seconds. To overcome the 
issue of execution speed, both the Excel macros and ANN C module were converted to C# and compiled 
into an executable having a more intuitive graphical user interface (GUI). Using the GUI, the presence or 
absence of a disease in either parent could be indicated by a check or a blank check box, respectively. 
Floating parameters could be indicated using the third state of these boxes, shown as solid blue in Figure 
2.  

In the pilot phase we opted to study only the offspring (sons and daughters) of the parents. A variety 
of chronic diseases and conditions with a genetic component could be used as input for the mother and/or 
father, and the risk of diabetes (DM), hypertension (HTN), and coronary artery disease (CAD) would be 
displayed as output for male and female offspring. Figure 2 provides an example of the output based on 
input consisting of common medical problems such as diabetes and hypertension. 

Statistical Methods 
From the family history survey data, individuals were examined through cross-tabulation of a single 

disease type (DM, HTN, or CAD) at a time; otherwise, cross-tabulation of multiple diseases and/or any 
other variable resulted in too few data points for statistical analysis. Cross-tabulations were done of the 
effect on the offspring of mother having the disease, the father having the disease, both parents having the 
disease, or neither parent having the disease. Using these cross-tabulations, a series of odds ratio (OR) 
analyses that compared having the disease (either parent or both positive) with not having the disease 
(both parents negative) were then conducted with the parental effect of the disease type on the male and 
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female offspring. This process also included calculating the likelihood ratios, disease-type base rates, and 
95 percent confidence intervals (CIs) in comparison to the ANN output for each disease type.  

To elucidate further the difficulty encountered in comparing the cross-tabulation outputs because of 
the small number of data points with the ANN outputs, we were forced to average ANN outputs for each 
disease type. The ANN GUI required smoking status (never smoked, quit smoking, and current smoker) 
be marked in the GUI, which would lower the number of parents analyzed. So, for example, if we 
evaluated parents who never smoked and who were not diabetic, and compared the ANN output to the 
cross-tabulation, we found in the cross-tabulation only 20 parents out of a pool of 638 that fit the criteria. 
Those 20 parents had 20 daughters and 20 sons, so the sample size was too small for statistical analysis, 
making comparison with the ANN output difficult. We therefore had to average the neural network output 
across all smoking categories (i.e., the arithmetic mean of the 3 smoking outputs) for each of the results to 
maintain a sufficient number of data points in the analyses of the cross-tabulations. 

Results 
Table 1 and Table 2 compare the effect of family history for three major disease types (DM, HTN, 

CAD) in male and female offspring, respectively.  

For the male offspring, the mother having the disease significantly affected them for DM (OR = 
4.11), for HTN (OR = 2.33), and for CAD (OR = 5.19). This finding means a fourfold odds increase in 
DM, a twofold odds increase in HTN, and a fivefold odds increase in CAD. The odds increased when 
both parents had the disease, particularly for HTN (OR = 5.16) and CAD (OR = 10.90). For the female 
offspring, although the mother having the disease significantly affected them for DM (OR = 10.43) and 
for CAD (OR = 4.46), just the father having the disease significantly affected them for DM (OR = 8.44) 
and for CAD (OR = 5.3). Having both parents with the disease significantly affected them for DM (OR = 
14.78) and for HTN (OR = 7.90). No instances of both parents having CAD were found among the female 
offspring.  

Confidence intervals were wide because of the small sample size, and likelihood ratios were small, 
reflecting the small sample size and the lower-than-average prevalence of chronic diseases in this unique 
cohort. More than half (67 percent) of the averaged neural network results fell within the 95 percent CIs 
of the base rates for each of the identified diseases. 

We also compared the family history inheritance trends reported in the literature with our results. 
Odds ratios and neural networks demonstrated that the largest increase in diabetes among offspring 
occurred when either the mother had DM or both parents had DM. These results reflect findings reported 
in the literature. Although the neural network result for DM in male offspring was 0.44, the literature 
suggests that it may be as high as 0.50 in male and female offspring when both parents are diabetic, so it 
is possible that the neural network produced more accurate results.22 

Discussion 
To our knowledge, this is the first report of data mining of a digital family history database with the 

use of a neural network simulation. Our model is based on training for multiple inputs, but the output was 
limited to only three common disease entities, chosen because of their high prevalence and widely 
reported genetic component. A fully operational model would include more outputs and perhaps the 
ability to incorporate risk factors of both the parents and offspring. The results using neural networks 
correlate in general with cross-tabulation results and the medical literature, but are limited by the small 
sample size and low prevalence of chronic disease. 

The evidence thus far indicates that inclusion of the family history has several potential benefits in 
healthcare. The family history can identify genetic trends, even before specific gene variants or single 
nucleotide polymorphisms are identified. For example, a family history of chronic obstructive pulmonary 
disease (COPD) is a strong risk factor for the development of COPD in offspring, in the absence of any 
culprit genes identified thus far.23 Also, evidence suggests that smoking increases the risk of developing 
type 2 diabetes in the individual24 and fetal exposure to smoking by either parent increases the risk of 
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obesity and type 2 diabetes downstream in adult female offspring,25 presumably through an epigenetic 
mechanism.26 Using the neural networks model, we demonstrated a twofold increase in diabetes in male 
offspring if the mother or both parents smoked. Because of the small sample size, we were not able to 
reliably compute the same with cross-tabulation. 

The family history should also assist in population and public health, particularly in assessing the 
future risk of cancer and common chronic diseases, which have a genetic component.27–30 Of note, when 
both parents were negative for DM, HTN, or CAD the inheritance in male and female offspring was 
lower than the base rate, demonstrating the high specificity of the family history, which has been 
reported.31 Furthermore, the family history should aid in patient education because studies have shown 
that patients frequently have an inaccurate idea of their future risk of cancer based on their family 
history.32 Lastly, with the movement toward “personalized medicine” and “precision medicine,” both 
genomic sequencing and data mining of the family history are likely to be helpful in tailoring medical 
treatments.33 The use of family history as clinical decision support is in its infancy and to our knowledge 
is not available as part of any commercial EHR system. All previous research using family histories as 
clinical decision support has involved standalone programs, not integrated with EHRs.34 

Limitations of the family history should be pointed out. Collecting and maintaining a family history 
takes time, although using patient portals to input patient histories may lessen the burden on clinicians. 
Family histories may be inaccurate and subject to recall bias and may be limited by a patient’s low 
educational status or poor family communication. The National Institutes of Health held a conference in 
2009 regarding the role of the family history in improving health. Among the conclusions was that the use 
of family histories for predicting common conditions has low sensitivity and predictive ability but high 
specificity (that is, it is better for ruling out conditions).35 Additionally, evidence suggests that knowing 
the family history may have only a modest effect on changing behavior.36 

The actual database we used for training the neural networks also had a limitation. The participants 
who took the survey were male Caucasians with a high socioeconomic status and a low prevalence of 
common chronic diseases. Also, there were significantly fewer female siblings than male siblings, for 
unknown reasons. Importantly, the database included 2,415 individuals, but when multiple filters were 
applied, the actual sample size available for data mining was frequently small.  

Neural networks provide an interesting alternative to other prediction models such as logistic 
regression. Both can be utilized for dichotomous outcomes. Neural networks are not limited by a 
constrained mathematical relationship between the dependent and independent variables, and 
they can therefore model complex nonlinear relationships. Our evaluation of neural networks 
was limited by choosing single disease entities in the parent, such as diabetes, without other 
common comorbidities, which is not realistic. Neural networks also have limitations such as the 
requirement of significant computational resources and the potential for model “overfitting”; 
also, the model development tends to be empirical.37 Moreover, in a study comparing logistic 
regression with ANNs, Clermont et al. noted that the sample size needed to be in the range of 
1,200 for adequate prediction from either method.38 However, evidence suggests that neural 
networks can be very accurate, even with small data sets, but must be calculated correctly.39 This 
study used a Monte Carlo simulation method, in which thousands of additional calculations were 
performed to improve accuracy.40 As noted in the results section, neural network predictions 
regarding the prevalence of DM in offspring with a mother or both parents having DM closely 
matched the results found in the medical literature. Therefore, neural networks may actually be 
more accurate than cross-tabulations for small data sets. 

An interesting new informatics development is the HL7 standard known as FHIR (Fast Healthcare 
Interoperability Resources). This standard will allow sharing of clinical decision support and the creation 
of applications (apps) that interact with EHRs. One of the FHIR resources involves family history, so 
apps could be developed that mine the family history data as a form of clinical decision supported linked 
to the EHR by an open application programming interface.41, 42 
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Conclusion 
The preliminary data from this pilot study provide evidence that neural networks may be valuable as a 

means to mine data from family histories for clinical and research purposes. For this approach to be used 
clinically, data standards such as SNOMED-CT must be in place, along with a means to integrate data 
with the electronic health record. Neural network software could be hosted remotely on a server and 
accessed through web services. Another option would be a family history analytical application that 
utilizes the new FHIR standard. From a research perspective, we believe that if neural networks are 
applied to a very large digital family history of patients reflecting the population at large, this data mining 
technique may uncover genetic trends heretofore unrecognized.  

In the future, clinicians will likely be able to combine family history data, genomic data, and 
phenotypic data from the electronic health record into a more accurate method of disease prediction and 
personalized medicine. Further studies are warranted on larger and more typical patient cohorts to 
validate the accuracy of neural networks for data mining digital family histories and to establish causal 
relationships to chronic disease.  
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Figure 1 
 
Study Participants by Generation and Gender 
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Figure 2 
 
Prediction Model for Male Offspring of Mother Who Has Type 2 Diabetes and Never Smoked 
and Father with Hypertension Who Quit Smoking  
 
 

 
 

Note: Floating input parameters are indicated with solid blue boxes. Output is represented by the green 
sliding bars on the right. 



Digital Family History Data Mining with Neural Networks: A Pilot Study 

Table 1 
 
Comparison of Cross-tabulations with Neural Networks in Male Offspring (n = 711) 
 

 
 
Abbreviations: OR, odds ratio; BR, base rate; CI, confidence interval; DM, diabetes mellitus; 
HTN, hypertension; CAD, coronary artery disease; M, mother; F, father; +, positive for the 
disease type; -, negative for the disease type; famhx, family history; hx, history. 

      
       
 

Likelihood Odds OR 95% CI Base BR 95% CI Neural  

 
Ratio Ratio (low, high) Rate (low, high) Network  

DM       0.10 0.02, 0.18   
 Any famhx 2.43 3.55 2.14, 5.88 --- --- --- 
 Specific hx     

 
  

 
  

M+, F+ 3.04 3.19 0.87, 11.75 0.20 0.00, 0.40 0.44 
M+, F- 3.12 4.11 2.24, 7.53 0.24 0.14, 0.35 0.32 
M-, F+ 2.53 2.9 1.36, 6.18 0.19 0.01, 0.30 0.22 
M-, F- --- --- --- 0.07 0.05, 0.10 0.12 

 
            

HTN     
 

0.37 0.25, 0.50   
 Any famhx 1.57 2.61 1.91, 3.57 --- --- --- 
 Specific hx     

 
  

 
  

M+, F+ 3.59 5.16 3.14, 8.49 0.65 0.54, 0.75 0.65 
M+, F- 1.77 2.33 1.56, 3.47 0.45 0.37, 0.54 0.46 
M-, F+ 1.55 1.81 1.16, 2.81 0.39 0.30, 0.48 0.49 
M-, F- --- --- --- 0.26 0.22, 0.31 0.34 

 
            

CAD     
 

0.11 0.02, 0.19   
 Any famhx 2.33 3.00 1.76, 5.08 --- --- --- 
 Specific hx     

 
  

 
  

M+, F+ 10.17 10.90 2.65, 44.91 0.50 0.09, 0.91 0.20 
M+, F- 4.49 5.19 2.32, 11.63 0.32 0.14, 0.50 0.22 
M-, F+ 1.67 1.82 0.90, 3.66 0.14 0.06, 0.23 0.28 
M-, F- --- --- --- 0.08 0.06, 0.11 0.22 
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Table 2 
 
Comparison of Cross-tabulations with Neural Networks in Female Offspring (n = 354) 
 
 

 
 
Abbreviations: OR, odds ratio; BR, base rate; CI, confidence interval; DM, diabetes mellitus; 
HTN, hypertension; CAD, coronary artery disease; M, mother; F, father; +, positive for the 
disease type; -, negative for the disease type; famhx, family history; hx, history. 
 

      
       
 

Likelihood Odds OR 95% CI Base BR 95% CI Neural  

 
Ratio Ratio (low, high) Rate (low, high) Network  

DM       0.08 0.05, 0.11   
 Any famhx 3.80 10.12 4.34, 23.1 --- --- --- 
 Specific hx     

 
  

 
  

M+, F+ 12.27 14.78 2.39, 91.46 0.33 0.00, 0.79 0.31 
M+, F- 5.04 10.43 4.10, 26.57 0.26 0.12, 0.40 0.34 
M-, F+ 5.47 8.44 2.74, 26.00 0.22 0.05, 0.40 0.14 
M-, F- --- --- --- 0.03 0.01, 0.06 0.09 

 
            

HTN     
 

0.12 0.08, 0.15   
 Any famhx 1.69 4.32 2.25, 8.30 --- --- --- 
 Specific hx     

 
  

 
  

M+, F+ 3.89 7.90 3.47, 17.97 0.40 0.25, 0.55 0.37 
M+, F- 2.07 3.55 1.64, 7.70 0.23 0.13, 0.33 0.22 
M-, F+ 2.12 3.32 1.46, 7.53 0.22 0.11, 0.33 0.32 
M-, F- --- --- --- 0.03 0.03, 0.12 0.17 

 
            

CAD     
 

0.03 0.01, 0.05   
 Any famhx 3.18 5.00 1.47, 17.02 --- --- --- 
 Specific hx     

 
  

 
  

M+, F+ 0.00 0.00 --- 0.00 --- 0.06 
M+, F- 3.96 4.46 0.49, 40.24 0.08 0.00, 0.28 0.08 
M-, F+ 3.58 5.3 1.43, 19.64 0.10 0.00, 0.20 0.15 
M-, F- --- --- --- 0.02 0.00, 0.04 0.06 
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