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Abstract

The endocannabinoid system, including endogenous ligands ('endocannabinoids' ECs), their 

receptors, synthesizing and degrading enzymes, as well as transporter molecules, has been 

detected from the earliest stages of embryonic development and throughout pre- and postnatal 

development. ECs are bioactive lipids, which comprise amides, esters and ethers of long chain 

polyunsaturated fatty acids. Anandamide (N-arachidonoylethanolamine; AEA) and 2-

arachidonoylglycerol (2-AG) are the best studied ECs, and act as agonists of cannabinoid 

receptors. Thus, AEA and 2-AG mimic several pharmacological effects of the exogenous 

cannabinoid delta9-tetrahydrocannabinol (Δ9-THC), the psychoactive principle of cannabis sativa 

preparations like hashish and marijuana. Recently, however, several lines of evidence have 

suggested that the EC system may play an important role in early neuronal development as well as 

a widespread role in neurodegeneration disorders. Many of the effects of cannabinoids and ECs 

are mediated by two G protein-coupled receptors (GPCRs), CB1 and CB2, although additional 

receptors may be implicated. Both CB1 and CB2 couple primarily to inhibitory G proteins and are 

subject to the same pharmacological influences as other GPCRs. This new system is briefly 

presented in this review, in order to put in a better perspective the role of the EC pathway from 

neurodevelopment to neurodegenerative disorders, like Alzheimer's disease, Parkinson's disease, 

Huntington's disease, and multiple sclerosis. In addition, the potential exploitation of antagonists 

of CB1 receptors, or of inhibitors of EC metabolism, as next-generation therapeutics is discussed.
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INTRODUCTION

The earliest anthropological evidence of Cannabis use comes from the oldest known 

Neolithic culture in China, where it was used in the production of hemp for ropes and 

textiles and also for its psychotropic effects [1]. An 1848 commentary in the British 

Pharmacopoeia outlined quite accurately the psychotropic effects of Cannabis and pointed 

out its merits as an antispasmodic and analgesic [2].

The major psychoactive constituent of Cannabis sativa is Δ9-tetrahydrocannabinol (Δ9-

THC, dronabinol), (Fig. 1) which is mainly responsible for the pharmacological effects of 

the Cannabis plant [3, 4]. Δ9-THC was isolated, stereochemically defined, and synthesized 

in 1964 [5], and its psychoactive properties were recognized immediately. Currently Δ9-

THC and its analogs are used for the treatment of nausea and vomiting induced by 

radiotherapy or chemotherapy, and wasting syndrome in AIDS patients. Although 

controversy exists, cannabinoids have also been suggested for the treatment of pain, spastic 

states, glaucoma and other disorders [6]. However, the clinical usefulness of Δ9-THC and its 

analogs is greatly hampered by their numerous side effects, including the potential for abuse 

[7, 8]. In recent years, cannabinoid research received tremendous attention from various 

researchers due to the breakthrough discovery of the receptors that bind Δ9-THC 

(Cannabinoid receptors) and their endogenous ligands, endocannabinoids (ECs), in animal 

tissues referred to as the endocannabinoid system. This emerging body of research has 

revealed multiple ways in which the EC system functions to regulate synaptic 

neurotransmission in various areas [9-11] of the developing as well as the adult brain. 

Continuing research has elucidated vital functions for EC signaling in molecular pathways 

that underlie both short- and long-lasting alterations in synaptic strength [12, 13]. In fact, the 

critical involvement of ECs in some mechanisms of synaptic neurotransmission may change 

the current thinking regarding the cellular models of learning and memory. These models 

may be pivotal in understanding and providing potential treatment for the rewarding and 

amnestic actions of marijuana drugs. This review is focused on our understanding of the EC 

system in brain function from neurodevelopment to neurodegeneration. In addition, the 

potential exploitation of antagonists of CB1 receptors (Fig. 2), or of inhibitors of EC 

metabolism, as next-generation therapeutics is discussed.

CANNABINOID RECEPTORS

Evidence for the existence of the marijuana receptor has been available since the 1980s [14, 

15]. It has now been shown that cannabinoids have two specific receptor subtypes, named 

CB1 and CB2, which have been cloned. Evidence for a third receptor (“CB3” or 

“Anandamide receptor”) in brain and in endothelial tissues has been reported in the literature 

[16-19], however, its cloning, expression and characterization have not yet been 

accomplished.

Basavarajappa et al. Page 2

Mini Rev Med Chem. Author manuscript; available in PMC 2016 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CB1 and CB2 receptors belong to the large superfamily of heptahelical G protein-coupled 

receptors (GPCR) and couple to Gi/o proteins (For more details see reviews [20-22]). The 

CB1 receptor is mainly expressed in brain and spinal cord and thus is often referred to as the 

“brain cannabinoid receptor”. CB1 receptors are among the most abundant GPCRs in the 

brain, their densities being similar to levels of γ-aminobutyric acid (GABA)- and glutamate-

gated ion channels [23]. The presence of functional CB2 receptors in the CNS has provoked 

considerable controversy over the past few years. Formerly considered as an exclusively 

peripheral receptor [24, 25] and often referred as the “peripheral cannabinoid receptor”, it 

is now accepted that it is also present in limited amounts and distinct locations in the brain 

of several animal species, including humans [26, 27]. However, the functional relevance of 

this receptor in the CNS is emerging slowly [28].

The cDNA sequences encoding CB1- or CB2-like receptors have been reported in various 

species including human (For review see [21]). Human CB1 and CB2 receptors share 44% 

overall amino acid identity (For more details see recent review [29]). The CB2 receptor 

shares 81% amino acid identity between rat and mouse or human. Although significant 

progress has been achieved in many aspects of the biology of cannabinoid receptors and our 

knowledge of cannabinoid receptor genomics and proteomics is increasing, the regulation of 

cannabinoid receptor genes is still poorly understood.

THE SIGNAL TRANSDUCTION MECHANISM OF CB1 RECEPTORS

Activation of a cannabinoid receptor promotes its interaction with G proteins, resulting in 

guanosine diphosphate/guanosine triphosphate exchange and subsequent dissociation of the 

α and βy subunits. These subunits regulate the activity of multiple effector proteins to bring 

about biological functions (Fig. 3). CB1 is coupled with Gi or Go proteins. CB1 receptors 

differ from many other GPCR proteins in being constitutively active, as they are precoupled 

with G-proteins in the absence of exogenously added agonists [30]. This property of being 

constitutively active is similar to the majority of receptors including ionotropic and 

metabotropic. However, the extent of this constitutive activity varies from receptor- to 

receptor, species-to species, and location-to location [31]. Among its cellular actions are 

inhibition of adenylate cyclase activity [32-34], N-type voltage-gated channels [35-38], N-

type, P/Q-type calcium channels, and D-type potassium channels [34, 39], activation of A-

type and inwardly rectifying potassium channels [40], and inhibition of synaptic 

transmission [39, 41]. Based on these findings, it has been suggested that CB1 receptors play 

a role in the regulation of neurotransmitter release [39, 41].

In addition, one of the most interesting research areas is the regulation of neuritogenesis, 

axonal growth and synaptogenesis by CB1 receptors (For references see recent article [42]). 

The molecular mechanism involved in this process is not yet clear. The CB1 receptor 

activates MAPK pathway [43]. In some cells, CB1 receptor-mediated activation of MAPK 

was mediated through the PI3 kinase pathway [43, 44]. AEA, CP,55, 940 and WIN 55,212-2 

increased phosphorylation of FAK+ 6,7, a neural isoform of FAK, in hippocampal slices and 

in cultured neurons [45]. CB1 receptor activation stimulates phosphorylation of the Tyr-397 

residue of FAK in the hippocampus, which is crucial for FAK activation [46] and increases 

phosphorylation of p130-Cas, a protein associated with FAK in the hippocampus. CB1 
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receptor-stimulated FAK-autophosphorylation was shown to be upstream of the Src family 

kinases [46]. These new downstream effectors of CB1 receptors are quite likely to play a 

role in some forms of synaptic plasticity through gene regulation, but this needs further 

investigation.

ENDOCANNABINOIDS

The ECs are lipid signaling molecules that bind to and activate cannabinoid receptors. These 

lipid compounds are formed from phospholipids precursors [47-52] within cells throughout 

the body, and are released from these cells on demand in a nonvesicular manner to act in a 

paracrine fashion [47, 49-53].

Beginning in 1992, the first endogenous cannabinoid was identified as anandamide (AEA, 

arachidonylethanolamide). It was named from the Sanskrit ananda, “internal bliss,’’ making 

reference to its chemical structure (the amide of arachidonic acid and ethanolamine) [54]. 

Subsequently, another endogenous cannabinoid receptor ligand, 2-arachidonylglycerol (2-

AG) was discovered and characterized [55, 56]. The third ether-type EC, 2-

arachidonylglycerol ether (noladin ether), was isolated from the CNS and shown to display 

pharmacological properties similar to AEA [57]. The fourth type of EC, virodhamine, in 

contrast to the previously described ECs, is a partial agonist with in vivo antagonist activity 

at the CB1 receptor [58]. The fifth type of EC, N-arachidonyl-dopamine (NADA), not only 

binds to CB1 receptor but also stimulates vanilloid receptors (VR1) [59]. It should be noted 

that except AEA and 2-AG, to date, there is little evidence about the physiological actions of 

these compounds.

AEA is believed to be synthesized by several pathways (see recent review for details [21]) 

(Fig. 4A). Notably, there is a strong evidence for calcium dependence in both of these 

synthesis steps, which may underlie the requirement for postsynaptic Ca2+ in certain forms 

of depolarization-induced synaptic plasticity (For details see) [13]. As a putative 

neuromodulator, AEA that is released into the synaptic cleft is expected to be rapidly 

inactivated. In general, two mechanisms are known that could remove ECs from the synaptic 

cleft to ensure rapid signal inactivation: re-uptake or enzymatic degradation. AEA is 

inactivated by reuptake [60, 61] via an uncharacterized membrane transport molecule, the 

‘AEA membrane transporter’ (AMT) [52, 60, 62-66], and subsequent intracellular 

enzymatic degradation. AEA is metabolized to arachidonic acid and ethanolamine via the 

action of the fatty acid amide hydrolase (FAAH), and this activity plays a significant role in 

the rapid clearance of AEA from extracellular compartments [67, 68]. In addition to 

hydrolysis by FAAH, AEA is metabolized by COX-2, LOX and cytochrome P450 [65, 

69-71]. Further research is required to elucidate the exact mechanism and enzymes involved 

in this pathway of AEA metabolism.

The second widely recognized endogenous CB1 agonist, 2-arachidonylglycerol (2-AG), was 

characterized soon after the discovery of AEA [55, 56]. 2-AG has been characterized as a 

unique molecular species of monoacylglycerol isolated from both the canine gut [55] and the 

rat brain [72], where it presumably functions as an endogenous cannabinoid receptor ligand. 

2-AG biosynthesis occurs by two possible routes in neurons, which are illustrated in Fig. 4B 
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and also in recent review [73]. 2-AG, like AEA, is found in a variety of tissues throughout 

the body and brain, and appears to be released from cells in response to certain stimuli. 2-

AG activates the CB1 receptor with greater efficacy than does AEA. 2-AG is inactivated by 

reuptake [60, 61] via an uncharacterized membrane transport molecule, the ‘AEA membrane 

transporter’ (AMT) [52, 60, 62-66], and subsequent intracellular enzymatic degradation [47, 

67, 74] by monoacylglycerol (MAGL) lipase, like other monoacylglycerols [75]. 

Furthermore, 2-AG is metabolized by enzymatic oxygenation of 2-AG by COX-2 into 

PGH2 glycerol esters. The biological activity and the role of oxygenated 2-AG are yet to be 

determined.

EC SYSTEM AND CNS DEVELOPMENT

The molecular details of EC metabolism and their receptor systems during brain 

development suggest that ECs may effectively regulate cellular specification programs [76]. 

A broad range of developmentally regulated receptors and ion channels [77-79] suggests 

divergent roles of EC signaling during brain development. AEA and 2-AG levels vary 

substantially throughout prenatal development [80, 81]. In the beginning, between days 4 

and 6 of pregnancy in mice, AEA in the uterus enables embryo implantation [82]. AEA 

levels are low in the brain at midgestation and their levels gradually increase throughout the 

perinatal developmental period until adult levels are reached [80]. Like in adult brains, 2-AG 

concentrations (2–8 nmol/g tissue) exceed those of AEA (3–6 pmol/g tissue) throughout 

brain development [80, 81]. Notably, fetal 2-AG levels are similar to those in young and 

adult rat brains, with a remarkably distinct peak on the first day after birth [80, 81]. The 

cellular distribution of MAGL during development is not known, while FAAH has been 

detected in radial glia during late gestation and postnatal periods [83]. The distribution 

patterns of FAAH, together with the EC control of astrogliogenesis [83], suggest the 

involvement of EC signaling in neural progenitor differentiation in vivo. A fine balance 

between progenitor cell proliferation and programmed death guarantees the generation of 

adequate quantities of neural cells during brain development. It is becoming increasingly 

evident that ECs and related lipid mediators regulate neural progenitor commitment, 

survival [83-85] and synaptic connectivity in the developing brain [42, 86]. The signaling 

pathway responsible for their effects during development is not well characterized. The 

available literature suggests the participation of ERK 1 and 2 through a mechanism that 

involves the upstream inhibition of Rap1 and B-Raf (for a recent review, see [76]).

ECs have also been shown to regulate neuronal migration, suggesting a role in the 

attainment of the morphological, physiological and molecular characteristics that occur 

during terminal neuronal differentiation. AEA and WIN 55,212-2, in cooperation with brain-

derived neurotrophic factor (BDNF), a principal pro-differentiating neurotrophin, induce 

migration of GABA-containing interneurons in the embryonic cortex [87]. Similarly, THC 

was found to increase the density of cholecystokinin-expressing interneurons in the rat 

hippocampus in vivo [87]. AEA [87] and WIN 55,212-2 [88] strongly inhibit neurite 

formation and elongation in GABA-containing interneurons. In these studies AEA was 

shown to abolish the morphogenic potential of BDNF. Similarly, cannabinoids, including 

THC, antagonize the forskolin-induced synaptogenesis of cultured hippocampal neurons 

[89]. In N1E-115 neuroblastoma cells, AEA and HU210 reduce the rates of neurogenic 
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differentiation [90]. These morphological changes are mediated through the Rho family of 

small guanosine triphosphatases, the spatially controlled activation of which regulates 

cytoskeletal integrity [91]. In contrast, a synthetic cannabinoid, HU210, promotes neurite 

outgrowth in Neuro 2A cells through the Gao/i-mediated degradation of Rap–GAPII and the 

subsequent activation of Rap1 [92]. 2-AG stimulates neurite outgrowth of cerebellar neurons 

through a mechanism that is dependent on intrinsic DAGL activity within axonal growth 

cones, whereas CB1 receptor antagonists abolish N-cadherin- and Fgf8-induced neurite 

extension [93]. These observations suggest that EC signaling might regulate aspects of 

growth cone differentiation and axon guidance [94]. Further support for the potential role of 

ECs in the regulation of neuritogenesis derives from the similar functional effects of other 

lipid mediators such as lysophosphatidic acid and sphingosine-1-phosphate [90]. Further 

research is required to understand the precise signaling mechanism by which ECs regulate 

dendrite and axon development. Identification of ECs and the characterization of their 

metabolic enzymes together with second messenger signaling cascades will enable better 

understanding of the physiological role of EC signaling and will reveal the neural basis of 

developmental defects that are imposed by prenatal drug abuse.

The CB1 receptor has a wide expression pattern in the developing nervous system and its 

expression follows neuronal differentiation in the embryo from the earliest stages. Several 

studies have described the expression pattern of CB1 receptor mRNA and the distribution of 

CB1 receptors in the fetal and neonatal rat brain [80, 95-97]. The CB1 receptor mRNA 

levels and receptor binding could be detected from gestational day (GD) 14 in rats, 

coinciding with the time of phenotypic expression of most neurotransmitters (for review, see 

[98]). At this fetal age, CB1 receptors appear to be functional, since they are already coupled 

to GTP-binding proteins [95]. The developing human and rat brain contain higher levels of 

CB1 receptors [99, 100] than those seen in the adult brain [80]. However, the distribution of 

CB1 receptors is atypical in the fetal and early neonatal brain, particularly in white matter 

areas [97] and subventricular zones of the forebrain [80, 95], compared with the adult brain 

[23, 100]. This atypical location of CB1 receptors was a transient phenomenon, since the 

receptors progressively acquired, during the course of late postnatal development, the classic 

pattern of distribution observed in the adult brain [95, 97]. The existence of CB1 receptors 

during early brain development suggests a possible involvement of CB1 receptors during 

fetal and early postnatal periods in specific events of the CNS development, such as cell 

proliferation and migration, axonal elongation and, later, synaptogenesis and myelinogenesis 

(for review, see [81]). Thus, CB1 receptors contribute to generating neuronal diversity in 

particular brain regions during early CNS development.

Consistent with their role during early CNS development, there is evidence that perinatal 

exposure to cannabinoids modifies the maturation of neurotransmitter systems and their 

related behaviors [81, 101-104]. These effects take place through the activation of CB1 

receptors, that emerge early in the developing brain [80, 81, 95, 104]. Psychoactive 

cannabinoids may act as epigenetic factors. The activity in the adult brain of a specific 

neurotransmitter is the result of a temporally ordered sequence of events that occurs during 

early CNS development. Perturbations of this pattern may lead to alterations in some of the 

functions related to this neurotransmitter. For instance, the advance or the delay in the 

expression of genes implicated in the synthesis of receptors at a very specific moment of 
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development can imply alterations in some of the activities related to the physiological 

functions of these receptors. These physiological changes may also result from an increase 

or a decrease in concentration of CB1 receptors or from modifications in the activities of the 

CB1 receptor signaling pathways. Administration of cannabinoids, at doses similar to those 

found in marijuana consumption, was found to modify normal neurotransmitter 

development, likely producing neurobehavioral disturbances. Thus, adult animals perinatally 

exposed to cannabinoids exhibited, among other signs, long-term alterations in male 

copulatory behavior [105], open-field activity [106], learning ability [107], stress response 

[108], pain sensitivity [109], social interaction and sexual motivation [110], drug seeking 

behavior [111], neuroendocrine disturbances [112] and others (for review, see [101-103, 

107]). Most of these neurobehavioral effects are likely to arise from changes in the 

development of several neurotransmitter systems caused by the exposure to cannabinoids, 

and probably through the activation of CB1 receptors during critical prenatal and early 

postnatal periods of brain development.

During certain periods of development, CB1 receptors may be also expressed in some 

subpopulations of glial cells, which play an important role in neural development. 

Cannabinoids induce arachidonic acid mobilization in cortical glial cells and this effect is 

reversed by a selective CB1 receptor antagonist, SR141716A [113], suggesting that the CB1 

receptor might play a role in neural-glial signaling in the brain. In this manner, AEA 

released from neuronal cells may act on the astrocyte function via the activation of the CB1 

receptors located in these cells. It has been observed that cannabinoids increased the rate of 

glucose oxidation to CO2 as well as the rate of glucose incorporation into phospholipids and 

glycogen. These effects of cannabinoids were prevented by forskolin, pertussis toxin, and 

the CB1 receptor antagonist SR 141716. Cannabinoid did not affect basal cAMP levels but 

partially antagonized the forskolin-induced elevation of intracellular cAMP concentration in 

cortical glial cells [114] and C6 glioma cells [115]. These effects were reversed by pertussis 

toxin or SR141716A, thus indicating the involvement of a Gi/Go protein-coupled CB1 

receptor. These studies also suggest that sphingomyelin hydrolysis and mitogen-activated 

protein kinase stimulation are involved in this metabolic effect [114]. Cannabinoids in 

hippocampal glial cell cultures induce the expression of kros-24, which is reversed by 

SR141716A [116], suggesting the involvement of CB1 receptors.

The normal role of the EC system during early CNS development is not fully elucidated. 

The search for more functions is under way, and methods for finding them are improving. 

Still, not enough attention is focused in this direction. Modulation of this system using 

pharmacological and gene knockout approaches support a role for it in learning and 

memory, emotion and anxiety, reward, eating, nociception and motor systems, to list a few. 

However, none of these behavioral responses is critically dependent on the direct activity of 

the EC system, indicating that it serves a modulatory or facilitatory function, hence making 

it a highly attractive target for the development of therapeutic agents to treat CNS 

developmental disorders.
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NEURODEVELOPMENTAL DISORDERS

An association between cannabis use and psychotic symptoms and/or schizophrenia has 

been evident in the literature [7]. Changes in the EC system have been reported in 

schizophrenia. The cannabinergic system regulates the development of dopamine systems, 

the differentiation of GABA interneurons, and the processes that regulate synaptogenesis 

and neural pruning, as well as the control of short- and long-term plasticity [13]. The 

activation of CB1 receptors interferes with neuronal network oscillations and impairs 

sensory gating function in the limbic circuitry, further supporting the connection between 

cannabis abuse and increased susceptibility to developing schizophrenia [117]. Early onset 

cannabis use may interfere with these developmental processes, constituting a 

neurodevelopmental insult, and account for the association between age of onset of use and 

an increased risk of later developing schizophrenia. (For review see [118]). A vast majority 

of clinical data suggests a high rate of cannabis use among people with schizophrenia and 

also a deteriorated course of illness [119, 120]. Recent studies identify cannabis use as a 

causative factor in a small proportion (~8%) of schizophrenia cases [121, 122] despite an 

apparent large increase in cannabis use [123]. A recent general community survey found that 

subclinical positive and negative symptoms of schizophrenia were more strongly associated 

with neurodevelopmental abuse of cannabis and this effect was independent of lifetime 

frequency of use [124]. In another animal study, working memory [125] and prepulse 

inhibition [126] were impaired in adult rats that had received a cannabinoid peri- or 

prepubertally, respectively. This effect was normal in rats treated for the same length of time 

in adulthood. These findings offer some support for cannabis-induced neurodevelopmental 

effects at puberty contributing to the subsequent development of schizophrenia.

It was found that regular or infrequent or heavy cannabis use at early ages (14 or 15 years) 

was strongly associated with other illicit drug use [127], including the development of 

nicotine dependence [128]. However, this association weakened with such use in 21-year 

olds. Administration of cannabinoids to adolescent rats induces a sensitization to morphine, 

cocaine and amphetamine, compared with adult rats [129]. These observations suggest long-

lasting modulation of the central reward pathway in the neurodevelopmental effects of 

cannabinoids.

A growing body of evidence shows the association of prenatal marijuana exposure with 

abnormal CNS maturation as well as cognitive and attentional deficits in children (For 

review see [130]). Cannabis augments mid-brain dopamine release, which is known to be 

associated with the induction of psychosis, and, when used in higher doses, cannabis 

suppresses PFC dopamine utilization, resulting in cognitive dysfunction. Evidence suggests 

that some individuals are particularly prone to these adverse effects of cannabis due to a 

functional polymorphism of their COMT gene, which reduces their capacity to metabolize 

dopamine [131]. Despite the prevalence of marijuana use in adolescence, few studies have 

examined the cognitive impact of chronic marijuana use in adolescent samples. It is well 

known in the literature that acute cannabis impairs cognitive function in humans, but studies 

on the neurodevelopmental aspects of cannabis use have not been done.
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EC SYSTEM AND NEURODEGENERATION

The distribution of CB1 receptors in the adult brain is highly heterogeneous, with the highest 

densities of receptors present in the basal ganglia, the substantia nigra pars reticulata, and 

the globus pallidus. In addition, very high levels of binding are present in the hippocampus, 

particularly within the dentate gyrus, and also in the molecular layer of the cerebellum. In 

contrast, there are few CB1 receptors in the brainstem [132]. There is a similar distribution 

of CB1 receptors in humans [99, 133]. The highest densities are found in association with 

limbic cortices, with much lower levels within primary sensory and motor regions, 

suggesting an important role in motivational (limbic) and cognitive (association) 

information processing. CB1 receptors have been shown to localize presynaptically on 

GABAergic interneurons and glutamatergic neurons [134-136]. This is consistent with the 

proposed role of EC compounds in modulating GABA and glutamate neurotransmission [10, 

11, 137-141].

In recent years, the functions of ECs at the synaptic and network levels have been 

elucidated. In 2001, three groups independently revealed that ECs are released when 

neuronal cells (postsynaptic neurons and possibly presynaptic terminals as well) are 

activated. They travel in a retrograde direction and transiently (<1 min) suppress presynaptic 

neuro-transmitter release by activating CB1 receptor-mediated inhibition of voltage-gated 

Ca2+ channels [9-11]. Such a negative feedback mechanism should be effective in calming 

stimulated neurons after excitation. Since then, dozens of papers have been published that 

have confirmed the role of ECs as a retrograde messenger in various regions of the brain. It 

is now established that EC release can be induced by four stimulation protocols, namely, 

postsynaptic depolarization, activation of postsynaptic Gq-coupled receptors, combined Gq-

coupled activation and depolarization, and repetitive synaptic activation (for recent review 

see [13]).

As in EC-mediated short-term plasticity, all the studies to date suggest that EC-mediated 

long-term plasticity takes the form of depression of neurotransmission in various brain 

regions. CB1 receptor agonists inhibit spontaneous excitatory postsynaptic current 

(mEPSCs) frequency, an effect that is reversed by CB1 receptor antagonists (Fig. 5) [142]. It 

was observed that long-term depression (LTD) was absent in CB1 receptor knockout mice, 

reduced or eliminated by CB1 receptor blockade, and enhanced by CB1 receptor activation 

in various brain regions, indicating the involvement of EC signaling [143]. Soon after this 

publication, similar EC mediated LTD was reported during both excitatory (LTDe) and 

inhibitory (LTDi) neurotransmission in various brain regions [144-146]. Another form of 

EC-mediated LTDe was described in the visual cortex [147]. All these forms of EC-

mediated LTD were expressed presynaptically as persistent decreases in neurotransmitter 

release. In contrast, cerebellar LTD, which is well known to be expressed postsynaptically, 

was reported to require EC signaling [148]. It has been shown that CB1 receptor activation 

inhibits both LTP and LTD induction in the hippocampus [149, 150]. LTP elicited by 

moderate stimulations (20 or 50 pulses) was facilitated in slices treated with a CB1 

antagonist, whereas LTP elicited with robust stimulations (100 or 200 pulses) was 

unchanged by CB1 blockade. LTP elicited with TBS was also facilitated with CB1 

blockade, revealing a tonic inhibitory influence of ECs on the hippocampal LTP induction. 
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Conversely, the inhibition of cyclooxygenase-2 (COX-2) prevented LTP elicited with TBS. 

Inhibition of COX-1 or other routes of EC degradation did not affect LTP. These 

observations suggest that COX-2 regulates the formation of ECs that negatively regulate 

LTP [151]. The neurophysiological consequences of the activation of CB1 receptors depend 

on the localization of these receptors in various brain regions and the excitatory or inhibitory 

pathways being stimulated. Hence, the clinical potential of cannabinoid drugs in 

neurological disorders is vast.

Huntington’s disease (HD) is an adult-onset, dominantly inherited human neurodegenerative 

disorder characterized by motor deficits, cognitive impairment, and psychiatric symptoms 

leading to inexorable decline and death [152]. Reduced levels of ECs, CB1 receptors, and 

CB1 receptor mRNA have been reported in Huntington’s disease [153-157]. While the 

mechanism and the significance of the loss of EC function is not clear at present, these 

observations may indicate that the EC signaling system has a central role in the progression 

of neurodegeneration in Huntington’s disease, and that cannabinoid agonists could be of 

significant therapeutic benefit in Huntington’s disease because of their anthyperkinetic and 

neuroprotective effects [156]. A recent study showed a loss of CB1 receptors in progenitor 

cells in the adult human brain subependymal layer in Huntington's disease and suggested the 

possibility that these cells could be a suitable endogenous source for the replacement of cells 

lost due to neurodegeneration [158]. In particular, down-regulation of CB1 receptor activity 

and signaling seems to be a critical event within the ECS. As a consequence, neuronal 

functioning and GABA transmission are impaired [159]. On this basis, it can be proposed 

that delaying the loss of CB1 receptors, for instance by means of increasing the levels of 

their (endo) cannabinoid agonists, might be beneficial in the treatment of HD.

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that selectively 

damages upper and lower motor neurons of the spinal cord, brainstem, and motor cortex 

[160, 161]. Most cases of ALS are sporadic, but about 10% are familial [160, 161]. Despite 

extensive research, the underlying cause of the sporadic form of ALS remains unclear, while 

progress has been made in understanding the mechanisms of the familial forms of the 

disease, and a wide range of factors have been proposed to play a role. They include 

glutamate excitotoxicity, mitochondrial dysfunction, oxidative stress, protein aggregation, 

proteosomal dysfunction, axonal transport deficits, cytoskeletal abnormalities, microglial 

activation, neuroinflammation and aberrant growth factor signaling [160-163]. Notably, 

some of these mechanisms, namely glutamate excitotoxicity, oxidative stress, 

neuroinflammation, and microglial activation are potentially modulated by ECs, possibly 

explaining the neuroprotective effects of increasing EC levels in ALS models. In line with 

this, it has been reported that both pharmacological agonists of CB1 and CB2 receptors and 

elevated levels of AEA, obtained through genetic ablation of FAAH, exerted robust anti-

inflammatory and neuroprotective effects, delaying disease progression in SOD1 mice 

[164-166]. In addition, EC system may also provide symptomatic relief in ALS by reducing 

spasticity, a disabling condition which follows the lesion of the upper motor neurons [167]. 

These observations suggest that a hyperactive EC system and an increased EC tone underlie 

neurotransmission deficits in ALS. Within the EC system both CB1 receptors and FAAH are 

key players in the pathogenesis of ALS, with CB1 receptor activation counteracting 

glutamate excitotoxicity by reducing glutamate release from presynaptic terminals. In 
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addition, enhanced EC tone in ALS may counteract the loss of mGlu5 receptor functionality 

[168, 169], thus representing a compensatory mechanism. It may also, at least in part, be 

under the control of COX-2 activity [170]. Furthermore, up-regulation of CB2 receptors in 

microglial cells [171], and subsequent increase of the release of pro-inflammatory cytokines 

[172, 173], substantially contribute to ALS neuropathology.

The main pathological feature of Parkinson’s disease (PD) is the degeneration of dopamine 

(DA)-containing neurons of the substantia nigra, which leads to severe DAergic denervation 

of the striatum. The irreversible loss of the DA-mediated control of striatal function leads to 

the typical motor symptoms observed in PD, i.e., bradykinesia, tremor and rigidity. 

Increased EC tone in the globus pallidus has been reported to be responsible for the 

production of Parkinsonian symptomology [174]. Several mechanisms have been considered 

to play a role in the selective DA neuron degeneration seen in PD, such as mitochondrial 

dysfunction, oxidative stress, and excitotoxicity. Interestingly, although CB1 receptors are 

not abundant in DA neurons of the substantia nigra, the putative involvement of the ECs in 

DA neuron degeneration has become apparent in the latest studies. A recent study 

demonstrated increased 2-AG in the globus pallidus of rats treated with reserpine, which is a 

rodent model of PD [175]. EC signaling was shown to be involved in the pathophysiology of 

parkinsonism and levodopa-induced dyskinesia (LID) in 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP)-lesioned, non-human primate models of Parkinson's disease 

[79]. The deficiency in EC transmission may contribute to LID; these complications may be 

alleviated by the activation of CB1 receptors [176]. Increased levels of AEA have been 

reported in rat models of PD [175, 177]. Recently, it was discovered that CB1 receptor 

binding and the activation of G proteins by cannabinoid agonists were significantly 

increased in the postmortem basal ganglia of humans affected by PD [178]. The increase in 

CB1 receptors was also seen in MPTP-treated marmosets, a primate PD model [178]. A 

recent study found high levels of ECs in the cerebrospinal fluid of untreated PD patients 

[179]. Low doses of SR141716A partially attenuated the hyperkinesias shown by a rat 

model of PD [180]. Further studies to understand the functional interaction between 

dopamine and the EC system should bring new perspectives on the treatment of PD.

Several lines of evidence suggest a role for EC signaling in schizophrenia [181]. The highest 

densities of CB1 receptors are found in regions of the human brain implicated in 

schizophrenia, including the prefrontal cortex, basal ganglia, hippocampus, and the anterior 

cingulate cortex [181]. Increased binding of [3H]CP-55,940 to CB1 receptors in the 

dorsolateral prefrontal cortex of schizophrenia patients compared to controls has been 

demonstrated [182]. In addition, Leweke et al. [183] reported a significant twofold elevation 

of AEA levels in the cerebrospinal fluid (CSF) of patients with schizophrenia compared with 

age-matched controls. Finally, a recent study indicated that SR141716A reverses ketamine-

induced impairment in prepulse inhibition of the acoustic startle reflex, an animal model of 

the deficient sensorimotor gating observed in schizophrenia [184]. It was recently found that 

CSF AEA levels are eightfold higher in antipsychotic-naive first-episode paranoid 

schizophrenics than in healthy controls, dementia patients or affective disorder patients. This 

alteration is absent in schizophrenics treated with 'typical' antipsychotics, which antagonize 

dopamine D2-like receptors, but not in those treated with 'atypical' antipsychotics, which 
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preferentially antagonize 5HT(2A) receptors [185]. Recent data suggest that dysregulated 

striatal EC neurotransmission is associated with a hyperdopaminergic state in dopamine 

transporter knockout mice [186]. AEA release in the dorsal striatum is stimulated by 

activation of D2 dopamine receptors [176]. The amounts of AEA are significantly increased 

in the blood of patients with acute schizophrenia compared with healthy volunteers [187].

Alzheimer's disease (AD) is a chronic degenerative disorder of the CNS that afflicts more 

than 4 million people in the United States. AD also accounts for the most common form of 

dementia in the elderly [188]. The amyloid hypothesis, one of the operational models of AD 

pathogenesis, maintains that the accumulation of amyloid β peptide (Aβ; a key pathological 

marker of Alzheimer disease) is responsible for AD-related pathology, including Aβ 

deposits, neurofibrillary tangles, and eventual neuronal cell death [189]. However, a more 

recent variant of this model suggests that soluble Aβ oligomers disrupt glutamatergic 

synaptic function, which in turn leads to the characteristic cognitive deficits (for references 

see recent review[190]).

Several studies have demonstrated the ability of cannabinoids to provide neuroprotection 

against Aβ peptide toxicity [191-193]. A number of studies have established the influence of 

CB1 receptors on learning and memory [194-196]. Activation of CB1 receptors has been 

found to impair memory [197] and its blockade has been consistently found to facilitate 

memory [196, 198]. Stereotaxic injection of Aβ into the rat cortex caused neuronal damage 

in the hippocampus and increased the levels of 2-AG, but not of AEA. Further, the 

inhibition of EC cellular reuptake concomitantly reversed hippocampal damage in rats, and 

the loss of memory retention in the passive avoidance test in mice, but only when 

administered from the 3rd day after Aβ injection [199]. The mRNAs encoding the 

biosynthetic (DAGLa) enzyme of 2-AG were also found to be significantly elevated 

following Aß injections [199]. These observations suggest that pharmacological 

enhancement of brain EC levels through the inhibition of EC metabolism or uptake 

inhibitors may have a therapeutic value in the protection against Aβ-induced 

neurodegeneration [199]. Blockade of CB1 receptors by SR141716A lessens the amnesia 

induced by a β-amyloid fragment in mice, suggesting that the EC system may be involved in 

cognitive impairment in Alzheimer’s disease [200]. A recent study provides evidence that 

Δ9-THC inhibits the enzyme acetylcholinesterase (AchE) and prevents AchE-induced Aβ 

aggregation. Δ9-THC binds in the peripheral anionic site of AchE, the critical region 

involved in amyloid-genesis [201]. Despite the growing body of evidence that indicates the 

involvement of the ECs in AD pathology, the effects of cannabinoids on the clinical course 

of AD have been addressed only in one study. In that study, the oral administration of 

Dronabinol ameliorated appetite and some behavioral disturbances in a sample of patients 

suffering from AD [202]. Therefore, it will be of major interest to ascertain whether direct 

pharmacological manipulation of CB1 and/or CB2 receptors, as well as drugs that modulate 

EC levels, may be able to reverse cognitive impairments and slow disease progression and 

neuroimaging markers of brain atrophy in AD patients.

Compounds such as AEA and other NAEs present in chocolate [203] may function as 

"cannabinoid mimics" in the purported rewarding properties of cocoa [204], suggesting that 

the EC system participates in the control of food intake. Transient inhibition of food intake 
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and reduction in fat mass were observed following treatment of mice and rats with CB1 

receptor antagonist SR141716A [205]. CB1 receptor knockout mice on a high-fat diet were 

shown to have a lower susceptibility to obesity [206]. To date, data obtained from clinical 

trials (RIO North America, RIO Europe and RIO Lipid) indicate that SR141716A may have 

clinical benefits in relation to its anti-obesity properties and as a novel candidate for the 

treatment of metabolic and cardiovascular disorders associated with overweight and obesity 

[207, 208]. In fact, several studies have evidenced that phenotypes associated with obesity 

and/or alterations on insulin homeostasis (metabolic syndrome) are at increased risk for 

developing cognitive decline and dementia, including not only vascular dementia, but also 

AD (for review see[209]). Perhaps SR141716A can be beneficial against the “metabolic 

syndrome” observed in AD. These studies also suggested that the drug has a reasonable 

safety profile. Treatment with SR141716A is also associated with favorable changes in 

serum lipid levels and an improvement in glycemic control in type 2 diabetic patients [210]. 

Following 1 year of treatment, SR141716 A (rimonabant) at a dose of 20 mg/day produced 

significant increases, compared with a placebo, in the number cigarette smokers who quit 

smoking [211]. In another recent clinical study, orlistat, which specifically inhibits the 

critical enzymes (PLC and DAGL) involved in the biosynthetic pathway of 2-AG [212], 

reduced weight by 2.7 kg on average and decreased the incidence of type 2 diabetes from 

9.0% to 6.2% [213]. In the same study, SR141716A significantly reduced weight by 4.6 kg 

(95% CI 4.3–5.0), reduced waist circumference, and improved triglyceride and HDL 

cholesterol profiles [213]. These observations suggest that the CB1 receptor may have a role 

in both control of obesity and cessation of smoking. Psychopathological disorders and 

depression in particular are strongly linked to eating attitude in obese patients. The 

identification of CB1 receptors in areas of the CNS that have been implicated in regulation 

of mood, food intake and ethanol-related phenomena, including tolerance, vulnerability, 

reinforcement, and consumption (for details, see the recent reviews [214-216]), suggests that 

these receptors may mediate such a behavioral link.

THERAPEUTIC OPPORTUNITY

Even though the detailed pathophysiology of the EC system is not yet fully understood, 

there is already overwhelming evidence indicating that a pharmacological modulation of the 

EC system could provide new tools for a number of disease states. In terms of drug 

development, the CB1 receptor antagonist has progressed furthest and a Sanofi-Aventis 

clinical study (surinabant) for the treatment of smoking [217, 218] is completed 

(ClinicalTrials.gov, Identifier: NCT00432575). An NIAAA clinical study of the efficacy of 

SR 141716A (rimonabant) (Fig. 2) to reduce voluntary ethanol drinking is completed 

recently (ClinicalTrials.gov, Identifier: NCT00075205). Pending the results of the clinical 

trials, CB1 receptor antagonists such as SR141716A could become an important addition to 

the limited arsenal of effective treatments for alcoholism. During CNS developmental 

deficits, neurodegenerative disease or drug abuse, including ethanol abuse, there are changes 

in EC levels in various regions of the brain [219-222]. Therefore, drugs or agents which 

regulate the level of ECs by inhibiting their metabolism (FAAH inhibitors such as URB597) 

or uptake (AM404) or synthesis (orlistat) could locally target sites while limiting the effects 

on uninvolved cognitive areas, and would thus be expected to have a higher therapeutic 
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value [215, 223]. Recent evidence suggests that the blockade of CB1 receptors with SR 

141716A might be beneficial to alleviate motor inhibition typical of PD [180]. Based on the 

observations from animal studies that blockade of CB1 receptors might be protective against 

memory loss caused by Aβ peptides[199, 200], recently, AVE 1625, a selective CB1 

receptor antagonist, is being tested in a double-blind, placebo-controlled phase II clinical 

trial in patients with mild to moderate AD (ClinicalTrials.gov, Identifier: NCT00380302). In 

addition to CB1 receptor antagonist, several specific EC transport inhibitors, FAAH and 

MAGL inhibitors which regulate brain EC levels might have a therapeutic value in the 

protection against Aβ-induced neurodegeneration [199] and memory deficit in rodents [200]. 

Taranabant, another CB1 receptor antagonist similar to Acomplia (rimonabant), which 

Sanofi sells in Europe, was examined for its beneficial effects for obesity [217, 218] has 

been discontinued recently (Merck and Co, clinical study) based on psychiatric side effects 

including anxiety and depression at higher doses (theheart. org). Further research is 

warranted to understand the concise conceptualization of EC system function in both health 

and disease conditions to develop successful EC system based drugs.

CONCLUSION

The ECs, their receptors, synthesizing and degrading enzymes, as well as transporter 

molecules, have been detected from the earliest stages of embryonic development and 

throughout pre- and postnatal development. ECs such as AEA and 2-AG are bioactive lipids 

that mimic several pharmacological effects of Δ9-THC. Many of the effects of cannabinoids 

and ECs are mediated by two G protein-coupled receptors (GPCRs), CB1 and CB2, 

although additional receptors may be implicated. Both CB1 and CB2 couple primarily to 

inhibitory G proteins and are subject to the same pharmacological influences as other 

GPCRs. As summarized in this review, several lines of evidence have suggested that the EC 

system may play an important role in early neuronal development along with a widespread 

role in neurodegeneration disorders. The development of EC research is also very important 

from a clinical point of view because the EC system may provide potential targets not only 

for the treatment of habit-forming behaviors but also for neurological disorders.
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Fig. (1). 
Chemical structure of CB1 receptor exogenous (THC and WIN55, 212-2) and endogenous 

(AEA and 2-AG) agonists.
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Fig. (2). 
Chemical structure of CB1 receptor antagonists.
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Fig. (3). CB1 receptor signaling
CB1 receptors are G-protein-coupled transmembrane proteins located in the cell membrane. 

The Ca2+ channels inhibited by CB1 receptors include N-, P/Q- and L-type channels. 

Actions on Ca2+ channels and adenylyl cyclase (AC) are thought to be mediated by the α 

subunits of the G-protein, and those on GIRK, MAPK and PI3K by the βγ subunits. CB1 

receptor activation stimulates phosphorylation of p130-Cas (CA), a protein associated with 

FAK in the hippocampus. Inhibition of AC and the subsequent decrease in cAMP decreases 

activation of cAMP-dependent protein kinase A (PKA), which leads to decreased 

phosphorylation of the K+ channels. Stimulatory effects are shown by a (→) sign and 

inhibitory effects by a (⟂) sign.
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Fig. (4). The potential biosynthetic pathways of endocannabinoids
A: The synthesis of anandamide (AEA) from membrane N-

arachidonoylphosphatidylethanolamines is catalyzed by the sequential activity of N-

acyltransferase and NAPE-specific phospholipase D (NAPE-PLD), which releases AEA and 

phosphatidic acid (PA). AEA is transported in both directions through the cell membrane by 

a selective AEA membrane transporter (AMT) and, once taken up, is hydrolyzed by fatty 

acid amide hydrolase (FAAH) to ethanolamine (EtNH2) and arachidonic acid (AA). B: 2-

Arachidonoylglycerol (2-AG) is also released from membrane lipids, through the activity of 

diacylglycerol lipase (DAGL). Then, 2-AG can be hydrolyzed by monoacylglycerol lipase 

(MAGL), which both release glycerol and AA. The transport of 2-AG across the cell 

membrane may be mediated by AMT or a related transporter.
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Fig. (5). 
WIN 55, 212-2 –induced suppression of mEPSC frequency was antagonized by CB1 

receptor antagonist SR141716A in hippocampal neurons. (A) Traces of continuously 

recorded mEPSCs before (control), during WIN 55,212-2 exposure, and after the addition of 

the CB1 receptor antagonist SR141716A (SR). (B) Combined plot showing the bath 

application of WIN55, 212-2 suppresses mEPSC frequency. SR141716A antagonized the 

WIN 55,212-2-induced depression of mEPSC frequency. SR141716A alone does not 

significantly affect mEPSC frequency and amplitude. (C) Average cumulative distributions 

of mEPSC inter-event interval (sec) showing a decrease in mEPSC frequency in WIN 

55,212-2-treated cells relative to control (n = 6 neurons). (D) No change in average 

cumulative distributions of mEPSC amplitude was observed in WIN 55,212-2-treated cells 

relative to control (n = 6 neurons). (p < 0.01; Kolmogorow-Simrnov two-sample test). [The 

original figure was modified and reproduced from Basavarajappa et al. [142]].
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