Skip to main content
. 2016 Feb 3;11(2):e0147399. doi: 10.1371/journal.pone.0147399

Fig 1. Custom Open-source Selective Laser Sintering (OpenSLS) hardware.

Fig 1

a) A simplified depiction of the SLS process illustrates the sintering of powdered materials into 3D parts using a laser. For each new layer, the powder reservoir piston moves up to expose a layer of fresh powder while the build platform lowers within the build volume to leave space for the new powder layer at the top. The distributor pushes the exposed powder from the reservoir to the top of the build area so that the laser can pattern the next layer. b) A schematic rendering of our custom powder handling module. All of the red parts are 3D printed; full designs for these and the laser-cut acrylic walls may be found on the OpenSLS github repository. With the exception of the blue-green wall in the background, the exterior acrylic walls (as well as the exit ducts for excess powder) have been omitted for clarity. c) A photograph of the assembled powder module that was used throughout this study shows the components highlighted in the schematic (b) as well as the remaining acrylic walls and ducting for excess powder. The powder module was readily integrated into a commercial laser cutter with the indicated mounting brackets. d) After mounting the powder module in the laser cutter, we successfully implemented selective laser sintering and fabricated structures such as the illustrated gear. The gear is shown just after sintering and powder removal as well as after cleaning with compressed air (inset).