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Malaria, a life-threatening blood disease, has been a major concern in the field of healthcare. One of the severe forms of malaria is
caused by the parasite Plasmodium falciparum which is initiated through protein interactions of pathogen with the host proteins.
It is essential to analyse the protein-protein interactions among the host and pathogen for better understanding of the process and
characterizing specific molecular mechanisms involved in pathogen persistence and survival. In this study, a complete protein-
protein interaction network of human host and Plasmodium falciparum has been generated by integration of the experimental
data and computationally predicting interactions using the interolog method. The interacting proteins were filtered according to
their biological significance and functional roles. 𝛼-tubulin was identified as a potential protein target and inhibitors were designed
against it by modification of amiprophos methyl. Docking and binding affinity analysis showed two modified inhibitors exhibiting
better docking scores of −10.5 kcal/mol and −10.43 kcal/mol and an improved binding affinity of −83.80 kJ/mol and −98.16 kJ/mol
with the target. These inhibitors can further be tested and validated in vivo for their properties as an antimalarial drug.

1. Introduction

Malaria, one of the most distressing diseases, is caused by
the parasitic protozoan Plasmodium falciparum. It takes away
millions of lives with the rate increasing each growing year.
According to WHO’s Factsheet on the World Malaria Report
2013, 1.2 billion people out of a total of an estimated 3.4 billion
are at a high risk of malaria. Malaria is highly prevalent in
sub-Saharan Africa where 90% of all malaria deaths occur
(WHO 2013). A lot of research has been going on in the field
ofmalarial therapeutics. Nowadays, there are awide variety of
antimalarial drugs, such as chloroquine and artemisinin, and
strategies available for the control and treatment of malaria
[1–3].

Despite clinical researches in the field of infectious
diseases, it remains to be a major problem in the worldwide
health issue [4–6]. Exploring the infection process in detail
can help in deciphering the mechanisms that govern and

control it. In the process of evolution, pathogens have
evolved an infection mechanism and humans have evolved
immune responses as defense mechanism. A majority of
host-pathogen interactions are governed by specific protein-
protein interactions [7–9]. To obtain a deep understanding
of the infection process, specific interactions between the
host and pathogen need to be studied [10–15]. Host-pathogen
protein interactions are typically studied using conventional
small-scale methods which focuses on single protein at a
time. Few methods for large-scale discovery have also been
developed such as yeast two-hybrid experiments which allow
more comprehensive identification but are expensive and
time consuming. Computational methods are less time con-
suming and cost-effective and hence are a better alternative
for the prediction of protein interactions [10, 16–20].

Several studies in the field of computational prediction of
host-pathogen interactions and drug discovery have shown
significant results. Dyer et al. developed a computational
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Figure 1: Flowchart of methodology. (a) Identification of the target molecule by filtering and analysis of the protein interactions predicted
by BIPS. (b) Docking and binding affinity analysis of the target protein and modified inhibitors.

method to identify protein interactions which uses known
PPIs to identify functional domains in interacting pairs and
Bayesian statistics for assessing the probability of interaction
of two proteins. In this study they observed that interacting
pairs were coexpressed [10]. Krishnadev and Srinivasan
adopted a homology based approach for identification of
protein interactions between Plasmodium falciparum and its
human host [21]. Lee et al. used an ortholog approach to pre-
dict protein interactions in human-Plasmodium system.They
compared these interactions with Bayesian and structure
based approaches [22]. Durmuş Tekir et al. created Pathogen-
Host Interaction Search Tool (PHISTO), a web accessible tool
that provides up-to-date information of experimentally ver-
ified data on protein interactions. The tool offers integrated
visualization of pathogen-host interaction networks, BLAST
search, text mining for detecting missing experimental
methods, and graph-theoretical analysis of targeted human
proteins [23]. Rapanoel et al. adopted interolog method for
prediction of protein interactions between Mycobacterium
tuberculosis and its human host. This method predicted
interactions using experimentally known intraspecies and
interspecies interactions and filtered proteins on several
parameters, such as cellular location and cellular function, to
confirm the practicality of the predictions. Function analysis
of the predicted interactions is carried out to analyse the
role of proteins in infection process [24]. These studies have
contributed to the knowledge of protein interactions through
different methods, but a lot is still unknown in the field of
malarial therapeutics.

In this study, a complete protein interaction network
between human host and Plasmodium falciparum has been

developed by integration of experimental and computa-
tional methods. Experimental interactions are obtained from
PHISTO and STRING. Interolog method is adopted, which
hypothesizes that a set of two proteins, each from different
species, can be predicted as possible interactions if their
respective homologs are found to be interacting in any
single species. Interaction network is used as a platform for
identification of potential drug target.

Microtubule is a heterodimer consisting of two subunits,
that is, 𝛼-tubulin and 𝛽-tubulin. These subunits bind to each
other and make a small subunit which polymerizes to make
complete microtubule. It is very important for structural
integrity of cells [25, 26]. After the analysis of predicted
protein interactions, 𝛼-tubulin, a validated target in the
malarial infection [27], was found to be one of the highest
interacting proteins in malarial infection. The eventual aim
of this study is to design an efficient drug molecule for the
target. Several tubulin mitotic inhibitors such as benzimi-
dazole, dinitroanilines are already present in the literature
which interact with these proteins and hinder the infection
process. We have included the study in Figures 10(a) and
10(b). Amiprophos methyl prevents erythrocytic schizogony
and blocks mitosis in Plasmodium falciparum infection and
results in abnormal microtubule accumulation.This suggests
that amiprophos methyl is worthy of investigation for its
antimalarial potential. Amiprophos methyl is a validated
tubulin inhibitor in reference studies and is found to have
least mammalian toxicity [27, 28]. Therefore, derivatives of
amiprophos methyl were designed by carrying out modifica-
tions at preferred locations with several functional groups.
Finally, a molecule is identified which has better binding
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Figure 2: Pie chart representation of pathogen protein classified on the basis of (a) biological process, (b) molecular function, (c) protein
class, and (d) pathway.
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Figure 4: Molecular structure of amiprophos methyl.

affinity than the reference molecule which can be considered
as a novel drug molecule.

2. Methodology

Whole methodology is divided into two major parts as
shown in Figure 1. First part includes identification of target
molecule through protein interaction network while the
second part involves docking analysis of the target with
designed inhibitors.

2.1. Host-Pathogen Interactions. The complete protein inter-
action network was developed by integration of experimen-
tally found interactions, interaction data fetched fromprotein

interaction database STRING, and computationally predicted
interactions.

The computational prediction of host-pathogen protein
interactions was carried out through BIPS, that is, BIANA
interolog prediction server (http://sbi.imim.es/web/index
.php/research/servers/bips) [29]. The whole proteome
of Plasmodium falciparum, downloaded from UniProt
(http://www.uniprot.org/), was taken as an input by the
server and the predicting protein partner was restricted to
Homo sapiens. The predicted interactions were annotated
for their cellular location, gene ontologies, and functional
processes, using the Database for Annotation, Visualization,
and Integrated Discovery (DAVID), Functional Annotation
Chart tool [30, 31], and Panther [32]. These protein
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Figure 5: Molecular structure of final shortlisted molecules.

interactions were then functionally annotated for the
functional processes and pathways involved.

The experimental protein interactions were obtained
fromPHISTO, that is, Pathogen-Host Interaction SearchTool
(http://www.phisto.org/). The PHISTO server has a drop-
down menu where one can select the type of pathogen for
which experimentally known interactions with human are
desired [23].

STRING (Search Tool for the Retrieval of Interacting
Genes/Proteins) is a database for known and predicted
protein interactions for a large number of organisms. The
complete database was downloaded and data mining was
performed in the following two steps:

(1) The interactions with a sum scoremore than 900were
filtered.

(2) Interacting proteins were then filtered on the basis of
participating organism (Homo sapiens-Plasmodium
falciparum interactions).

Protein interactions from the three sources were integrated to
develop a complete human-Plasmodium interaction network.
Protein interactions were analysed to find most significant
proteins involved in the infection process. Pathogen proteins
were then shortlisted on the basis of the number of their
interacting partners. Highest interacting pathogen proteins
were shortlisted for further analysis. The shortlisted proteins
were then studied in literature for their functionality, role
in the pathogen, and the infection mechanism. A potential
drug target was found on the basis of above-mentioned
analysis.

2.2. Ligand Dataset Preparation. Finalized drug target is a
known target for cancer; hence it was searched for its present
inhibitors in literature. Out of all already known inhibitors,
the one with least known toxicity and highest absorption
was finalized and its derivatives were designed by addition
of specific chemical groups at the preferred positions accord-
ing to the present literature. Reference inhibitor molecule

chosen was amiprophos methyl. A library of the designed
inhibitors was prepared by MarvinSketch. Designing of
inhibitors was performed by addition of specific functional
groups at single andmultiple locations inmany combinations
[33].

2.3. Docking Studies. Rigid docking was carried out between
protein target and designed inhibitors using GLIDE docking
program of Schrödinger (Schrödinger Release 2014-2). The
results of docking were analysed followed by prioritization of
functional groups and positions on the chemical structure.
More molecules were designed by combining the prioritized
position and functional groups. Prime docking molecules
were then taken for flexible docking by induced fit docking
in Schrödinger (Schrödinger Release 2014-2) (Figure 9). Most
suitable docking inhibitor is considered as a potential drug
molecule [34–37].

The final molecule is checked for its binding affinity and
ADME properties [38] (Table 2).

3. Result and Discussion

The whole proteome of Plasmodium falciparum was down-
loaded from UniProt which contained 5353 proteins; 157
reviewed and 5196 unreviewed proteins. From BIPS, a
total of 2381 interspecies interactions were obtained. These
interactions were annotated for their cellular location, gene
ontology, and functional role and then filtered upon these
parameters. Functional annotation of the predicted pathogen
proteins was carried out using DAVID and Panther. Panther
identified 31 pathogen proteins and classified them on the
basis of biological process,molecular function, pathways, and
protein class. It was observed that most of the interacting
pathogen proteins are involved in metabolic processes and
have binding as their molecular function. These proteins fall
into nucleic acid binding class of proteins and thus it was
concluded that they have an important function in DNA
replication and cell survival. There was no majority observed
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Figure 6: Interaction of amiprophos methyl with target protein at site II (a) and (b) docked reference molecule in the target protein at the
site II with blue colour showing hydrogen bind between ligand and Tyr(21) of protein. (c) LigPlot analysis of protein and ligand interactions.

in the pathway classification of these proteins but there was
a similarity: they all were involved in signalling and disease
pathways (Figure 2).

The predicted protein interactions were used to generate
host-pathogen interaction network (Figure 3). The predicted
interactions were then analysed for the number of interacting
partners of pathogen. Out of all the protein interactions,
highly interacting proteins were shortlisted. Human proteins
were not considered as a drug target because those proteins

might have a role as an essential component in the biological
processes. So, targeting human proteins have a high risk of
drug toxicity. Human proteins which were interacting with
more than three pathogen proteins were usually structural
and assembly proteins such as actin, tubulin, and histone.
Most of these human proteins were histone proteins. This
shows that parasite infection affects mostly nuclear and cell
assembly proteins in humans. Therefore, these proteins were
left out because they are important proteins in human cells. If
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human proteins or proteins similar to human proteins are tar-
geted, the problem of drug toxicity after drug delivery might
persist. Hence, pathogen proteins are considered for drug
targeting to remove the possibility of negative effects in the
host [39]. It was observed that most of the highly interacting
proteins were involved in structural assembly of the pathogen
such as actin, tubulin, and histone. Already present literatures

of these proteins were studied to understand their functional
role in the pathogen.

As a result of this analysis, 𝛼-tubulin was finalized as
an important protein involved in the infection process. 𝛼-
tubulin is a monomer unit which polymerizes to carry out
several critically important roles throughout parasite life
cycle [40, 41]. In parasite, they form mitotic spindle during
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cell division and even slight disruption of microtubule causes
a severe impact on the viability of parasite. Plasmodium
falciparum infects the host and an initial contact occurs
between merozoite and erythrocyte. 𝛼-tubulin is also present
in humans but tubulins of humans and plasmodium have
significant differences in their mode of function. Present
studies have shown that antitubulins show very low or no
cross-reactivity tomammalian tubulins [28]. In experimental
studies it was confirmed that invasion was decreased and
eventually stopped when merozoites were exposed to tubulin
inhibitors [27]. Experimental studies have demonstrated that

microtubules were disrupted on exposure to antitubulin
agent indicating the role of intact microtubule in merozoite
invasion. Microtubule is found in many stages of malaria
parasite, validating it as a potential drug target. Detailed
examination of merozoites in erythrocyte invasion identified
targeting 𝛼-tubulin as a potential approach for malaria
therapy [42–44].

Amiprophosmethyl (Figure 4) is an antimitotic herbicide
and a known inhibitor for 𝛼-tubulin. It is found to be a
promisingmolecule because of its lowmammalian toxicity. It
was reported in reference studies that amiprophosmethyl has
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better specificity for pathogen proteins and has no binding
site in human tubulin protein [29, 30, 44–46].

Glide docking analysis of the target protein with the
designed inhibitors and reference molecule was carried
out. Glide docking performs significantly better than other
docking programs with accuracy of more than 90% [34–37].
Amiprophos methyl was considered as a reference molecule
with a docking score of 4.43. Among the designed inhibitors,
molecules with best docking score were analysed for the
functional molecules and their positions in that molecule.
Molecules were then designed with the functional groups
in combinations at the preferred positions. It was found
that electronegative groups at positions 2, 3, and 9 showed
significant improvements in docking score. A molecule with
CF
3
at position 4, piperidine at position 9, andOH at position

3 showed the best docking score of −8.14 at site 2. This
molecule had 83% better docking score than the reference
molecule. The molecules with the best docking score were
shortlisted and flexible docking was carried out (Figure 5).
Highest docking score of −10.5 kcal/mol and −10.43 kcal/mol
was obtained in flexible docking (Table 3).

These final molecules are analysed for their
interaction with residues at site II using LigPlot [46]. 3-
({Ethoxy[(piperidin-1-yl)amino]phosphoryl} oxy)-2-(hy-
droxymethyl)-6-(trifluoromethyl)phenol forms two
hydrogen bonds with Glu(22) and Tyr(83). 5-
({Ethoxy[(piperidin-1-yl)amino]phosphoryl} oxy)-4-(hy-
droxymethyl)-2-(trifluoromethyl) benzene-1,3-diol forms

four hydrogen bonds with surrounding residue, that is, two
with Arg(229), two with Thr(82), and one with Glu(77).
The reference molecule was forming only a single hydrogen
bond with Trp(21). The hydrogen bonds of these molecules
with surrounding residues govern their stability and hence
new molecules have better stability than reference molecule
(Figures 6, 7, and 8).

The two final listed molecules have the highest docking
score and low binding energy than the reference molecule
which shows that it has better binding properties (Table 1).
From ADME property analysis of the two molecules, it
was observed that these have high values of human oral
absorption, zero violations in Lipinski’s rule of five, and zero
violation in Jorgensen’s rule of three and all the drug-ability
determining properties lie under range (Table 2).

Better binding affinity and ADME property analysis of
the final molecule confirm its potential to be used as a drug
molecule for further analysis and trials.

4. Conclusion

From the predicted host-pathogen PPIs, the present study
concludes thatmost of the host proteins with which pathogen
protein interactions are structural proteins such as actin,
tubulin, and histone. Most of the pathogen proteins involved
in the infection process are structural and assembly proteins
and most of the host proteins are either structural proteins
or nuclear assembly proteins. Hence, the pathogen caused
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Table 1: Comparison of binding energy scores of reference and potential drug molecules.

Mol.
number

H-bonding
energy

Coulomb
energy

Covalent
binding energy

Pi-pi packing
energy

Lipophilic
energy

Binding
energy

Electrosolvation
energy

Van der
Waals
energy

Ref. −0.33 3.52 4.77 −0.17 −42.46 −80.96 5.05 −51.35
A −2.35 −19.23 2.09 −3.63 −37.46 −83.79 21.08 −44.34
B −3.78 −66.20 5.94 0 −32.50 −98.16 37.69 −39.30

Table 2: Comparison between QikProp scores of final molecules and reference molecule for analysis of ADME properties.

Mol.
number # stars MW Human oral absorption Percent human oral

absorption Rule Of five Rule Of three

Ref. mol. 0 304.3 3 100 0 0
A 0 398.32 3 80.59 0 0
B 0 414.32 3 69.87 0 0

Table 3: Glide scores and induced fit scores of the short listed
molecules for flexible docking and binding affinity analysis.

Mol. number Glide score IFD score
1 −10.5 −762.72
2 −10.43 −762.29
3 −10.24 −766.93
4 −9.65 −768.15
5 −9.25 −761.87
6 −8.99 −760.97
7 −8.46 −764.92
8 −7.61 −767.01
9 −6.68 −757.47
10 −6.65 −763.28

infection by targeting nuclear assembly proteins and thereby
inhibiting the host cell to function properly. 𝛼-tubulin of
pathogen is targeted for development of antimalarial agent
for malarial treatment. Derivatives of herbicide having anti-
malarial property were developed and molecule with better
binding affinity and ADME property was obtained. It was
observed that molecules with electronegative groups have
better binding properties than original molecule.

3-({Ethoxy[(piperidin-1-yl)amino]phosphoryl} oxy)-2-
(hydroxymethyl)-6-(trifluoromethyl)phenol and 5-
({ethoxy[(piperidin-1-yl)amino]phosphoryl} oxy)-4-(hy-
droxymethyl)-2-(trifluoromethyl)benzene-1,3-diol were the
two best molecules which can be considered as drug
molecules for in vivo analysis and validation.
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