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Spatial memory depends on the hippocampus, which is
particularly vulnerable to aging. This vulnerability has im-
plications for the impairment of navigation capacities in
older people, who may show a marked drop in perfor-
mance of spatial tasks with advancing age. Contemporary
understanding of long-term memory formation relies on
molecular mechanisms underlying long-term synaptic
plasticity. With memory acquisition, activity-dependent
changes occurring in synapses initiate multiple signal
transduction pathways enhancing protein turnover. This
enhancement facilitates de novo synthesis of plasticity
related proteins, crucial factors for establishing persistent
long-term synaptic plasticity and forming memory en-
grams. Extensive studies have been performed to eluci-
date molecular mechanisms of memory traces formation;
however, the identity of plasticity related proteins is still
evasive. In this study, we investigated protein turnover in
mouse hippocampus during long-term spatial memory
formation using the reference memory version of radial
arm maze (RAM) paradigm. We identified 1592 proteins,
which exhibited a complex picture of expression changes
during spatial memory formation. Variable linear decom-
position reduced significantly data dimensionality and en-
riched three principal factors responsible for variance of
memory-related protein levels at (1) the initial phase of
memory acquisition (165 proteins), (2) during the steep
learning improvement (148 proteins), and (3) the final
phase of the learning curve (123 proteins). Gene ontology
and signaling pathways analysis revealed a clear correla-
tion between memory improvement and learning phase-
curbed expression profiles of proteins belonging to
specific functional categories. We found differential en-
richment of (1) neurotrophic factors signaling pathways,
proteins regulating synaptic transmission, and actin mi-

crofilament during the first day of the learning curve; (2)
transcription and translation machinery, protein traffick-
ing, enhancement of metabolic activity, and Wnt signaling
pathway during the steep phase of memory formation;
and (3) cytoskeleton organization proteins. Taken to-
gether, this study clearly demonstrates dynamic assem-
bly and disassembly of protein-protein interaction net-
works depending on the stage of memory formation
engrams. Molecular & Cellular Proteomics 15: 10.1074/
mcp.M115.051318, 523–541, 2016.

Long-term synaptic plasticity is considered a cellular cor-
relate of long-term memory (LTM)1. Contemporary under-
standing of memory formation is based on the initiation and
maintenance of long-term synaptic plasticity (1–4), for which
de novo protein synthesis is a vital requirement. De novo
protein synthesis itself is secondary to activity-dependent
changes in synapses that occur during learning processes.
These activity changes trigger post-translational modifica-
tions of proteins initiating and sustaining multiple signal trans-
duction pathways. In turn, these signaling pathways regulate
changes in synaptic strength and connectivity by governing
gene expression and protein translation (5–13). Depending on
time elapsed since triggering of long-term synaptic plasticity,
protein synthesis may be limited to the dendrites directly
involved in the plasticity processes (14–18). Multiple synaptic
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activity-dependent signal transduction pathways (7–13, 19)
orchestrate the regulation of synaptic plasticity on the trans-
lational level (for review see (20, 21)). Accumulated evidence
shows that different types of LTM depend on protein synthe-
sis, disregarding dependence on brain regions such as
amygdala (22, 23), hippocampus (24–29), and medial prefron-
tal or insular cortex ((30–32); for review see (33)). However,
LTM perseveres significantly longer than duration of transla-
tion-dependent long-term plasticity. Maintenance and per-
sistence of LTM for days, months, or years requires replen-
ishment of the mRNA pool coding for proteins necessary for
memory consolidation. Moreover, importance of transcrip-
tional regulation of LTM was demonstrated: several transcrip-
tion factors (TFs), e.g. CREB, C/EBP, AP1, Egr, and Rel/
NF-�B have been shown to be critical to synaptic plasticity,
memory formation (for review see (34)), and regulation via
multiple signal transduction pathways (34–36).

Protein degradation is another pole of protein turnover reg-
ulation. Studies over the last decade demonstrate strong links
between maintenance of long-term potentiation (LTP, a type
of long-term synaptic plasticity) and protein degradation ((37);
for review, see (38)). It was recently shown that inhibition of
the proteasome system may enhance LTP induction (39) be-
cause of prevention of translation activator targeting (40).
Multiple behavioral studies have also confirmed the crucial
role of the ubiquitin-proteasome system in memory consoli-
dation in the amygdala (23, 41), hippocampus (24, 42), and
prefrontal cortex (32).

In this study, we aimed to investigate protein turnover (ex-
pression term is henceforth used for simplicity) alteration in
the hippocampus during long-term spatial memory formation.
The hippocampus is known to be crucial for coding, consol-
idation, and reconsolidation of a wide variety of memory
types, including spatial memory (for review, see (43)). The
reference memory version of the radial arm maze (RAM) par-
adigm allows conduction for temporal tracking of protein ex-
pression changes occurring during memory acquisition.

The importance of protein turnover in memory consolida-
tion and retrieval is indisputable. However, little is known
about those proteins which undergo expression changes dur-
ing memory formation and what are the dynamics of these
changes. Although several transcriptomic studies were con-
ducted on different types of learning (44–46), there is very
limited proteomic information based on behavioral paradigms
and temporal dynamics of memory acquisition. To our knowl-
edge, there is only a single publication to date showing pro-
tein profile change during the Morris water maze paradigm,
and this study was limited to the first 24 h of memory acqui-
sition (47). The current study includes a comprehensive pro-
teomic analysis of protein expression profiles occurring dur-
ing the whole course of long-term spatial learning acquired by
the RAM paradigm.

EXPERIMENTAL PROCEDURES

The Radial Arm Maze—
Description—The RAM paradigm (48, 49) was conducted using a

Plexiglass maze whose eight arms (35 cm � 8 cm � 8 cm) are
connected by removable guillotine doors to a circular central chamber
(21 cm diameter, Fig. 1A). At the end of each arm was a 3 cm dish in
which bait (semi-soft cheese, 15% fat) was placed as needed. Four of
the eight arms were marked with spatial cues for navigation purposes.
Animals underwent 5 days of food deprivation (12 h daily without
access to food and water accessible ad libitum) preceding the test,
inducing a reduction in body weight of not more than 15%. RAM
habituation phase began with a 3 day training period, during which
each animal was placed in the maze for 8 min daily, with free access
to 5 grams of bait located at the end of each arm. After the habituation
period, the animals were left for 2 additional days without training.
Learning (trial) phase: subsequently, animal learning ability was as-
sessed daily during a 5 day testing period, in which three arms were
baited. The baited arms differed from mouse to mouse, but remained
constant for each individual mouse. In the beginning of the trial
session, the mouse was placed in the center of the maze, with doors
closed. Then the doors were opened, allowing the animals to freely
enter the arms. Each mouse remained in the maze for 8 mins, or until
all the bait was consumed. Each animal performed the task once per
day. Animal navigation of the maze was recorded by EthoVision video
tracking system (version 7.1, Noldus Information Technology, Wage-
ningen, The Netherlands) and analyzed according to the following
parameters: (1) Correct Entries: entries to baited arms as a portion of
total arm entries; (2) Incomplete entries: entries to baited arms without
consuming bait, as a portion of total entries to baited arms; (3)
Latency, a time from trial start point to complete bait consumption; (4)
Re-entries to formerly baited arms; (5) Distance traveled (cm); and (6)
Velocity (cm/sec). The mice were deemed to have entered an arm
when its center point was located in the arm. Animal learning was
assessed as gradual elimination of randomness in animal navigation
of the maze, reducing bait consumption time, re-entry, and incorrect
entries. Furthermore, learning ability of the animals was validated
using factor analysis.

Data Analysis—Animal velocities and traveled distances were eval-
uated to exclude changes in learning curve not related to differences
in latency times. To evaluate reference memory performance, latency
time, incorrect entry number, and a fraction of correct entries from the
total entry number were calculated. A fraction of correct entry was
deduced from the sum of correct, incorrect, incomplete entries and
re-entries. Learning performance was evaluated using Kruskal-Willis
one-way ANOVA on ranks test with subsequent post-hoc Dunn’s
analysis or one way ANOVA with Holm-Sidak post-hoc method, de-
pending on Shapiro-Wilk normality test results.

Sample Preparation—Proteins were extracted from hippocampi of
5–10 mice per each group in each biological replicate. Each group
was collected in three biological replicates, hence the total amount
of mice analyzed per each group was about 30. Mice from three
different generations were used as three biological replicates, overall
one biological replicate per each generation. Protein extraction was
performed as described previously (50–52). To be concise, hip-
pocampi were homogenized in a Transport Buffer (20 mM Tris/
HEPES; 110 mM Potassium acetate; 5 mM Magnesium acetate; 0.5
mM EGTA; 0.1 mM PMSF and 0.1% Triton X100) and titrated with KOH
(pH 7.3) supplemented with Complete protease inhibitor (1:25, Roche,
Cat#1838145). The homogenates of hippocampi were centrifuged
and the extracted supernatants were subjected to protein denatur-
ation, reduction, and alkylation procedures (in 6 M Guanidin-HCl and
105 mM TCEP, dissolved in 25 mM Ammonium bicarbonate, incu-
bated for 1 h at 57 °C with subsequent incubation in 210 mM Iodac-
etamid, dissolved in 25 mM Ammonium bicarbonate for 45 min at
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room temperature, in dark). The obtained samples were diluted to 1 M

Guanidine-HCl using 25 mM Ammonium bicarbonate. The pH of the
diluted samples was adjusted to 8 by 1 M Ammonium bicarbonate and
the samples were further subjected to proteolytic digestion by side-
chain protected trypsin (Promega, Madison, WI) in ration 1:50 (pro-
tein:trypsin), overnight at 37 °C. Digestion was stopped by adjusting
pH to 3 using 10% formic acid and frozen immediately using liquid
nitrogen.

Liquid Chromatography—ULC/MS grade solvents were used for all
chromatographic steps. Each sample was loaded using split-less
nano-Ultra Performance Liquid Chromatography (10 kpsi nanoAc-
quity; Waters, Milford, MA) in high-pH/low-pH reversed phase (RP) 2
dimensional liquid chromatography mode. 20 �g of digested protein
from each sample was loaded onto a C18 column (XBridge, 0.3 � 50
mm, 5 �m particles, Waters). The following two buffers were com-
bined: (A) 20 mM ammonium formate, pH 10 and (B) acetonitrile
(ACN). Peptides were released from the column using a step gradient:
10.8%B, 13.8%B, 15.8%B, 17.8%B, 20.1%B, 23.4%B, 65%B. Each
fraction flowed directly to the second dimension of chromatography.
The buffers used in the low pH RP were: (A) H2O � 0.1% formic acid
and (B) ACN � 0.1% formic acid. Desalting of samples was per-
formed online using a reverse-phase C18 trapping column (180 �m
i.d., 20 mm length, 5 �m particle size, Waters). Then the peptides
were separated using a C18 T3 HSS nano-column (75 �m i.d., 200
mm length, 1.8 �m particle size, Waters) run at 0.4 �l/minute. Finally,
peptides were eluted from the column and loaded onto the mass
spectrometer using the following protocol: 3 to 30%B over 60 min,
30to 95%B over 5min, 95% maintained for 7 min (and then back to
initial conditions).

Mass Spectrometry—The nanoLC was coupled online through a
nanoESI emitter (7 cm length, 10 mm tip; New Objective; Woburn,
MA) to a quadrupole ion mobility time-of-flight mass spectrometer
(Synapt G2 HDMS, Waters) tuned to 20,000 mass resolution (full
width at half height). Data were acquired using Masslynx version 4.1
in data independent acquisition mode (DIA), HDMSE positive ion
mode. The ions were separated in the T-Wave ion mobility chamber
and transferred into the collision cell. Collision energy was alternated
from low to high throughout the acquisition time. In low-energy (MS1)
scans, the collision energy was set to 5 eV and this was ramped from
27 to 50 eV for high-energy scans. For both scans, the mass range
was set to 50–2000 Da with a scan time set to 1 s. A reference
compound (Glu-Fibrinopeptide B; Sigma) was infused continuously
for external calibration using a LockSpray and scanned every 30 s.

Data Processing, Searching and Analysis—Raw data processing
and database searching was performed using Proteinlynx Global
Server (PLGS) version 2.5.2. Database searching was carried out
using the Ion Accounting algorithm described by Li et al. (53). Data
were searched against a combined target and reversed (decoy)
mouse sequences in UniprotKB database and the CRAP list of com-
mon laboratory contaminants, version 2013_06 with 50,901 entries.
Trypsin was set as the protease, and two missed cleavages were
allowed. Carbamidomethylation was set as a fixed modification and
oxidation of methionine as variable modification. Raw data were also
imported into Rosetta Elucidator System, version 3.3 (Rosetta Bio-
software, Seattle, WA). Elucidator was used for alignment of raw MS1
data in RT and m/z dimensions as described (54). Aligned features
were extracted and quantitative measurements obtained by integra-
tion of three-dimensional volumes (time, m/z, intensity) of each fea-
ture as detected in the MS1 scans. Search results were then imported
directly from PLGS for annotation and the minimum identification
score was set to achieve a maximum global false discovery rate of
1% at the protein level. Relative protein abundance was calculated
using the Hi-3 method (55).

Data Acquisition and Peptide Identification Protein Abundancy Re-
construction—Median/standard deviation scaling was used for pro-
tein quantitative data reconstruction. The peptides were median-
centered and then scaled by the raw of standard deviation. Protein
abundance was obtained as the median of the abundances of the
peptides in the group. Scaling was conducted on log2 transformed
peptide abundance data. Outliers were removed using Grubb’s test,
and the minimum number of peptides per protein for Grubb’s test was
set to 6, to minimize multiple iteration related change of probability of
outlier detection in InfernoRDN software (InfernoRDN, Richland, WA)
(56). For proteins with the number of peptides less than six, we used
the Tukey two-sided outlier test based on the data point location in
regard to 25th (LV) and 75th (UV) percentiles: upper outlier �
UV�OC*(UV-LV) and lower outlier � LV�OC*(UV-LV), where OC, the
outlier coefficient was defined as 1.5.

Data Clustering—Cluster analysis was performed as described in
(52) with several modifications. Briefly, prior cluster analysis log2 of
protein expression change ratios between all the tested groups were
calculated to minimize the impact of biological variability. Then the
data was standardized using a z-score method. Hierarchic clustering
was performed by evaluation of the Euclidean distances, and the
distance matrix was linked using Ward’s minimum variance linkage
method (57, 58). Clustering was validated and the number of clusters
was supervised using root mean square deviation at steps of cluster-
ing, pseudo-F ratio, pseudo T2 evaluation, and Dunn’s cluster sepa-
ration maximum group assessment approach. In addition, partitioning
was visually evaluated by the amalgamation curves. Several types of
nonhierarchic clustering were used. For k-mean cluster analysis the
standardized data was subjected to exhaustive searching for the
optimal cluster number using cubic clustering criterion (CCC) (59), as
well as using silhouette plot (Matlab, Natick, MA). The maximal num-
ber of clusters for the search range was set based on the number of
hierarchic clustering applied to the same data. The number of clusters
was validated by v-fold cross-validation (Statsoft, Tulsa, OK) (57) and,
in case of limited number of points, the data were simulated for
10,000 points per variable and reclustered. An expectation maximi-
zation approach was also utilized, where minimum increase of log
likelihood was set to 0.001. Self-organizing maps (SOM) were used
for nonhierarchic clustering of data filtered out by factor analysis (see
below). The number of clusters was evaluated using CCC. As in the
case of k-mean clustering, the maximal number of clusters was set in
accordance to the number derived from hierarchic clustering analysis
applied to the same data. Grid arrangement was also exhaustive
allowing all possible columns and raw combinations for the range.
Validity of the obtained clusters was verified by simulation of the data
with at least 10,000 points per variable.

Data Dimensionality Reduction and Factor Extraction—Data di-
mensionality was reduced using principal component analysis ap-
plied to the log2-fold change ratios generated from protein abun-
dance data. Multiple correlation matrices generated from comparison
of all variables were used for estimation of eigenvalue to assess
principal components. Squared cosines were calculated as the ratio
of squared factor score per protein divided by squared distance of all
the factor scores of this observation (60):

cosi,l
2 �

fi,l
2

di,g
2

Proteins with larger squared cosine values related to the nonprin-
cipal components with eigenvalue less than 1 were removed from the
entire data set. Reduced data were subjected to factor analysis.
Orthogonal factors were extracted by principal component method
and verified by maximal likelihood method. Factors with eigenvalue
higher than 1 were considered significant. The threshold for correla-
tion between factor loadings and the variables was set to 0.7. The
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contribution of factors on variables was defined by evaluation of
communalities. All orthogonal rotation methods were used for optimal
principal axes alignment, though no significant differences were
found among them, hence quartimax rotation was used as a default
approach. Secondary factors were evaluated with hierarchic analysis
of oblique rotation using oblimin method (61). The impact of factors
on protein expression profiles was evaluated using factor scores
analysis. Proteins expression profiles which correlated with a specific
factor were extracted by projection of factor score coordinates in
four-dimensional space onto six orthogonal planes. After projection
on each plane, the azimuth angle was calculated for each projection
point by arctan function. In each plane, one of the factors was
assigned to x axis, and any points residing within the range of [-�/8,
�/8] 200 [3�/8, 5�/8] were considered to be maximally correlated with
a chosen factor. Obtained data sets were statistically evaluated for
significance using Kruskal Walis one-way analysis of variance on rank
with Dunn’s posthoc test and p value cut-off set to 0.001. Proteins,
which met these statistical criteria were further subjected to SOM
clustering analysis (see Experimental Procedures, Data clustering).

Gene Ontology and Network Analysis—A protein data set correlat-
ing with a specific factor was subjected to visANT (integrative visual
analysis tool for biological networks and pathways, (62)) versus
mouse databases. The generated network was analyzed using net-
work analysis tools implemented in the Cytoscape software package
(63). Network clustering was evaluated using a fast agglomerative
algorithm based on edge clustering (FAG-EC) implemented in Clus-
terViz plug-in of Cytoscape (64). The complex size threshold was set
to 10. A network hub analysis was performed using node classifica-
tion according to Guimera-Amaral functional cartography (65) based
on spectral clustering implemented in GIANT plug-in of Cytoscape
(65). Minimal hub criteria was set as within-module degree, z�2.5.
Networks of proteins with strong expression level changes disregard-

ing their clustering were assembled based on STRING10 database
(66).

Gene ontology analysis was conducted using BiNGO plug-in of
Cytoscape (67). A hypergeometric statistical test with Benjamini and
Hochberg false discovery rate (FDR) correction was used. The signif-
icance level was set to 0.001. Data were analyzed versus the network
generated in visANT (for Mus musculus database, see above) from the
proteins detected in hippocampus during mass-spectrometry analy-
sis for gene ontology (GO) containing all three ontological divisions.
The obtained categories were further filtered to reduce redundancy of
grouping into high hierarchical level categories using only GO cate-
gories with total frequency less than 5% and cluster frequency within
the range of 5–15%. The obtained data was compared with GO
clustering obtained from Functional annotation tool implemented in
DAVID bioinformatics service (68). Finally, the obtained data was
aligned against GO categories extracted from Ontologizer v.2 (69)
using a topology-weighted algorithm corrected on Benjamin-Hoch-
berg FDR. Only categories which were overlapped in two out of three
methods were considered as enriched.

RESULTS

Radial Arm Maze Paradigm and Mass-spectrometry Analy-
sis—Fifty mice per each biological replicates were subjected
to the Radial arm maze paradigm. Initially, all animals were
exposed to the habituation phase. Forty mice in each replicate
were subjected to the learning phase and were tested during
five consecutive days. Ten mice were used as a naïve control
group (Fig. 1A). Trained animals exhibited significant improve-
ment in learning curve expressed in reduction of time neces-
sary to consume all the baits (p � 0.001, H � 34.173, ANOVA
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on rank; Fig. 1B), reduction of number of incorrect entries (p �

0.01, H � 16.675; Fig. 1C), and increase of fraction of correct
entries (p � 0.01, F � 8.164, one way ANOVA; Fig. 1D).

For the proteomic study, five experimental groups were
generated based on memory acquisition time points and con-
trol, as follows: day 0, 1, 3, and 5 after the first training (0d, 1d,
3d, and 5d groups) and naïve group (N-group, Fig. 1A). At
each time point, up to 10 mice were sacrificed for hippocam-
pal protein extraction per each biological replicate. Mice for
each biological replicate were collected from animals of dif-
ferent generation at the age of 3 months. Protein extracts
obtained from hippocampi of the sacrificed animals were
pooled per each time point in each biological replicate. Even
though protein extracted from hippocampi of one animal
would be sufficient for subsequent proteomic analysis, we
took into consideration intrinsic variability of behavioral ex-
periments. Hence, to minimize the impact on protein expres-
sion profiles of the fluctuations of individual animals in re-
sponse to multiple external and nonspecific factors during
learning: (1) we evaluated a higher number of animals than
necessary based on power analysis (10 instead of 6 for power
of 0.95) and (2) for each group we pooled a protein mix of
individual mice. Importantly, no pooling was done on the
animals of the same groups across the biological replicates.
Protein mixes (7.5 �g) per each group of each replicate were
used for total protein expression evaluation in label-free pro-
teomic analysis (see Experimental Procedures). Tryptic di-
gests of the protein extracts separated into five fractions per
each group of each replicate were interrogated on the Syn-
aptG2 instrument operating IMS-MS/MS mode. After removal
of false positives by filtering against the UniProt decoy data-
base and hits with less than 0.3% of FDR and with lowest
minimal identification score at 5.8, the acquired spectra cor-
responded to 15245 unique peptides from 2256 unique pro-

teins (supplemental Table S1; data stored on publically ac-
cessible server: http://www.ebi.ac.uk/pride/archive/projects/
PXD002176), reconstituted from at least two peptides in all
experimental groups from the three experiments from all the
hippocampus, averaging 6.76 � 0.17 peptides per identified
protein, within a median number of 4. For quantitative analy-
sis, we used 1592 unique proteins reconstituted from at least
three unique peptides in each group of all biological repli-
cates. For the quantitative case, we had 8.62 � 0.22 peptides
per protein (median � 6, 25th and 75th quartiles 4 and 10,
respectively, Fig. 2A). The protein coverage level was about
35.10 � 0.49% (median � 32.2%, with 25th and 75th quar-
tiles: 19.2% and 48.5%, respectively) (Fig. 2B). A positive
correlation trend was found between the peptide per protein
number and protein sequence coverage (Fig. 2C). Despite a
slight negative trend between protein sequence coverage and
molecular masses of the proteins, we did not observe signif-
icant correlation (data not shown).

In order to analyze memory formation effect on protein
expression, we further analyzed log2 of fold changes of pro-
tein expression between the tested groups. Fold changes per
each protein were averaged over three biological replicates
per each time point relation, for example, 0d training group
versus naïve were presented as 0/n group, 5d versus 1d as 5/1
group. Analysis of log2 fold change of the tested groups
revealed that only 15.2 � 2.04% showed protein expression
change larger by 50% (0.585 in log2 dimension) to either
increase or decrease (Fig. 2D). However, this change was
differently distributed in the tested groups (data not shown),
hence the total number of proteins, expression profile of
which underwent at least 50% change, was 1007, which is
about 63.25% of all reconstituted proteins.

Protein Expression Profile Showed Significant Change Dur-
ing RAM Paradigm—Protein expression change may be the
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result of alteration in protein synthesis and/or protein degra-
dation. Formation of long-term memory is dependent on both
phenomena (38). The major changes in de novo protein syn-
thesis appear hours after induction of long-term plasticity (15,
35). However, random fluctuation in protein expression level
may occur within several minutes after behavioral paradigm
triggering memory formation. These fluctuations cannot be
correlated with memory formation. Hence, excluding proteins,
which exhibited expression changes between the initial day of
learning (0d) versus the animals, which were subjected only to
the habituation phase, we filtered out the data not related to
learning formation. Analysis revealed that protein expression
changes were markedly larger in animals, which underwent
RAM paradigm versus naïve. Namely, log2 of changes of
protein expression 0d versus naïve group (0/n) was in the
range of [-0.97; 0.99] (Fig. 2D). Although 147 proteins were
found to be changed more than 1.5-fold in this group, neither
of them showed twofold changes and only 13 proteins exhib-
ited more than 90% change. In contrast, log2 of protein ex-
pression change observed between day 1 and day 0 of learn-
ing, group 1/0 (around 24 h after exposure to RAM paradigm),
was in the range of [-5.26; 2.66] (Fig. 2D). Despite the number
of proteins, which exhibited more than 1.5-fold change that
was not marked different between 1/0 and 0/n groups (179
versus 147, respectively), the number of proteins with more
than twofold change in the group 1/0 was 57, with none in 0/n
group. A large number of proteins showed more than 2-fold
changes at day 3 and day 5 of memory paradigm (56 and 89
proteins, respectively).

Despite clear evidence of protein expression change over
time in the behavioral paradigm, individual protein profiles
were very complex (supplemental Fig. S1A). Neither clustering
method was optimal to recognize memory specific pattern
change in protein expression profiles. Hierarchic cluster anal-
ysis converged on 22 clusters (supplemental Fig S1B). De-
spite the large number of clusters, protein expression profiles
in each cluster showed complex behavior (supplemental Fig.
S1C). The k-mean, expectation maximization (EM) clustering
and self-organized maps (SOM) were not satisfactory. Using
method v-fold cross-validation, k-mean clusters were opti-
mized at 3 clusters, whereas EM clustering converged at 7
clusters. However, probability distributions and per cluster
averages analysis revealed poor data separation (supplemen-
tal Fig. S1D–S1G). SOM algorithm failed to converge at any
cluster number arrangement.

Enrichment Spatial Memory Formation Related Proteins—
We reduced data complexity using advantages from our pre-
vious approach of linear decomposition of measured vari-
ables onto factors. According to the approach, variances of
the variables measuring protein expression are determined by
linear combination of numerous factors including the related
memory formation (52). Initially, application of principal com-
ponent analysis (PCA) to the entire data set revealed four
principal components (PC) correlating with 99% of data (Fig.

3A). Factor loading analysis showed 81% correlation between
group 0/n and PC4 (Fig. 3B). We considered PC4 as a mem-
ory nonrelated component. Using squared cosine data ex-
tracted from PCA analysis (see Experimental Procedures),
167 proteins highly correlating with PC4 were eliminated
(Fig. 3C).

The enriched 1424 protein expression profiles were sub-
jected to exploratory factor analysis. Factor extraction was
conducted using three different approaches: (1) principal
component, (2) maximum likelihood, and (3) principal factors/
centroid based methods. All methods identified three factors
although with slight differences in eigenvalues (Fig. 4A). Quar-
timax rotation was found as the best correlation fit of factor
loadings on the variables. No factor interdependence and no
secondary factors were detected upon application to the data
of Oblimin rotation and hierarchic analysis (data not shown).
The extracted orthogonal factors showed the following pat-
tern of correlation: factor 1 strongly correlated with variable of
the 5d versus other learning days (5/0, 5/1 and 5/3), factor 2
strongly correlated with variable 3/0 and factor 3 with vari-
ables 3/1 and 1/0 (Fig. 4B). Neither of the factors disregarding
the method of extraction correlated with variable 0/n, indicat-
ing that preliminary PCA eliminated protein was unrelated to
the RAM paradigm based spatial memory formation. Analysis
of communalities showed that the extracted factors are ca-
pable to explain a majority of variance of the correlated vari-
ables (Fig. 4C). Analysis of factor scores resulted in total en-
richment of 440 proteins, which were significantly affected by
the correlating factor (Fig. 5D, supplemental Data S1). Quality of
factor analysis was validated by support vector machine (SVM)
algorithm, showing strong linear correlation of protein expres-
sion profiles and factor score based predicted variables as a
result of factor analysis application (supplemental Fig. S2). Out-
lier proteins, which were enriched by factor analysis, however,
were not within � � 0.95 range, as a result of SVM, and were
removed.

Proteins Correlating with Factor 1—Expression profile dis-
tribution of 165 proteins correlating with factor 1 showed a
strong agglomeration pattern, which prevented appropriate
partitioning by nonhierarchic clustering (data not shown). Hi-
erarchic clustering partitioned the entire protein data set into
13 clusters (Fig. 5A; supplemental Fig. S3A; supplemental
Data S1). Clusters 1–8 and 9–13 showed negative and pos-
itive correlation with factor 1, respectively. The expression
profiles within the clusters did not show normal distribution
(Shapiro-Wilk normality test failed, p � 0.05). Kruskal-Wallis
one-way analysis of variance on ranks revealed statistically
significant difference between the clusters (clusters 1–8: H �

85.755, p � 0.001 and Dunn’s post-hoc analysis Q �[2.594;
6.867]; clusters 9–13: H � 39.113, p � 0.001 and Dunn’s
post-hoc analysis Q�[3.731; 4.830]). Proteins correlating with
factor 1 showed a significant change of expression pattern at
day 5 in comparison to the previous days of the RAM para-
digm (Fig. 5B; supplemental Fig. S3B). Comparison of distri-
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bution of medians of the clusters showed that a majority of
changes occurred within 1.2–twofold range (Fig. 5C).

The clusters were subsequently subjected to functional cat-
egorization analysis based on GO categories and signal trans-
duction pathways’ enrichment. Three out of eight clusters
negatively correlating with factor 1 were excluded from func-
tional analysis there were less than five proteins per cluster.
Protein sets of the clusters subjected to functional analysis
were mapped onto a protein-protein interaction network using
visANT software (see Experimental Procedures). Enriched first
order interacting proteins were assembled into the protein-
protein interaction networks for each cluster separately. The
generated networks were further analyzed for GO categories
and signal transduction pathway enrichment. A protein net-
work generated from the whole proteomic data of all detected
proteins was used as a background of the GO analysis. Pro-
teins negatively correlating with factor 1 were significantly
downregulated on day 5, a day of established spatial memory.
Functional analysis of the networks of proteins negatively

correlating with factor 1 revealed that upon completion of
memory formation, transcriptional activity might be enhanced
because of (1) enrichment of proteins negatively regulating
transcription (GO: 0030163; p � 10�6, fdr�10�3) and (2)
proteins involved in chromatin organization (GO: 0016568;
p � 0.001; fdr�0.01). These GO categories were enriched in
a generated network based on cluster 3, protein expression of
which was downregulated more than twice (Fig. 5A, 5C, 5D).
Indirectly, enrichment of programmed cell death regulation
(GO: 0043067; p � 0.0001, fdr�0.01) and different pathways
of proteolysis (GO: 0044257; p � 0.0001, fdr�0.01) including
signalosome (GO: 0019717; p � 0.001, fdr�0.01) functional
categories, also indicated reduction of protein degradation
(because of negative correlation). The latter categories were
enriched in cluster 6, which exhibited minor reduction in pro-
tein level in contrast to the data set of cluster 3 (Fig. 5A, 5C,
5D, supplemental Data S2). In addition, we observed enrich-
ment of (1) proteins involved in action potential transmission
(different types of voltage gated sodium channels (GO:
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0005272; p � 0.0001, fdr�0.001)); (2) proteins associated
with numerous signal transduction pathways, such as NF-�B
(GO: 0043122; p � 0.001, fdr�0.01); MAPKKK (GO: 0043408;
p � 0.001, fdr�0.01) and JNK (GO: 0046328; p � 0.001,
fdr�0.01) cascades; (3) proteins associated with focal adhe-
sion (GO: 0004707; p � 0.001, fdr�0.01). These categories
were enriched in cluster 6 and 8, respectively, manifesting
less than twofold expression changes (Fig. 5A, 5C, 5D, sup-
plemental Data S2). Clusters 6 and 8 were also enriched for
MAPK signaling pathways (GO: 0004707; p � 0.001,
fdr�0.01, Fig. 5D, supplemental Data S2). Despite significant
homogeneity of quantitative changes in cluster 6, FAG-EC
analysis of the network assembled on cluster 6 revealed the

existence of six network subclusters/domains (nc1 to nc6)
exhibiting significant functional modularity (supplemental
Data S2). Although three smaller network subclusters, nc3–5
were enriched for the protein degradation category, nc1
showed functional association with the voltage gated sodium
channels. Network subclustering revealed hidden enrichment
for actin cytoskeleton organization category (GO: 0030036;
p � 0.0001, fdr�0.001). Heterogeneity of the network of
cluster 8 was also reflected in MAPK activity, translation reg-
ulation (GO:0006417; p � 0.001; fdr�0.01), nerve impulse
transmission regulation (GO: 0019226; p � 0.001, fdr�0.01),
cytoskeletal process organization including microtubules
(GO: 0007017; p � 0.001, fdr�0.01) and microfilaments (GO:
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0030036; p � 0.001, fdr�0.01). Notably, the strongest ex-
pression level decrease was observed in single element clus-
ters 4 and 5, containing Na/K-ATPase subunit beta1 and
Rab11A protein, respectively.

Among clusters of the proteins positively correlated with
factor 1, only cluster 9 and 13 were large enough for functional
analysis. Protein-protein interaction networks generated by
these data sets showed strong heterogeneity, which was
confirmed by enrichment of a network hub using Guimera-
Amaral’s cartographic analysis. A 1.7-fold up-regulated CaM-
KIIa was found to serve as a network hub in the enriched data
set (supplemental Fig. S3C). The assembled network was
found to be enriched for metabolic processes and intracellular
transport. Namely, among the most enriched categories were
found proteins associated with membrane bound vesicles
(GO: 0031988; p � 0.001, fdr�0.01) and intracellular vesicular
transport (GO:0031988, p � 0.0001, fdr�0.01), proteins in-
volved in monosaccharide metabolic enzymes and regulators
(GO:0005996; p � 10�8, fdr�10�6). (Fig. 5E, Suppl. Data 2).

Despite a small number of proteins, clusters 10–12 exhibited
the strongest increase in expression profiles, especially for
cytoskeleton regulation related proteins, ROCK2, Rho GEF7,
Metastasis suppressor protein 1, and for neuronal adhesion
protein NCAM1, with about 3.5-fold enhancement. Hence
enhancement of cytoskeleton rearrangement and organiza-
tion should not be excluded.

Proteins Correlating with Factor 2—Factor 2 exhibited
strong correlation with a variable 3/0 pointing to a factor
associated with protein turnover changes occurring during
memory engram formation process at the steep phase of the
learning curve. Hierarchic analysis of this protein data set
partitioned the data into 13 clusters containing 148 proteins.
Clusters 1–6 and 7–13 were positively and negatively corre-
lating with factor 2 (Fig. 6A; supplemental Fig. S4A; supple-
mental Data S1). Although most of the changes in protein
expression occurred within 1.5–twofold range, a limited num-
ber of proteins (clusters 12 and 13) exhibited more than three-
fold change in the expression level (Fig. 6B, 6C; supplemental
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Fig. S4A; supplemental Data S1). The expression profiles
within the clusters did not show normal distribution (Shapiro-
Wilk normality test failed, p � 0.05). Kruskal-Wallis one way
analysis of variance on ranks revealed statistically significant
difference between the clusters (clusters 1–6: H � 57.034,
p � 0.001 and Dunn’s post-hoc analysis Q �[3.998; 5.058];
clusters 7–13: H � 46.150, p � 0.001 and Dunn’s post-hoc
analysis Q�[3.199; 5.065]).

Five out of six clusters showing positive correlation with
factor 2 contained at least 5 proteins, sufficient for functional
analysis. The assembled networks of protein-protein interac-
tion exhibited a marked enhancement of biological processes
associated with protein synthesis, metabolic processes nec-
essary for its maintenance, and processes of protein intracel-
lular transport and dynamics. Cluster 1 and 2 showing mod-
erate expression profile changes contained different isoforms
of proteins 14–3-3 (14–3-3 epsilon and 14–3-3 zeta/delta,
respectively), which interact with a large number of proteins.
Consequently, networks generated based on clusters 1 and 2
incorporated a significant number of nodes (3799 and 790,
respectively) and exhibited a strong network heterogeneity
with proteins 14–3-3 serving as a hub of the networks (sup-

plemental Fig. S4B). Existence of a hub protein within the
network led not only to topological, but also functional het-
erogeneity. The network of cluster 1 was enriched in three
major GO categories: (1) protein translation (GO: 0006412;
p � 0.001, fdr�0.01), (2) proteins populating mitochondrial
matrix (GO: 0005759; p � 0.001, fdr�0.01); (3) proteins as-
sociated with vesicle-mediated transport (GO:0016192). Anal-
ysis of the networks of cluster 2 showed enrichment for trans-
lation category (GO: 0006412; p � 0.001, fdr�0.01) and
proteins involved in bioenergetics processes necessary for
protein anabolism, such as glycolysis (GO: 0006096; p �

10�13, fdr�10�11) and proteins of the ATP biosynthetic ma-
chinery (GO: 0005739; p � 0.001; p � 0.05) (Fig. 6D; supple-
mental Data S3). Despite differences of protein expression
patterns between cluster 1 and 2, the networks of these
clusters evidenced involvement in synergistic metabolic pro-
cesses related to protein synthesis and its maintenance. One
set of functional processes related to protein translation with
subsequent protein movement and localization and another
set of functional processes necessary for bioenergetics sup-
port of protein anabolism and transport. Notably, despite
significant recruitment of proteins involved in gene expression
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and protein synthesis, the quantitative extent of these
changes was limited to 22.3 � 2.9% increase of protein levels
(Fig. 6A–6C, supplemental Data S3), indicating an extensive
enhancement of protein anabolism, though at relatively low
expense of cellular resources. In addition to up-regulation of
the core machinery of protein anabolism, we observed enrich-
ment of proteins interacting with calmodulin (GO: 0005516;
p � 0.0001, fdr�0.01), a key regulator protein of multiple
signal transduction pathways in the network of cluster 2. The
network of clusters 3–5, with 60 � 2.6% averaged increase in
protein expression profiles, exhibited functional enrichment
consistent with the clusters 1 and 2 (Fig. 6A–6C; supplemen-
tal Data S3). A homogenous network of cluster 3, containing
proteins such as SNAP25, dynactin 2, and tubulin was en-
riched for vesicular transport and exocytosis, including micro-
tubule-based movement (GO: 007018, p � 10�7, fdr�10�5),
proteins associated with synaptic vesicles (GO: 0031982, p �

10�11, fdr�10�10), and proteins regulating synaptic transmis-
sion (GO: 0007268, p � 10�8, fdr�10�6). Significant hetero-
geneity was observed in the network of cluster 4 being en-
riched for protein catabolism machinery (GO: 0009057, p �

0.001, fdr�0.01) and regulation of transcription (GO:
0006350, p � 0.001, fdr�0.01) with marked enhancement of
the �5 subunit expression of ribosomal S6 kinase (Fig. 6D,
supplemental Data. S1, S3). This significant diversity of func-
tional roles was entailed because of subcluster/domains in-
side the network. FAG-EC analysis (see Experimental Proce-
dures) partitioned the network into 3 network subclusters (nc)
showing functional modularity. The network subcluster 1
(nc1), composed of 31 nodes, was enriched for proteasome
core complex GO category. The nc2 including 31 nodes and
a network hub protein PCBD1, was enriched for transcription
regulation category. Interestingly, the partitioning of the net-
work increased the resolution of functional analysis leading to
enrichment of Wnt signaling pathway (GO: 0016055, p �

0.001, fdr�0.001) in nc3, which included 14 nodes (Fig. 6E,
supplemental Data S3). No functional enrichment was ob-
served for the network based on cluster 5.

Only three out of seven clusters negatively correlating with
factor 2 (clusters 7–13, Fig. 6A–6C, supplemental Data S3)
included a sufficient number of proteins to be subjected to
functional analysis. The network of cluster 7 was enriched in
two major functional groups involved in (1) negative regulation
of transcription (GO: 0010629, p � 10�9, fdr�10�7) and (2)
regulation of synaptic transmission (GO: 0010629; p � 10�12,
fdr�10�9). The diversity within the cluster was explained by
the network heterogeneity (Fig. 6E). FAG-EC analysis revealed
four network clusters. Two network subclusters were found to
be associated with transcriptional regulation (nc4), regulation
of synaptic transmission, and long-term synaptic plasticity
(nc1) (supplemental Data S3). Clusters 8 and 10 revealed a
simple functional picture. The network of cluster 8 was en-
riched for ubiquitin dependent proteolysis (GO: 0051603, p �

0.001, fdr�0.01). Neither of clusters 9–13 bore sufficient pro-

teins for their functional evaluation, although proteins of these
clusters exhibited strong expression reduction (Fig. 6A–6C).

Proteins Correlating with Factor 3—Factor 3 exhibited
strong correlation with a variable 1/0 pointing to a factor
associated with protein turnover changes occurring during the
initial phase of memory acquisition and, potentially, upon
consolidation of long-term synaptic plasticity. Hierarchic clus-
tering partitioned the whole data set into 12 clusters contain-
ing 123 proteins: clusters 1–6 and 7–12 were positively and
negatively correlating with factor 3 (Fig. 7A; supplemental Fig.
S5A; supplemental Data S4). Overall, the up-regulation pat-
tern prevailed in the data set, although the increase was up to
2-fold, at most (Fig. 7B, 7C).

The clusters positively correlating with factor 1 showed that
only two out of six, clusters 1 and 3, were useful to obtain
function information. Cluster 1, containing the largest cluster
of this group, included 32 proteins with a subtle changes in
expression (Fig. 7A–7C, supplemental Data S4). The protein-
protein interaction network generated based on this data set
was found to be highly heterogeneous. Heterogeneity was
related to the existence of four network subclusters/domains
according to FAG-EC analysis and was enhanced with a hub
protein, 14–3-3�/� (supplemental Data S4). Topological het-
erogeneity was accompanied by the functional diversity of the
network. Three out of four network subclusters failed to be
associated with specific GO categories. The network subclus-
ter 4 (nc4), which was organized as a large network domain
around the hub protein 14–3-3�/�, showed significant func-
tional diversity. The nc4 was enriched for proteins involved in
synaptic transmission (GO: 0007268; p � 0.0001, fdr�0.01),
including both pre- and postsynaptic components (supple-
mental Data S4). In addition, nc4 was enriched for proteins of
mitochondrial membranes (GO: 0031966; p � 0.01, fdr�0.05)
and cytoskeleton associated proteins (GO:0005856; p �

0.0001, fdr�0.01), including the core components of micro-
filament networks, as well as multiple regulatory proteins and
kinases, proteins of post-synaptic density, and motor proteins
(supplemental Data S4). Another network domain, nc2,
showed enrichment for neurotrophin (mmu04722; p � 0.001,
fdr�0.05) and MAPK (p � 10�7, fdr�10�5) signaling path-
ways, as well as for pathways involved in long-term potenti-
ation (mmu04720; p � 0.001; fdr�0.01) and long-term de-
pression (mmu04730; p � 0.001, fdr�0.01; Fig. 7C,
supplemental Data S4). Network domain, nc3, was enriched
for neurotrophic factor signaling (p � 10�9, fdr�10�7; sup-
plemental Data S4). Protein assembling networks of cluster 3
were associated with synaptic transmission, though because
of the small number of proteins, a low level of enrichment was
observed (Fig. 7D, supplemental Data S4). The strongest up-
regulation pattern and the highest factor scores were ob-
served for proteins of cluster 3–6. Using the STRING10 da-
tabase (66) revealed two major domains of protein-protein
interaction domains involved in protein processing assembled
around the AKT hub protein (supplemental Fig. S5B). Signifi-
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cant enrichment was observed in protein degradation and
translation initiation GO categories (p � 10�10, FDR�10�8).
Applying a Markov clustering algorithm, MCL (70) to the com-
bined network of the highly expressed proteins positively
correlating with factor 3, revealed two major network clusters,
protein turnover, and tyrosine kinase signaling, including ErbB
(GO: 0038138; p � 10�13, fdr�10�11) pathway.

70 proteins distributed over 6 clusters negatively corre-
lating with factor 3 showed a mild reduction of the expres-
sion level at day 1 versus day 0 (Fig. 7A–7C). Two major
clusters, 11 and 12, showing more than 25% protein ex-
pression reduction were found to be functionally enriched
(Fig. 7E, supplemental Data S4). Among enriched GO
categories, we identified negative transcription regulation
(GO: 0016481; p � 0.001, fdr�0.01), protein folding (GO:
0006457; p � 0.001, fdr�0.01), protein ubiquitination
(GO: 0016567; p � 0.0001, fdr�0.01) and degradation (GO:
0030163; p � 0.001, fdr�0.01), endocytosis (GO: 0006897;
p � 0.001, fdr�0.05), focal adhesion (mmu04510; p � 0.01,
fdr�0.05) and (Fig. 7E, supplemental Data S4). Prominent
diversity of expression patterns observed for this data set

was related to network modularity linked to the existence of
multiple subdomains identified by FAG-EC analysis (supple-
mental Data S4).

DISCUSSION

Proteomic study of memory related processes is a compli-
cated endeavor. Learning and memory are complex pro-
cesses incorporating multiple neuronal networks across dif-
ferent structures of the brain (71). These networks may
elaborate a vast number of different types of neurons. Despite
the abundant candidates involved even in a specific learning
process, the actual number of neurons may be limited and a
memory engram may be spatially curbed to specific sub-
spaces of neurons. Learning is a dynamic process while pro-
tein expression and post-translational modification profiles
may markedly change at different stages (33, 72, 73). Long-
term synaptic plasticity is believed to be a cellular correlate of
LTM. However, long-term potentiation (LTP), the most thor-
oughly studied form of long-term synaptic plasticity, is estab-
lished within hours and may persist for hours, days, and even
longer (74). In contrast, complex learning tasks, such as spa-
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tial memory, are formed during several days, require multiple
recurrence of enforcement, and may elaborate interaction of
different structures in and outside of the hippocampus (75).
Hence, proteomic study of synaptic plasticity may not directly
be extrapolated onto protein expression and post-transla-
tional modification changes occurring during formation of
LTM. In this study, using label-free quantitative proteomics of
the hippocampus, to our best knowledge for the first time, we
tried to track down protein turnover changes occurring along
the whole process of formation of reference spatial memory
using the RAM paradigm. Appreciating dynamic profiles of
about 1600 proteins, quantitative changes occurring during
the RAM paradigm (supplemental Table S1), we found that the
protein expression pattern and their functional categories are
strictly related to temporal frames of memory formation.

The label-free quantitative proteomics was capable of es-
timating expression profiles of 1592 proteins (Fig. 2) recon-
structed based on at least three peptides at all tested time
points in all three biological replicates. A time-dependent
study of memory formations may raise several critical issues
capable of affecting noisiness of the proteomic data: (1) be-
havioral issue: individual learning ability of animals may mark-
edly differ, potentially amplifying individual measurement re-
lated fluctuations in memory-dependent protein expression;
(2) biological source issue: the RAM paradigm induces a
spatial memory, which is hippocampal-dependent, however
(1) the hippocampus is a complex and heterogeneous region
of the brain and (2) spatial memory on its own is a heteroge-
neous phenomenon (75); and (3) biological replicates issue:
learning ability and protein expression extent may be affected
by the batches of used animals as well as by slight seasonal
differences occurring during the learning process between
different biological replicates. The behavioral issue was re-
solved by using animals which did not show existence of
outliers in RAM measurement parameters as denoted by low
values of standard deviations (Fig. 1). The biological source
issue could not be resolved at the level of proteomic analysis;
hence, it was inherently affecting protein expression at every
measured time point, while averaging over three biological
replicates and pooling of hippocampal extracts within the
groups was supposed to suppress oscillation related to this
issue. Use of a multivariate analysis approach including PCA
and factor analysis, as well as validation with SVM on the
averaged data per time point, allowed removal of proteins
not-related to learning formation and enrichment of proteins
differentially expressed during memory formation (Fig. 4 and
supplemental Fig. S1, supplemental Data S1). An additional
enrichment level was provided by subjection of proteomic
data to protein–protein interaction network analysis.

Acquisition of memory is supposed to initiate activity-de-
pendent changes in synapses leading emergence of long-
term synaptic plasticity. At these stages numerous molecular
and morphological changes occur on the synapses, including
formation of new spines and reorganization of existing ones

(76–79), as well as silent synapses activation (80–82). The
early appearance of these changes should occur during 24 h
from the memory acquisition initiation and correspond to the
alteration of protein expression/degradation during the late
phase LTP (14–16, 38, 83). In turn, protein turnover changes
are dependent on enhancement of transport and metabolic
activity and may lead to changes in the synaptic component.
Factor 3 correlated with a variable, which corresponded to
changes occurring during initiation of memory acquisition
within 24 h after exposure of the positive reward. Proteins
correlating with factor 3 showed strong functional association
with the activity-dependent changes occurring in synapses.
The eIF3d, Psma6, Ubxn6, and Usp9x, showing strong pos-
itive correlation with factor 3, were assembled into the
protein–protein interaction network involved in protein synthe-
sis and degradation (supplemental Fig. S5B) indicating en-
hancement of protein turnover integrity during memory con-
solidation. Moreover, protein synthesis requires involvement
of MAPK pathway (84, 85), which was also found to correlate
positively with factor 3 (Fig. 7D). Enrichment of neurotrophic
factor signaling, necessary for late-phase LTP, such as BDNF
activity (86), also supported a link between protein correlation
with factor 3 and synaptic plasticity consolidation. Importance
of ErbB signaling pathway enrichment in this group of proteins
was also shown (87, 88). Other components of the networks
of clusters positively correlating with factor 3 were aggregated
into synaptic structural proteins, synaptic transmission cate-
gories, signaling pathways related to synaptic plasticity, LTP,
and LTD (Fig. 7D, supplemental Data S4). This enrichment
pattern is highly suitable to the processes occurring during
late and persistent phases of long-term synaptic plasticity
occurring during consolidation of memory (89). Previous stud-
ies already showed that expression and activity of the numer-
ous proteins enriched in the network emerged from the pro-
teins positively correlating with factor 3 to be essential for
long-term memory. Expression of the presynaptic release ma-
chinery proteins, enriched in the network analysis, such as
synapsins (90, 91), SNAP25(92), synaptotagmin (93), and syn-
taxin 1A(94, 95), was shown to be involved in regulation of the
different forms of associative, punishment and pain-relief re-
lated memories, hippocampal-dependent long-term memory
formation, and short- and long-term synaptic plasticity. Sim-
ilarly, the enriched proteins of synaptic vesicle turnover,
Rab3a (96, 97), piccolo (98) were also shown to participate in
regulation of long-term memory including the reversal of spa-
tial memory, as well as in regulation of synaptic plasticity
observed in Mossie fibers. Strong up-regulated homer 3 (sup-
plemental Data S1) belonging to homer family of post-synap-
tic density scaffold proteins, which plays an important role in
mGluR1 signaling and regulation of LTP and LTD, was also
shown to be transcriptionally regulated by synaptic activity
(99, 100). Formation of new spines and change of their mor-
phology would be impossible without changes in cytoskeletal
components, actin microfilaments (e.g. actin-related proteins,

Hippocampal Proteins in Spatial Memory

Molecular & Cellular Proteomics 15.2 535

http://www.mcponline.org/cgi/content/full/M115.051318/DC1
http://www.mcponline.org/cgi/content/full/M115.051318/DC1
http://www.mcponline.org/cgi/content/full/M115.051318/DC1
http://www.mcponline.org/cgi/content/full/M115.051318/DC1
http://www.mcponline.org/cgi/content/full/M115.051318/DC1
http://www.mcponline.org/cgi/content/full/M115.051318/DC1
http://www.mcponline.org/cgi/content/full/M115.051318/DC1


cortactin), and motor proteins (kif5A, kif5B, dynein heavy
chain), which were enriched in the network positively corre-
lating with factor 3 (101). Enhancement of expression of actin
related proteins, cortactin, and tubulin polymerization-pro-
moting protein (supplemental Data S4) further supports the
importance of cytoskeletal proteins in long-term memory con-
solidation. Motor proteins, found to correlate positively with
factor 3, also play an active role in LTM formation (supple-
mental Data S1, S4). Kinesins were shown to be essential for
delivery to the synapse of mRNA, necessary for local synthe-
sis of synaptic proteins (reviewed in (102)). De novo protein
synthesis, enhancement of synaptic release, and new spine
structure formation because of cytoskeleton rearrangement
are energy consuming processes. Our data showing enrich-
ment of protein networks positively correlating with factor 3
and associated with mitochondrial metabolic activity (Fig. 7D)
is consistent with the requirement of enhancement of meta-
bolic activity to maintain changes associated with synaptic
consolidation (103). It is not surprising that a limited number of
proteins negatively correlating with factor 3 were also asso-
ciated with the same GO categories as proteins positively
correlating with factor 3. Uba2 is of a specific interest, acting
as E1 ligase for SUMO 1–3 version of the protein degradation
system (104, 105). Strong reduction of Uba2 expression ac-
cords well with the recent findings demonstrating reduction of
SUMOyation of aggregated CPEB3, a prion-like protein,
which promotes protein synthesis leading to maintenance of
LTP and consolidation of long-term memory (106, 107). The
role of CREB SUMOylation has been established in mainte-
nance of long-term spatial memory (108). In light of these
reports, negative correlation of factor 3 with the components
of protein folding category does not seem very surprising. The
components of protein folding are particularly important dur-
ing de novo protein synthesis as occurs upon memory con-
solidation. However, the requirement for the protein aggrega-
tion upon formation of long-term memory (107) may justify
reduction the levels of chaperones, as CCT6A and CCT2
(supplemental Data S1). Suppression of negative transcription
regulation observed in this group of proteins may be the initial
step of enhancement of transcriptional activity observed at
the later stages of memory consolidation and requiring in-
crease of mRNA pool (109, 110). Negative correlation of syn-
aptojanin 1 and dynamin 1 with factor 3 is controversial,
particularly in light of the recent publication showing a crucial
role of dynamin 1 in LTP and memory modulation (111).
However, these changes may be finely tuned depending on
the stage of LTP and memory engram formation. The addi-
tional important outcome of evaluation of proteins correlating
with factor 3 was very mild expression changes in protein
levels. Remarkably, a local protein synthesis is assumed to be
necessary for establishing late phase synaptic plasticity (14–
18). Considering that most of the changes may occur in a very
limited space, as claimed by the cluster plasticity hypothesis

(16, 112), no dramatic increase of total protein level changes
could be expected.

Factor 2 showed correlation with protein expression
change during a steep phase of the learning curve. Presum-
ably, during this phase of the learning curve consolidation and
reconsolidation coincide (113, 114). LTM consolidation and
reconsolidation require increase of mRNA pool and process-
ing, necessary to sustain protein expression (34, 115) that was
directly supported by up-regulation of mRNA processing pro-
teins, such as, tRNA-splicing ligase RtcB homolog, hnRN-
Pul2, and hnRNP-K (Suppl. Data. 1 and 3) among the factor
2-correlating group. Interestingly, recent studies have already
shown hnRNP-K is required for LTP and dendritic spine de-
velopment (116). Nonetheless, transcription factor level
changes could be too subtle to be identified in the proteomic
analysis. Definitely, the role of their post-translational modifi-
cations of the transcription may be of superior importance.
Moreover, transcription factor up-regulation might occur in
response to the first phase of transcription occurring shortly
after induction of mechanisms leading to long-term synaptic
plasticity (117). Contribution of transcription factors could be
detected during the second transcription phase necessary for
memory gene expression program, as it was recently shown
for CREB transcription factor activity, a hallmark of LTM (118).
This suggestion is suitable for the network assembled around
the proteins positively correlating with factor 2, showing en-
richment of transcription, mRNA processing, and translation
related gene enrichment (Suppl. Data1 and 3). Hence, these
findings indicate that, at this stage, formation of memory
engram may be sustained and enforced not only by local
protein synthesis, but also by increase of cellular translation
and delivery of de novo synthesized proteins to the tagged
synapses (119). Strong up-regulation of dynactin 2, SNAP25,
SV2A, and Sorting nexin 2 during the steep phase of the
learning curve led to enhancement of intracellular vesicle traf-
ficking and microtubular transport (Fig. 6D, supplemental
Data S3), which are processes necessary for synaptic plas-
ticity. In line with protein synthesis, factors involved in protein
degradation were also found to be enriched. Presumably,
strict balance in protein synthesis and degradation should be
preserved for maintenance of long-term memory. Enrichment
of Wnt pathway is also compatible with previous findings of
the involvement of this signaling in regulation of late phase
LTP and LTM (120, 121). Enhancement of metabolic activity
introduces strong demand in the energetic resources, which
were found to be supplied by up-regulation of proteins in-
volved in glycolysis and the ATP biosynthesis machinery (Fig.
6D, supplemental Data S3). The ensemble of proteins nega-
tively correlating with factor 2 evidenced reduction of activity
of the network involved in heterochromatin organization and
negative regulation of transcription, such as down-regulation
of TRIMM28. Weakening of these factors should be favorable
for intensive protein anabolic activity occurring in neurons.
More controversial were results related to negative correlation
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of some network components involving synaptic transmis-
sion, syntaxin 1B, synapsin 2, and syntaxin binding protein 1
found to be important for synaptic plasticity and memory
formation. For example, previous studies had shown syntaxin
1B as an essential factor in LTP and memory induced synaptic
plasticity (122, 123). Association with learning and age related
cognitive impairment was found for synapsin 2 as well (124–
126). A possible explanation could be related to differential
modification of synaptic efficacy and memory engram forma-
tion may involve not only enhancement but also weakening of
synaptic efficacy depending on specific neuronal networks
and time elapsed since initiation of LTM.

Factor 1 correlated with variables characterizing changes
occurring at the last day of the RAM paradigm showing near
maximal improvement of reference memory. The most prom-
inent outcome of expression profile positively correlating with
factor 1 was related to the appearance of cytoskeleton orga-
nization proteins, such as profilin, fascin, coronin, and
MTSS1. Multiple previous studies showed an essential role of
profiling in long-term potentiation, associated cytoskeletal re-
arrangement, and importance in memory (127–129). Involve-
ment of coronin in regulation of synaptic plasticity and cog-
nition was also confirmed (130). Despite the robust network,
observation of mild expression level changes indicate that
during persistence of memory minor re-arrangement of cyto-
skeletal components of cellular and synaptic structures may
still occur. As much can be indicated by moderate, though
steady, co-incident increase in complexin 1 and 2 levels on
the 5th versus all the previous days. Of interest, complexins
were shown to be necessary for AMPARs exocytosis on the
postsynapses, as well as needed on the presynapses, for LTP
expression and proper cognitive functioning (131–133).
Hence, slight increase in protein levels of the networks re-
sponsible for the intracellular vesicular transport also sup-
ports this notion.

Analysis of proteins negatively correlating with factor 1
provides unambiguous evidence that intensive anabolic pro-
cesses are on their decline phase. Namely, down-regulation
of signaling pathways such as MAPK, NF-�B and JNK, as well
as ribosomal proteins and microtubular motor components,
regulators of microfilament cytoskeleton, spine scaffolding
proteins and cytoplasmic vesicle pools associated with
NMDA, and insulin-like growth factor receptors. Together with
the data of ErbB down-regulation pathway, this evidence
indicates that no additional enhancement of synaptic efficacy
is going to appear at this stage of memory formation, but all
the processes are directed to maintenance of the formed
memory engram. Nevertheless, some unexpected data was
also observed such as down-regulation of voltage gated so-
dium channel that inevitably should lead to reduction of neu-
ronal excitability (Fig. 5E, supplemental Data S2). Considering
that LTP may lead to intrinsic excitability increase (134), re-
duction of sodium channel expression may be attributed to a
compensatory mechanism preventing overexcitability. Be-

cause the changes occurring at this stage of learning have
never been observed previously, as well as a lack of func-
tional, electrophysiological data, further study is needed for
better understanding of the occurring changes.

Taken together, proteomic study of temporal changes in
protein expression profiles during acquisition of long-term
spatial memory showed a clear correlation between behav-
ioral changes and their molecular counterparts. Moreover,
despite huge data complexity, the impact of multiple factors,
including behavioral variability, a combinatorial analysis of the
data enriched by multifactorial, network, and functional anal-
ysis draw a clear correlation between previous knowledge
about protein expression related to synaptic plasticity and
long-term memory. Moreover, this research clearly demon-
strated dynamic assembly and disassembly of protein-protein
interactions’ functional network depending on the stage of
formation of memory engram. Despite these interesting find-
ings, current research is just the first step in understanding
how and which proteins are necessary for memory engram
formation. This study made only low resolution snapshots of
protein expression changes during memory formation based
on the whole neuronal extracts, being also contaminated by
multiple glia cells. Although, the role of the glia cells cannot be
ignored, particularly based on the recent reports showing their
importance in regulation of long-term potentiation, long-term
memory, and memory consolidation (135–139). Future direc-
tions of understanding protein behavior at different stages of
memory formation should incorporate comparison of changes
at the synaptic level versus the whole alteration, as well as
analyze different regions of the brain and increase spatial
resolution of study, namely locking down onto subregions,
such CA1 or CA3 or dentate gyrus in the hippocampus. And,
finally, understanding of post-translational modifications is
the key component in the creation of complete pictures of
“molecular memory.”

* This work was supported by a grant from the National Institute of
Psychobiology in Israel and Recanati fund.

□S This article contains supplemental Figs. S1 to S5, Data S1 to S4,
and Table S1

** To whom correspondence should be addressed: Department
of Biochemistry and Molecular Biology, Sagol School of Neurosci-
ence, Tel-Aviv University, Tel-Aviv 6997801, Israel. Tel.: 972-3-
6409821; Cell: 972-52-3620956; Fax: 972-3-6409821; E-mail:
izhakm@post.tau.ac.il.

‡‡ These authors contributed equally to this work.

REFERENCES

1. Dudai, Y. (2004) The neurobiology of consolidations, or, how stable is the
engram? Annu. Rev. Psychol. 55, 51–86

2. Martin, K. C., Casadio, A., Zhu, H., Yaping, E., Rose, J. C., Chen, M.,
Bailey, C. H., and Kandel, E. R. (1997) Synapse-specific, long-term
facilitation of aplysia sensory to motor synapses: a function for local
protein synthesis in memory storage. Cell 91, 927–938

3. Schafe, G. E., Nadel, N. V., Sullivan, G. M., Harris, A., and LeDoux, J. E.
(1999) Memory consolidation for contextual and auditory fear condition-
ing is dependent on protein synthesis, PKA, and MAP kinase. Learn.
Mem. 6, 97–110

Hippocampal Proteins in Spatial Memory

Molecular & Cellular Proteomics 15.2 537

http://www.mcponline.org/cgi/content/full/M115.051318/DC1
http://www.mcponline.org/cgi/content/full/M115.051318/DC1
http://www.mcponline.org/cgi/content/full/M115.051318/DC1
mailto:izhakm@post.tau.ac.il


4. Squire, L. R., and Barondes, S. H. (1972) Variable decay of memory and its
recovery in cycloheximide-treated mice. Proc. Natl. Acad. Sci. U.S.A.
69, 1416–1420

5. Bliss, T. V., and Collingridge, G. L. (1993) A synaptic model of memory:
long-term potentiation in the hippocampus. Nature 361, 31–39

6. Malenka, R. C., and Bear, M. F. (2004) LTP and LTD: an embarrassment
of riches. Neuron 44, 5–21

7. Barria, A., Muller, D., Derkach, V., Griffith, L. C., and Soderling, T. R. (1997)
Regulatory phosphorylation of AMPA-type glutamate receptors by
CaM-KII during long-term potentiation. Science 276, 2042–2045

8. Esteban, J. A., Shi, S. H., Wilson, C., Nuriya, M., Huganir, R. L., and
Malinow, R. (2003) PKA phosphorylation of AMPA receptor subunits
controls synaptic trafficking underlying plasticity. Nat. Neurosci. 6,
136–143

9. Lee, H. K., Barbarosie, M., Kameyama, K., Bear, M. F., and Huganir, R. L.
(2000) Regulation of distinct AMPA receptor phosphorylation sites dur-
ing bidirectional synaptic plasticity. Nature 405, 955–959

10. Costa-Mattioli, M., Gobert, D., Stern, E., Gamache, K., Colina, R., Cuello,
C., Sossin, W., Kaufman, R., Pelletier, J., Rosenblum, K., Krnjevic, K.,
Lacaille, J. C., Nader, K., and Sonenberg, N. (2007) eIF2alpha phos-
phorylation bidirectionally regulates the switch from short- to long-term
synaptic plasticity and memory. Cell 129, 195–206

11. Dudai, Y. (2002) Molecular bases of long-term memories: a question of
persistence. Curr. Opin. Neurobiol. 12, 211–216

12. Dudai, Y. (2009) Predicting not to predict too much: how the cellular
machinery of memory anticipates the uncertain future. Philos. Trans. R
Soc. Lond. B Biol. Sci. 364, 1255–1262

13. Mizuno, M., Yamada, K., Maekawa, N., Saito, K., Seishima, M., and
Nabeshima, T. (2002) CREB phosphorylation as a molecular marker of
memory processing in the hippocampus for spatial learning. Behav.
Brain Res. 133, 135–141

14. Barco, A., Lopez de Armentia, M., and Alarcon, J. M. (2008) Synapse-
specific stabilization of plasticity processes: the synaptic tagging and
capture hypothesis revisited 10 years later. Neurosci. Biobehav. Rev.
32, 831–851

15. Frey, S., and Frey, J. U. (2008) “Synaptic tagging” and “cross-tagging”
and related associative reinforcement processes of functional plasticity
as the cellular basis for memory formation. Prog. Brain Res. 169,
117–143

16. Govindarajan, A., Kelleher, R. J., and Tonegawa, S. (2006) A clustered
plasticity model of long-term memory engrams. Nat. Rev. Neurosci. 7,
575–583

17. Sajikumar, S., and Frey, J. U. (2004) Resetting of “synaptic tags” is time-
and activity-dependent in rat hippocampal CA1 in vitro. Neuroscience
129, 503–507

18. Sajikumar, S., Navakkode, S., and Frey, J. U. (2007) Identification of
compartment- and process-specific molecules required for “synaptic
tagging” during long-term potentiation and long-term depression in
hippocampal CA1. J. Neurosci. 27, 5068–5080

19. Yin, H. H., Davis, M. I., Ronesi, J. A., and Lovinger, D. M. (2006) The role
of protein synthesis in striatal long-term depression. J. Neurosci. 26,
11811–11820

20. Raymond, C. R., and Redman, S. J. (2006) Spatial segregation of neuronal
calcium signals encodes different forms of LTP in rat hippocampus.
J. Physiol. 570, 97–111

21. Reymann, K. G., and Frey, J. U. (2007) The late maintenance of hippocam-
pal LTP: requirements, phases, “synaptic tagging,” “late-associativity,”
and implications. Neuropharmacology 52, 24–40

22. Hoeffer, C. A., Cowansage, K. K., Arnold, E. C., Banko, J. L., Moerke,
N. J., Rodriguez, R., Schmidt, E. K., Klosi, E., Chorev, M., Lloyd, R. E.,
Pierre, P., Wagner, G., LeDoux, J. E., and Klann, E. (2011) Inhibition of
the interactions between eukaryotic initiation factors 4E and 4G impairs
long-term associative memory consolidation but not reconsolidation.
Proc. Natl. Acad. Sci. U.S.A. 108, 3383–3388

23. Jarome, T. J., Werner, C. T., Kwapis, J. L., and Helmstetter, F. J. (2011)
Activity dependent protein degradation is critical for the formation and
stability of fear memory in the amygdala. PloS. One 6, e24349

24. Artinian, J., McGauran, A. M., De Jaeger, X., Mouledous, L., Frances, B.,
and Roullet, P. (2008) Protein degradation, as with protein synthesis, is
required during not only long-term spatial memory consolidation but
also reconsolidation. Eur. J. Neurosci. 27, 3009–3019

25. Bourtchouladze, R., Abel, T., Berman, N., Gordon, R., Lapidus, K., and
Kandel, E. R. (1998) Different training procedures recruit either one or
two critical periods for contextual memory consolidation, each of which
requires protein synthesis and PKA. Learn. Mem. 5, 365–374

26. Da Silva, W. C., Cardoso, G., Bonini, J. S., Benetti, F., and Izquierdo, I.
(2013) Memory reconsolidation and its maintenance depend on L-volt-
age-dependent calcium channels and CaMKII functions regulating pro-
tein turnover in the hippocampus. Proc. Natl. Acad. Sci. U.S.A. 110,
6566–6570

27. Rossato, J. I., Bevilaqua, L. R., Myskiw, J. C., Medina, J. H., Izquierdo, I.,
and Cammarota, M. (2007) On the role of hippocampal protein synthesis
in the consolidation and reconsolidation of object recognition memory.
Learn. Mem. 14, 36–46

28. Taubenfeld, S. M., Milekic, M. H., Monti, B., and Alberini, C. M. (2001) The
consolidation of new but not reactivated memory requires hippocampal
C/EBPbeta. Nat. Neurosci. 4, 813–818

29. Warburton, E. C., Barker, G. R., and Brown, M. W. (2013) Investigations
into the involvement of NMDA mechanisms in recognition memory.
Neuropharmacology 74, 41–47

30. Blum, S., Runyan, J. D., and Dash, P. K. (2006) Inhibition of prefrontal
protein synthesis following recall does not disrupt memory for trace fear
conditioning. BMC Neuroscience 7, 67

31. Moguel-Gonzalez, M., Gomez-Palacio-Schjetnan, A., and Escobar, M. L.
(2008) BDNF reverses the CTA memory deficits produced by inhibition
of protein synthesis. Neurobiol. Learn. Mem. 90, 584–587

32. Reis, D. S., Jarome, T. J., and Helmstetter, F. J. (2013) Memory formation
for trace fear conditioning requires ubiquitin-proteasome mediated pro-
tein degradation in the prefrontal cortex. Front. Behav. Neurosci. 7, 150

33. Rosenberg, T., Gal-Ben-Ari, S., Dieterich, D. C., Kreutz, M. R., Ziv, N. E.,
Gundelfinger, E. D., and Rosenblum, K. (2014) The roles of protein
expression in synaptic plasticity and memory consolidation. Front. Mol.
Neurosci. 7, 86

34. Alberini, C. M. (2009) Transcription factors in long-term memory and
synaptic plasticity. Physiol. Rev. 89, 121–145

35. Costa-Mattioli, M., Sossin, W. S., Klann, E., and Sonenberg, N. (2009)
Translational control of long-lasting synaptic plasticity and memory.
Neuron. 61, 10–26

36. Lee, Y. S., Bailey, C. H., Kandel, E. R., and Kaang, B. K. (2008) Transcrip-
tional regulation of long-term memory in the marine snail Aplysia. Mol.
Brain 1, 3

37. Fonseca, R., Vabulas, R. M., Hartl, F. U., Bonhoeffer, T., and Nagerl, U. V.
(2006) A balance of protein synthesis and proteasome-dependent deg-
radation determines the maintenance of LTP. Neuron 52, 239–245

38. Hegde, A. N. (2010) The ubiquitin-proteasome pathway and synaptic
plasticity. Learn. Mem. 17, 314–327

39. Dong, C., Upadhya, S. C., Ding, L., Smith, T. K., and Hegde, A. N. (2008)
Proteasome inhibition enhances the induction and impairs the mainte-
nance of late-phase long-term potentiation. Learn. Mem. 15, 335–347

40. Dong, C., Bach, S. V., Haynes, K. A., and Hegde, A. N. (2014) Proteasome
modulates positive and negative translational regulators in long-term
synaptic plasticity. J. Neurosci. 34, 3171–3182

41. Yeh, S. H., Mao, S. C., Lin, H. C., and Gean, P. W. (2006) Synaptic
expression of glutamate receptor after encoding of fear memory in the
rat amygdala. Mol. Pharmacol. 69, 299–308

42. Lopez-Salon, M., Alonso, M., Vianna, M. R., Viola, H., Mello e Souza, T.,
Izquierdo, I., Pasquini, J. M., and Medina, J. H. (2001) The ubiquitin-
proteasome cascade is required for mammalian long-term memory
formation. Eur. J. Neurosci. 14, 1820–1826

43. Bird, C. M., and Burgess, N. (2008) The hippocampus and memory:
insights from spatial processing. Nat. Rev. Neurosci. 9, 182–194

44. Keeley, M. B., Wood, M. A., Isiegas, C., Stein, J., Hellman, K., Hannenhalli,
S., and Abel, T. (2006) Differential transcriptional response to nonasso-
ciative and associative components of classical fear conditioning in the
amygdala and hippocampus. Learn. Mem. 13, 135–142

45. Leil, T. A., Ossadtchi, A., Nichols, T. E., Leahy, R. M., and Smith, D. J.
(2003) Genes regulated by learning in the hippocampus. J. Neurosci.
Res. 71, 763–768

46. O’Sullivan, N. C., McGettigan, P. A., Sheridan, G. K., Pickering, M.,
Conboy, L., O’Connor, J. J., Moynagh, P. N., Higgins, D. G., Regan,
C. M., and Murphy, K. J. (2007) Temporal change in gene expression in
the rat dentate gyrus following passive avoidance learning. J. Neuro-

Hippocampal Proteins in Spatial Memory

538 Molecular & Cellular Proteomics 15.2



chem. 101, 1085–1098
47. Monopoli, M. P., Raghnaill, M. N., Loscher, J. S., O’Sullivan, N. C.,

Pangalos, M. N., Ring, R. H., von Schack, D., Dunn, M. J., Regan, C. M.,
Pennington, S., and Murphy, K. J. (2011) Temporal proteomic profile of
memory consolidation in the rat hippocampal dentate gyrus. Proteom-
ics 11, 4189–4201

48. Brady, M. L., Allan, A. M., and Caldwell, K. K. (2012) A limited access
mouse model of prenatal alcohol exposure that produces long-lasting
deficits in hippocampal-dependent learning and memory. Alcohol. Clin.
Exp. Res. 36, 457–466

49. Cheng, K. K., Yeung, C. F., Ho, S. W., Chow, S. F., Chow, A. H., and
Baum, L. (2013) Highly stabilized curcumin nanoparticles tested in an in
vitro blood-brain barrier model and in Alzheimer’s disease Tg2576 mice.
AAPS J. 15, 324–336

50. Gross, M., Sheinin, A., Nesher, E., Tikhonov, T., Baranes, D., Pinhasov, A.,
and Michaelevski, I. (2015) Early onset of cognitive impairment is asso-
ciated with altered synaptic plasticity and enhanced hippocampal
GluA1 expression in a mouse model of depression. Neurobiol. Aging.
36(5), 1938–1952

51. Michaelevski, I., Segal-Ruder, Y., Rozenbaum, M., Medzihradszky, K. F.,
Shalem, O., Coppola, G., Horn-Saban, S., Ben-Yaakov, K., Dagan,
S. Y., Rishal, I., Geschwind, D. H., Pilpel, Y., Burlingame, A. L., and
Fainzilber, M. (2010) Signaling to transcription networks in the neuronal
retrograde injury response. Sci. Signal. 3, ra53

52. Michaelevski, I., Medzihradszky, K. F., Lynn, A., Burlingame, A. L., and
Fainzilber, M. (2010) Axonal transport proteomics reveals mobilization
of translation machinery to the lesion site in injured sciatic nerve. Mol.
Cell. Proteomics 9, 976–987

53. Li, G. Z., Vissers, J. P., Silva, J. C., Golick, D., Gorenstein, M. V., and
Geromanos, S. J. (2009) Database searching and accounting of multi-
plexed precursor and product ion spectra from the data independent
analysis of simple and complex peptide mixtures. Proteomics 9,
1696–1719

54. Levin, Y., Hradetzky, E., and Bahn, S. (2011) Quantification of proteins
using data-independent analysis (MSE) in simple and complex samples:
a systematic evaluation. Proteomics 11, 3273–3287

55. Silva, J. C., Gorenstein, M. V., Li, G. Z., Vissers, J. P., and Geromanos,
S. J. (2006) Absolute quantification of proteins by LCMSE: a virtue of
parallel MS acquisition. Mol. Cell. Proteomics 5, 144–156

56. Polpitiya, A. D., Qian, W. J., Jaitly, N., Petyuk, V. A., Adkins, J. N., Camp,
D. G., 2nd, Anderson, G. A., and Smith, R. D. (2008) DAnTE: a statistical
tool for quantitative analysis of -omics data. Bioinformatics 24,
1556–1558

57. MacKay, D. (2004) Information theory, inference, and learning algorithms.
Cambridge University Press, Cambridge, UK.

58. Salvador, S., and Chan, P. (2004) Determining the number of clusters/
segments in hierarchical clustering/segmentation algorithms. Proceed-
ings of the 16th IEEE International Conference on Tools with Artificial
Intelligence, pp. 576–584, IEEE, Los Alamitos, CA

59. Sarle, W. S. (1983) Cubic clustering criterion, SAS Institute, Cary, NC
60. Abdi, H., and Williams, L., J. (2010) Principal component analysis. Wiley

Interdiscip. Rev. Comput. Stat. 2, 433–459
61. Bernaards, C. (2005) Gradient Projection Algorithms and Software for

Arbitrary Rotation Criteria in Factor Analysis. Ed. Psychol. Meas. 65,
676–696

62. Hu, Z., Mellor, J., Wu, J., Yamada, T., Holloway, D., and Delisi, C. (2005)
VisANT: data-integrating visual framework for biological networks and
modules. Nucleic Acids Res. 33, W352–357

63. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D.,
Amin, N., Schwikowski, B., and Ideker, T. (2003) Cytoscape: a software
environment for integrated models of biomolecular interaction net-
works. Genome Res. 13, 2498–2504

64. Wang, J., Zhong, J., Chen, G., Li, M., Wu, F., and Pan, Y. (2014) Clus-
terViz: a Cytoscape APP for Clustering Analysis of Biological Network.
Comput. Biol. Bioinform. PP, 1

65. Cumbo, F., Paci, P., Santoni, D., Di Paola, L., and Giuliani, A. (2014)
GIANT: a cytoscape plugin for modular networks. PloS One 9, e105001

66. Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Min-
guez, P., Doerks, T., Stark, M., Muller, J., Bork, P., Jensen, L. J., and
von Mering, C. (2011) The STRING database in 2011: functional inter-
action networks of proteins, globally integrated, and scored. Nucleic

Acids Res. 39, D561–568
67. Maere, S., Heymans, K., and Kuiper, M. (2005) BiNGO: a Cytoscape plugin

to assess overrepresentation of Gene Ontology categories in biological
networks. Bioinformatics 21, 3448–3449

68. Huang da, W., Sherman, B. T., and Lempicki, R. A. (2009) Systematic and
integrative analysis of large gene lists using DAVID bioinformatics re-
sources. Nat. Protoc. 4, 44–57

69. Bauer, S., Grossmann, S., Vingron, M., and Robinson, P. N. (2008) On-
tologizer 2.0 – a multifunctional tool for GO term enrichment analysis
and data exploration. Bioinformatics 24, 1650–1651

70. Enright, A. J., Van Dongen, S., and Ouzounis, C. A. (2002) An efficient
algorithm for large-scale detection of protein families. Nucleic Acids
Res. 30, 1575–1584

71. Henke, K. (2010) A model for memory systems based on processing
modes rather than consciousness. Nat. Rev. Neurosci. 11, 523–532

72. Abel, T., and Lattal, K. M. (2001) Molecular mechanisms of memory
acquisition, consolidation, and retrieval. Curr. Opin. Neurobiol. 11,
180–187

73. Santini, E., Huynh, T. N., and Klann, E. (2014) Mechanisms of translation
control underlying long-lasting synaptic plasticity and the consolidation
of long-term memory. Prog. Mol. Boil. Transl. Sci. 122, 131–167

74. Raymond, C. R. (2007) LTP forms 1, 2, and 3: different mechanisms for the
“long” in long-term potentiation. Trends Neurosci. 30, 167–175

75. Bannerman, D. M., Sprengel, R., Sanderson, D. J., McHugh, S. B., Raw-
lins, J. N., Monyer, H., and Seeburg, P. H. (2014) Hippocampal synaptic
plasticity, spatial memory, and anxiety. Nat. Rev. Neurosci. 15, 181–192

76. Lai, C. S., Franke, T. F., and Gan, W. B. (2012) Opposite effects of fear
conditioning and extinction on dendritic spine remodeling. Nature 483,
87–91

77. Leuner, B., Falduto, J., and Shors, T. J. (2003) Associative memory for-
mation increases the observation of dendritic spines in the hippocam-
pus. J. Neurosci. 23, 659–665

78. Moser, M. B., Trommald, M., and Andersen, P. (1994) An increase in
dendritic spine density on hippocampal CA1 pyramidal cells following
spatial learning in adult rats suggests the formation of new synapses.
Proc. Natl. Acad. Sci. U.S.A. 91, 12673–12675

79. Yang, Y., Wang, X. B., Frerking, M., and Zhou, Q. (2008) Spine expansion
and stabilization associated with long-term potentiation. J. Neurosci.
28, 5740–5751

80. Atwood, H. L., and Wojtowicz, J. M. (1999) Silent synapses in neural
plasticity: current evidence. Learn. Mem. 6, 542–571

81. Martin, S. J., Grimwood, P. D., and Morris, R. G. (2000) Synaptic plasticity
and memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23,
649–711

82. Poncer, J. C. (2003) Hippocampal long term potentiation: silent synapses
and beyond. J. Physiol. 97, 415–422

83. Pang, P. T., and Lu, B. (2004) Regulation of late-phase LTP and long-term
memory in normal and aging hippocampus: role of secreted proteins
tPA and BDNF. Ageing Res. Rev. 3, 407–430

84. Rosenblum, K., Futter, M., Voss, K., Erent, M., Skehel, P. A., French, P.,
Obosi, L., Jones, M. W., and Bliss, T. V. (2002) The role of extracellular
regulated kinases I/II in late-phase long-term potentiation. J. Neurosci.
22, 5432–5441

85. Schafe, G. E., Swank, M. W., Rodrigues, S. M., Debiec, J., and Doyere, V.
(2008) Phosphorylation of ERK/MAP kinase is required for long-term
potentiation in anatomically restricted regions of the lateral amygdala in
vivo. Learn. Mem. 15, 55–62

86. Messaoudi, E., Ying, S. W., Kanhema, T., Croll, S. D., and Bramham, C. R.
(2002) Brain-derived neurotrophic factor triggers transcription-dependent,
late phase long-term potentiation in vivo. J. Neurosci. 22, 7453–7461

87. Chen, Y. J., Zhang, M., Yin, D. M., Wen, L., Ting, A., Wang, P., Lu, Y. S.,
Zhu, X. H., Li, S. J., Wu, C. Y., Wang, X. M., Lai, C., Xiong, W. C., Mei,
L., and Gao, T. M. (2010) ErbB4 in parvalbumin-positive interneurons is
critical for neuregulin 1 regulation of long-term potentiation. Proc. Natl.
Acad. Sci. U.S.A. 107, 21818–21823

88. Min, S. S., An, J., Lee, J. H., Seol, G. H., Im, J. H., Kim, H. S., Baik, T. K.,
and Woo, R. S. (2011) Neuregulin-1 prevents amyloid beta-induced
impairment of long-term potentiation in hippocampal slices via ErbB4.
Neurosci. Lett. 505, 6–9

89. Lynch, G., Rex, C. S., and Gall, C. M. (2007) LTP consolidation: sub-
strates, explanatory power, and functional significance. Neuropharma-

Hippocampal Proteins in Spatial Memory

Molecular & Cellular Proteomics 15.2 539



cology 52, 12–23
90. Kushner, S. A., Elgersma, Y., Murphy, G. G., Jaarsma, D., van Woerden,

G. M., Hojjati, M. R., Cui, Y., LeBoutillier, J. C., Marrone, D. F., Choi,
E. S., De Zeeuw, C. I., Petit, T. L., Pozzo-Miller, L., and Silva, A. J. (2005)
Modulation of presynaptic plasticity and learning by the H-ras/extracel-
lular signal-regulated kinase/synapsin I signaling pathway. J. Neurosci.
25, 9721–9734

91. Niewalda, T., Michels, B., Jungnickel, R., Diegelmann, S., Kleber, J.,
Kahne, T., and Gerber, B. (2015) Synapsin determines memory strength
after punishment- and relief-learning. J. Neurosci. 35, 7487–7502

92. Hou, Q. L., Gao, X., Lu, Q., Zhang, X. H., Tu, Y. Y., Jin, M. L., Zhao, G. P.,
Yu, L., Jing, N. H., and Li, B. M. (2006) SNAP-25 in hippocampal CA3
region is required for long-term memory formation. Biochem. Biophys.
Res. Commun. 347, 955–962

93. Ferguson, G. D., Wang, H., Herschman, H. R., and Storm, D. R. (2004)
Altered hippocampal short-term plasticity and associative memory in
synaptotagmin IV (-/-) mice. Hippocampus 14, 964–974

94. Guo, C. H., Senzel, A., Li, K., and Feng, Z. P. (2010) De novo protein
synthesis of syntaxin-1 and dynamin-1 in long-term memory formation
requires CREB1 gene transcription in Lymnaea stagnalis. Behav. Genet.
40, 680–693

95. Hu, J. Y., Meng, X., and Schacher, S. (2003) Redistribution of syntaxin
mRNA in neuronal cell bodies regulates protein expression and trans-
port during synapse formation and long-term synaptic plasticity. J. Neu-
rosci. 23, 1804–1815

96. Castillo, P. E., Janz, R., Sudhof, T. C., Tzounopoulos, T., Malenka, R. C.,
and Nicoll, R. A. (1997) Rab3A is essential for mossy fibre long-term
potentiation in the hippocampus. Nature 388, 590–593

97. D’Adamo, P., Wolfer, D. P., Kopp, C., Tobler, I., Toniolo, D., and Lipp, H. P.
(2004) Mice deficient for the synaptic vesicle protein Rab3a show im-
paired spatial reversal learning and increased explorative activity but
none of the behavioral changes shown by mice deficient for the Rab3a
regulator Gdi1. Eur. J. Neurosci. 19, 1895–1905

98. Ibi, D., Nitta, A., Ishige, K., Cen, X., Ohtakara, T., Nabeshima, T., and Ito,
Y. (2010) Piccolo knockdown-induced impairments of spatial learning
and long-term potentiation in the hippocampal CA1 region. Neurochem.
Int. 56, 77–83

99. Xiao, B., Tu, J. C., Petralia, R. S., Yuan, J. P., Doan, A., Breder, C. D.,
Ruggiero, A., Lanahan, A. A., Wenthold, R. J., and Worley, P. F. (1998)
Homer regulates the association of group 1 metabotropic glutamate
receptors with multivalent complexes of homer-related, synaptic pro-
teins. Neuron 21, 707–716

100. Snyder, E. M., Philpot, B. D., Huber, K. M., Dong, X., Fallon, J. R., and
Bear, M. F. (2001) Internalization of ionotropic glutamate receptors in
response to mGluR activation. Nat. Neurosci. 4, 1079–1085

101. Bramham, C. R. (2008) Local protein synthesis, actin dynamics, and LTP
consolidation. Curr. Opin. Neurobiol. 18, 524–531

102. Puthanveettil, S. V. (2013) RNA transport and long-term memory storage.
RNA Biol. 10, 1765–1770

103. Cheng, A., Hou, Y., and Mattson, M. P. (2010) Mitochondria and neuro-
plasticity. ASN Neuro. 2, e00045

104. Azuma, Y., Tan, S. H., Cavenagh, M. M., Ainsztein, A. M., Saitoh, H., and
Dasso, M. (2001) Expression and regulation of the mammalian SUMO-1
E1 enzyme. FASEB J. 15, 1825–1827

105. Tatham, M. H., Jaffray, E., Vaughan, O. A., Desterro, J. M., Botting, C. H.,
Naismith, J. H., and Hay, R. T. (2001) Polymeric chains of SUMO-2 and
SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and
Ubc9. J. Biol. Chem. 276, 35368–35374

106. Drisaldi, B., Colnaghi, L., Fioriti, L., Rao, N., Myers, C., Snyder, A. M.,
Metzger, D. J., Tarasoff, J., Konstantinov, E., Fraser, P. E., Manley, J. L.,
and Kandel, E. R. (2015) SUMOylation is an inhibitory constraint that
regulates the prion-like aggregation and activity of CPEB3. Cell Rep. 11,
1694–1702

107. Fioriti, L., Myers, C., Huang, Y. Y., Li, X., Stephan, J. S., Trifilieff, P.,
Colnaghi, L., Kosmidis, S., Drisaldi, B., Pavlopoulos, E., and Kandel,
E. R. (2015) The persistence of hippocampal-based memory requires
protein synthesis mediated by the prion-like protein CPEB3. Neuron 86,
1433–1448

108. Chen, Y. C., Hsu, W. L., Ma, Y. L., Tai, D. J., and Lee, E. H. (2014) CREB
SUMOylation by the E3 ligase PIAS1 enhances spatial memory. J. Neu-
rosci. 34, 9574–9589

109. Cortes-Mendoza, J., Diaz de Leon-Guerrero, S., Pedraza-Alva, G., and
Perez-Martinez, L. (2013) Shaping synaptic plasticity: the role of activ-
ity-mediated epigenetic regulation on gene transcription. Int. J. Dev.
Neurosci. 31, 359–369

110. Lynch, G., Cox, C. D., and Gall, C. M. (2014) Pharmacological enhance-
ment of memory or cognition in normal subjects. Front. Sys. Neurosci.
8, 90

111. Fa, M., Staniszewski, A., Saeed, F., Francis, Y. I., and Arancio, O. (2014)
Dynamin 1 is required for memory formation. PloS One 9, e91954

112. Govindarajan, A., Israely, I., Huang, S. Y., and Tonegawa, S. (2011) The
dendritic branch is the preferred integrative unit for protein synthesis-
dependent LTP. Neuron 69, 132–146

113. Sara, S. J. (2000) Retrieval and reconsolidation: toward a neurobiology of
remembering. Learn. Mem. 7, 73–84

114. Stickgold, R., and Walker, M. P. (2005) Memory consolidation and recon-
solidation: what is the role of sleep? Trend Neurosci. 28, 408–415

115. Gebicke-Haerter, P. J. (2014) Engram formation in psychiatric disorders.
Front. Neurosci. 8, 118

116. Folci, A., Mapelli, L., Sassone, J., Prestori, F., D’Angelo, E., Bassani, S.,
and Passafaro, M. (2014) Loss of hnRNP K impairs synaptic plasticity in
hippocampal neurons. J. Neurosci. 34, 9088–9095

117. Loebrich, S., and Nedivi, E. (2009) The function of activity-regulated genes
in the nervous system. Physiol. Rev. 89, 1079–1103

118. Lakhina, V., Arey, R. N., Kaletsky, R., Kauffman, A., Stein, G., Keyes, W.,
Xu, D., and Murphy, C. T. (2015) Genome-wide functional analysis of
CREB/long-term memory-dependent transcription reveals distinct ba-
sal and memory gene expression programs. Neuron 85, 330–345

119. Cohen, S., and Greenberg, M. E. (2008) Communication between the
synapse and the nucleus in neuronal development, plasticity, and dis-
ease. Annu. Rev. Cell Dev. Biol. 24, 183–209

120. Oliva, C. A., Vargas, J. Y., and Inestrosa, N. C. (2013) Wnt signaling: role
in LTP, neural networks and memory. Ageing Res. Rev. 12, 786–800

121. Tan, Y., Yu, D., Busto, G. U., Wilson, C., and Davis, R. L. (2013) Wnt
signaling is required for long-term memory formation. Cell Rep. 4,
1082–1089

122. Davis, S., Rodger, J., Hicks, A., Mallet, J., and Laroche, S. (1996) Brain
structure and task-specific increase in expression of the gene encoding
syntaxin 1B during learning in the rat: a potential molecular marker for
learning-induced synaptic plasticity in neural networks. Eur. J. Neurosci.
8, 2068–2074

123. Hicks, A., Davis, S., Rodger, J., Helme-Guizon, A., Laroche, S., and Mallet,
J. (1997) Synapsin I and syntaxin 1B: key elements in the control of
neurotransmitter release are regulated by neuronal activation and long-
term potentiation in vivo. Neuroscience 79, 329–340

124. Corradi, A., Zanardi, A., Giacomini, C., Onofri, F., Valtorta, F., Zoli, M., and
Benfenati, F. (2008) Synapsin-I- and synapsin-II-null mice display an
increased age-dependent cognitive impairment. J. Cell Sci. 121,
3042–3051

125. Nesher, E., Koman, I., Gross, M., Tikhonov, T., Bairachnaya, M., Salmon-
Divon, M., Levin, Y., Gerlitz, G., Michaelevski, I., Yadid, G., and Pinha-
sov, A. (2015) Synapsin IIb as a functional marker of submissive behav-
ior. Sci. Rep. 5, 10287

126. Revest, J. M., Kaouane, N., Mondin, M., Le Roux, A., Rouge-Pont, F.,
Vallee, M., Barik, J., Tronche, F., Desmedt, A., and Piazza, P. V. (2010)
The enhancement of stress-related memory by glucocorticoids de-
pends on synapsin-Ia/Ib. Mol. Psychiatry 1125, 1140–1151

127. Birbach, A. (2008) Profilin, a multimodal regulator of neuronal plasticity.
BioEssays 30, 994–1002

128. Krucker, T., Siggins, G. R., and Halpain, S. (2000) Dynamic actin filaments
are required for stable long-term potentiation (LTP) in area CA1 of the
hippocampus. Proc. Natl. Acad. Sci. U.S.A. 97, 6856–6861

129. Lamprecht, R., Farb, C. R., Rodrigues, S. M., and LeDoux, J. E. (2006)
Fear conditioning drives profilin into amygdala dendritic spines. Nat.
Neurosci. 9, 481–483

130. Jayachandran, R., Liu, X., Bosedasgupta, S., Muller, P., Zhang, C. L.,
Moshous, D., Studer, V., Schneider, J., Genoud, C., Fossoud, C.,
Gambino, F., Khelfaoui, M., Muller, C., Bartholdi, D., Rossez, H., Stiess,
M., Houbaert, X., Jaussi, R., Frey, D., Kammerer, R. A., Deupi, X., de
Villartay, J. P., Luthi, A., Humeau, Y., and Pieters, J. (2014) Coronin 1
regulates cognition and behavior through modulation of cAMP/protein
kinase A signaling. PLoS Biol. 12, e1001820

Hippocampal Proteins in Spatial Memory

540 Molecular & Cellular Proteomics 15.2



131. Ahmad, M., Polepalli, J. S., Goswami, D., Yang, X., Kaeser-Woo, Y. J.,
Sudhof, T. C., and Malenka, R. C. (2012) Postsynaptic complexin con-
trols AMPA receptor exocytosis during LTP. Neuron 73, 260–267

132. Sawada, K., Barr, A. M., Nakamura, M., Arima, K., Young, C. E., Dwork,
A. J., Falkai, P., Phillips, A. G., and Honer, W. G. (2005) Hippocampal
complexin proteins and cognitive dysfunction in schizophrenia. Arch.
Gen. Psychiatry 62, 263–272

133. Takahashi, S., Ujihara, H., Huang, G. Z., Yagyu, K. I., Sanbo, M., Kaba, H.,
and Yagi, T. (1999) Reduced hippocampal LTP in mice lacking a pre-
synaptic protein: complexin II. Eur. J. Neurosci. 11, 2359–2366

134. Xu, J., Kang, N., Jiang, L., Nedergaard, M., and Kang, J. (2005) Activity-
dependent long-term potentiation of intrinsic excitability in hippocampal
CA1 pyramidal neurons. J. Neurosci. 25, 1750–1760

135. Babayan, A. H., Kramar, E. A., Barrett, R. M., Jafari, M., Haettig, J., Chen,
L. Y., Rex, C. S., Lauterborn, J. C., Wood, M. A., Gall, C. M., and Lynch,
G. (2012) Integrin dynamics produce a delayed stage of long-term
potentiation and memory consolidation. J. Neurosci. 32, 12854–12861

136. Han, J., Kesner, P., Metna-Laurent, M., Duan, T., Xu, L., Georges, F.,
Koehl, M., Abrous, D. N., Mendizabal-Zubiaga, J., Grandes, P., Liu,
Q., Bai, G., Wang, W., Xiong, L., Ren, W., Marsicano, G., and Zhang,
X. (2012) Acute cannabinoids impair working memory through astro-
glial CB1 receptor modulation of hippocampal LTD. Cell 148,
1039–1050

137. Han, X., Chen, M., Wang, F., Windrem, M., Wang, S., Shanz, S., Xu, Q.,
Oberheim, N. A., Bekar, L., Betstadt, S., Silva, A. J., Takano, T., Gold-
man, S. A., and Nedergaard, M. (2013) Forebrain engraftment by human
glial progenitor cells enhances synaptic plasticity and learning in adult
mice. Cell Stem Cell 12, 342–353

138. Moore, C. I., and Cao, R. (2008) The hemo-neural hypothesis: on the role
of blood flow in information processing. J. Neurophysiol. 99, 2035–2047

139. Suzuki, A., Stern, S. A., Bozdagi, O., Huntley, G. W., Walker, R. H.,
Magistretti, P. J., and Alberini, C. M. (2011) Astrocyte-neuron lactate
transport is required for long-term memory formation. Cell 144,
810–823

Hippocampal Proteins in Spatial Memory

Molecular & Cellular Proteomics 15.2 541


