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Abstract

In analyzing diffusion magnetic resonance imaging, multi-tensor models address the limitations of 

the single diffusion tensor in situations of partial voluming and fiber crossings. However, selection 

of a suitable number of fibers and numerical difficulties in model fitting have limited their 

practical use. This paper addresses both problems by making spherical deconvolution part of the 

fitting process: We demonstrate that with an appropriate kernel, the deconvolution provides a 

reliable approximative fit that is efficiently refined by a subsequent descent-type optimization. 

Moreover, deciding on the number of fibers based on the orientation distribution function 

produces favorable results when compared to the traditional F-Test. Our work demonstrates the 

benefits of unifying previously divergent lines of work in diffusion image analysis.

1 Introduction

The diffusion tensor model [1] is widely used for analyzing data from diffusion weighted 

magnetic resonance imaging (DW-MRI), but is inadequate in situations of partial voluming 

and fiber crossings. Multi-compartment models provide a natural extension by combining 

multiple diffusion tensors. They have been used to study the effects of partial voluming [2], 

and to analyze the diffusion weighted signal in voxels with multiple fiber contributions [3].

Fitting multi-tensor models requires nonlinear optimization, for which previous work has 

used descent-type algorithms [3–6]. However, these methods only find the global optimum 

when provided with an initial guess that is sufficiently close to the final solution. At the state 

of the art, numerous randomized re-starts are tried to reach a suitable optimum with high 

probability [3, 7, 6], which incurs an excessive computational cost. Alternatively, 

regularization over spatial neighborhoods [8] requires numerical solution of a partial 

differential equation.

We present a novel way of applying spherical deconvolution [9] to “kick-start” model 

fitting, as summarized in Figure 1. We derive a deconvolution kernel to approximate the 

ball-and-stick model [10, 11], a common variant of the multi-tensor model. The 

deconvolution result is analyzed by a recent method for fitting discrete models to continuous 
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orientation distribution functions [12]. This decides the number of fibers and provides a 

starting point to make subsequent optimization [13, 4–6] more reliable and efficient.

Diffusion image analysis approaches based on spherical deconvolution have generally been 

distinct from those involving explicit fitting of multi-fiber models. Our main contribution is 

showing how these two approaches can be adapted and combined to create a unified 

algorithmic solution that offers advantages of both.

2 Related Work

2.1 Multi-Tensor Models

Multi-tensor models assume k diffusion compartments with little or no exchange during 

measurement time [2], each parametrized by a symmetric 3 × 3 diffusion tensor Di per 

compartment, with eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ 0. The signal fractions fi ε [0, 1] sum to unity. 

With this, the signal S(g) is predicted as

(1)

where k is the number of compartments, S0 is the non diffusion-weighted signal, b is the 

diffusion weighting, and g is the diffusion-sensitizing gradient.

A full k-tensor model has 7k−1 degrees of freedom, but additional constraints are imposed in 

practice. When a single non-zero b-value is used, a mathematical indeterminacy prevents 

simultaneous estimation of the isotropic part of Di and its volume fraction fi [7]. Most 

authors constrain the isotropic part, for example by assuming equal eigenvalues on all Di [3, 

14, 5], but some prefer to fix the fi instead [7, 15]. A very common assumption is axial 

symmetry (λ2 = λ3) [3, 7, 8, 10, 14–16]. In many cases, k is limited to k ≤ 2 [3, 7, 16, 5].

In this work, we focus on the ball-and-stick model [10], which assumes that all Di have 

equal λ1; a single “ball” compartment is completely isotropic (λ1 = λ2 = λ3), the remaining 

“stick” compartments are perfectly linear (λ2 = λ3 = 0). For n fiber terms, this leads to k = n 

+ 1 compartments and 3n + 1 degrees of freedom. We consider the model up to n = 3.

2.2 Spherical Deconvolution

Rather than assuming a fixed number of compartments, spherical deconvolution reconstructs 

an orientation distribution function (ODF) F(θ, ϕ), which specifies a continuous density of 

volume fractions on the unit sphere. The predicted signal S(θ, ϕ) is then defined as the 

convolution of the ODF F(θ, ϕ) with an axially symmetric single-fiber response function 

R(γ),

(2)

where γ′ is the angle between directions given by (θ, ϕ) and (θ′, ϕ′). Typically, S(θ, ϕ) and 

R(γ) are estimated from the data and modeled in spherical harmonics and rotational 
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harmonics, respectively. This reduces spherical deconvolution to simple scalar division, and 

yields F(θ, ϕ) [9].

It has been pointed out [10] that Equation (2) describes a continuous version of the ball-and-

stick model when substituting

(3)

and adding S0fiso exp(−bd) outside the integral, where fiso is the volume fraction of the ball 

compartment. We use this relation to compute an ODF F(θ, ϕ) that corresponds to the 

continuous ball-and-stick model. FORECAST [14] has followed a similar goal, though 

corresponding to a multi-tensor model with nonzero perpendicular diffusivity (λ2 = λ3 > 0) 

in the individual compartments.

2.3 Discrete Approximations of Continuous ODFs

From a continuous ball-and-stick model, the discrete case is recovered by replacing the 

continuous function F(θ, ϕ) with a discrete ODF  that is a finite sum of weighted 

delta peaks. Even though it is common to recover discrete directions by locating maxima in 

F(θ, ϕ) [9, 17], this is not accurate. It ignores the fact that delta peaks represented by finite-

order spherical harmonics no longer have negligible width, so the individual peaks interfere 

with each other.

Therefore, we employ nonlinear optimization based on higher-order tensor representations 

to find a discrete approximation , as described in [12]. Selecting the maximum 

spherical harmonics order involves a tradeoff between increasing peak sharpness and 

reducing the influence of noise. Unlike maximum extraction, the optimization in [12] 

explicitly accounts for the blurring of ODF peaks at low orders. We found that because of 

this, a good tradeoff is already achieved at maximum order four.

3 Using Spherical Deconvolution for Model Fitting

3.1 Fitting the Ball-and-Stick Model

The previous section described how fitting the ball-and-stick model can theoretically be 

formulated as a deconvolution problem with a discrete ODF . We now describe an 

efficient and reliable algorithm based on this insight.

Initial per-voxel estimates of the diffusivity d and the isotropic volume fraction fiso of the 

ball-and-stick model are obtained from the maximum apparent diffusion coefficient dmax 

and the average diffusion-weighted intensity 

(4)

where Si are the diffusion-weighted values. Integrating Equation (1) over the unit sphere 

shows that  varies linearly with fiso between  (at fiso = 0) and  = 
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S0 exp(−bd) (at fiso = 1), where erf is the Gauss error function. Assuming that d ≈ dmax, this 

allows us to compute fiso from . These initial estimates are refined further as part of the 

final descent-based fitting.

Now, the predicted isotropic part S0fiso exp(−bd) is subtracted from Si, and a spherical 

harmonics representation of S(θ, ϕ) is fit to the remainder. Like [12], we deconvolve to a 

non-ringing cosine power lobe (cos4 γ) instead of a truncated delta peak. Using computer 

algebra software, the order-four coefficients of the deconvolution kernel that corresponds to 

R(γ) in Equation (3) are found as:

(5)

Dividing the order-n spherical harmonics coefficients of S(θ, ϕ) by Rn gives F(θ, ϕ) [9], 

which is then approximated by a discrete ODF  with the algorithm in [12]. This 

involves nonlinear optimization, but it is much simpler than fitting Equation (1) directly: 

Instead of fitting to 50–100 DWI values, it considers only 15 coefficients of F(θ, ϕ) (at 

maximum order four). Moreover, both the objective function and its derivatives involve only 

additions and multiplications.

The peaks in  approximate fiber directions, their weights provide relative volume 

fractions. In a final step, these estimates are refined by fitting Equation (1) to the original 

DWI data, using Levenberg-Marquardt (LM)1 [13].

3.2 Selecting the Number of Sticks

For best quality, the correct number of compartments needs to be selected in the multi-tensor 

model: If it is chosen too low, the model might indicate fiber directions that do not align 

with any true tract. On the other hand, overestimating the true number reduces the accuracy 

of the result due to overfitting.

In spherical deconvolution, it is common to estimate the number of fiber compartments from 

the maxima in the ODF F(θ, ϕ) [17]. Since our framework uses deconvolution, we explore a 

similar strategy based on the discrete ODF . We use a three-stage test with 

thresholds t{0,1,2}: If fiso > t0, no fiber is detected. Otherwise, F (θ, ϕ) is normalized to 

integrate to unity and a discrete ODF with two delta peaks is extracted, whose weights are 

w1 > w2. If w2 < t1, a single fiber is used. Otherwise, a three-peak approximation is found 

with w1 > w2 > w3. If w3 < t2, we assume two fibers, else three compartments are used.

1http://www.ics.forth.gr/~lourakis/levmar/ [Accessed on 22 Feb 2010]
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4 Results

4.1 Synthetic Data

Synthetic diffusion-weighted data with 60 directions, b = 3000 s/mm2, and Rician noise at 

SNR0 = 30 was created from a multi-cylinder model with non-zero λ2 = λ3. Eigenvalues 

were sampled from Gaussian distributions with parameters according to estimates from real 

DW-MRI data. Principal eigenvectors and volume fractions were sampled uniformly at 

random. Cases in which any volume fraction was below 0.2 or any pair of vectors was closer 

than 30° were rejected.

We created 5000 one-, two-, and three-fiber configurations each and used Levenberg-

Marquardt with 100 random restarts, sampled in analogy to data generation, to find the 

global optimum for the predetermined, correct number of compartments. We then counted 

the number of times a single randomized run and a run that was kick-started by spherical 

deconvolution found the correct optimum. Table 1 shows that in the two- and three-fiber 

cases, the prediction raised the chances of finding the optimum by around 10%. On average, 

the cost of deconvolution, finding the discrete ODF, and final refinement by LM, is about 

half the computational cost of finding the optimum by LM alone.

Table 2 lists the mean and median angular deviation of the individual stick compartments, 

sorted by volume fraction, from the ground truth. It confirms that spherical deconvolution 

comes close enough to the final result to be a useful seed, but subsequent optimization still 

improves upon its accuracy, especially in the three-fiber case. To validate our choice of [12] 

over ODF peak finding, we also list the most accurate result we were able to achieve using 

that more traditional technique (order 6, truncated delta peak, Laplace-Beltrami 

regularization [17]).

Finally, we used the synthetic data to compare our criterion for selecting the fiber number to 

two statistical tests previously applied to diffusion model selection, the Bayesian 

Information Criterion (BIC) [18], and the F-Test [19, 6, 18]. Automatic relevance 

determination [11] is not included in our comparison, since it aims at Bayesian model 

averaging rather than at making a hard decision. As shown in Table 3, the parameter-free 

BIC exhibited a strong bias towards selecting two or three fibers. The thresholds t{0,1,2} of 

the other two tests were set to balance sensitivity and specificity at each stage. The 

deconvolution-based test achieved best results for all ground truth configurations.

We also repeated all experiments with b = 1000 s/mm2. Without providing the quantitative 

results, we qualitatively state that the probability of finding the correct optimum increased, 

but average accuracy with respect to ground truth decreased. Our test for model selection 

became less reliable, while results of the F-Test improved. Apparently, the F-Test benefits 

from a low effective noise level, while the deconvolution-based test requires the better 

separation of the individual compartments afforded by higher b values.

4.2 Real Data

In order to identify the voxels in a real dataset (60 directions, b = 1000 s/mm2, isotropic 

voxel size 1.72 mm) in which the individual tests are most likely to use two- and three-fiber 
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models, we calibrated the F-Test and our deconvolution-based test to generate 25% no-fiber, 

40% one-fiber, 25% two-fiber, and 10% three-fiber voxels within a brain mask.

A detail of the result is shown in Figure 2, the intersection of corpus callosum and 

corticospinal tract on a coronal slice. For visualization, we map the stick compartments to 

tensors whose perpendicular diffusivity is scaled by the volume fraction of the ball 

compartment (λ2 = λ3 = fisod). The fiber fractions are renormalized to unity and color-coded. 

In (a), standard single diffusion tensors are shown for reference. We found that the F-Test 

tends to fit multiple stick compartments to voxels that likely just contain a single bending or 

spreading bundle, e.g., in the body of the corpus callosum (CC). The deconvolution-based 

test is more robust to such cases, as long as they lead to a clear single ODF peak. We expect 

that this will allow us to track through crossings like the one presented in Figure 2, while 

avoiding spurious tracts. However, design of a tractography method that makes use of our 

novel framework is left as future work.

With the deconvolution-based test, Levenberg-Marquardt is only run once per voxel, which 

provides an additional speedup. Our complete pipeline, including testing and fitting the final 

result, processed 1050 voxels per second with the F-Test, 2950 voxels per second with the 

deconvolution-based test, on a single CPU core of a 2.7 GHz workstation. Finally, 20 

randomized restarts of Levenberg-Marquardt improved upon the optimum found by our 

method in less than 0.2% of all voxels. Therefore, we conclude that our pipeline offers a 

reliable and efficient solution for fitting ball-and-stick models.

5 Conclusion

Traditionally, multi-fiber models and spherical deconvolution are used as competing 

methods, each with its own set of advantages and disadvantages: Linear spherical 

deconvolution is extremely fast and does not require pre-specification of an expected 

number of fibers. On the other hand, multi-tensor models offer higher accuracy for 

applications like multi-fiber streamline tractography [4, 7, 17, 15], where it is the primary 

goal to estimate the most likely fiber directions.

We have presented a framework that combines the best of both worlds: Based on spherical 

deconvolution, a plausible number of fiber compartments is found automatically. Initializing 

the fitting with the deconvolution result doubles the speed of the computation, while at the 

same time increasing the probability of finding the global optimum to more than 95% in the 

two-fiber case and to more than 90% for three fibers. As a result, we achieve a fully 

integrated, reliable and efficient algorithmic solution for multi-tensor fitting.
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Fig. 1. 
In our framework, deconvolution and ODF approximation make Levenberg-Marquardt 

fitting of ball-and-stick models faster and more reliable.
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Fig. 2. 
In real data (a), our deconvolution-based test (c) produced more plausible results than the F-

Test (b), which frequently fits multiple sticks in regions that are generally thought to contain 

a single bending or spreading compartment.
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