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Abstract

Mast cells (MCs) are cells of hematopoietic origin that normally reside in mucosal tissues, often 

near epithelial cells, glands, smooth muscle cells, and nerves. Best known for their contributions 

to pathology during IgE-associated disorders such as food allergy, asthma, and anaphylaxis, MCs 

are also thought to mediate IgE-associated effector functions during certain parasite infections. 

However, various MC populations also can be activated to express functional programs – such as 

secreting pre-formed and/or newly synthesized biologically active products – in response to 

encounters with products derived from diverse pathogens, other host cells (including leukocytes 

and structural cells), damaged tissue, or the activation of the complement or coagulation systems, 

as well as by signals derived from the external environment (including animal toxins, plant 

products, and physical agents). In this review, we will discuss evidence suggesting that MCs can 

perform diverse effector and immunoregulatory roles that contribute to homeostasis or pathology 

in mucosal tissues.
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Introduction

Mast cells (MCs) are normal residents of mucosal tissues, but their numbers and anatomical 

location can change markedly during immune responses, infections, and other disorders 

affecting such sites, in humans, mice, and other species1–5. MCs stimulated via the high 

affinity receptor for IgE (FcεRI) or by any of multiple other mechanisms can release a 

diverse spectrum of biologically active mediators, and such products, individually or in 

aggregate, can have many different effects on immune or structural cells present in mucosal 
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tissues4, 6–8. As a result, there is no lack of ideas about the potential effector or 

immunoregulatory functions MCs might have during mucosal immune responses3, 4, 8.

However, it can be quite challenging to prove that MCs can perform such proposed 

functions in vivo, and even more difficult, in light of the potential redundancy of effector 

and immunoregulatory mechanisms, to assess the biological importance of such MC 

functions in particular settings. In this review, we will outline some basic principles of MC 

biology and then consider evidence that implicates MCs in physiological, immunological 

and pathologic processes affecting mucosal sites. We will particularly focus on findings 

derived from studies in mice, a species in which biological responses can be analyzed in 

animals that lack MCs or specific MC-associated products.

Mast cell development, phenotype, tissue distribution and plasticity

MCs are tissue-resident cells that arise from hematopoietic progenitors9. Unlike other 

immune cells, MCs normally do not mature before leaving the bone marrow but circulate 

through the vascular system as immature progenitors that complete their development 

peripherally within connective or mucosal tissues, or in serosal cavities, in a process 

potentially regulated by multiple local factors3–5, 10, 11.

The KIT ligand stem cell factor (SCF) plays a critical role in MC biology by regulating the 

development, migration, growth, survival and local activation of MCs12–14. Various other 

factors also can modulate MC growth and survival, including IL-315, IL-416–19, IL-920, 21, 

IL-1022–24, IL-3325–27, CXCL1228, 29, TGF-β30 and NGF31.

MCs reside in almost all vascularized tissues, and can be especially numerous in those 

exposed to the external environment, such as the skin and mucosal sites3. MCs are therefore 

well positioned to respond to various allergens, pathogens, and other agents which can be 

ingested, inhaled or encountered after disruption of the epithelial barrier8. Moreover, many 

phenotypic and functional characteristics of MCs, such as their proliferation, survival, and 

ability to store and/or secrete various products, can be modulated or “tuned” by many 

genetic and environmental factors, including changes in the cytokine milieu associated with 

inflammatory or immune responses8.

Despite their potential phenotypic “plasticity”, MCs are often sub-classified based on certain 

of their “baseline” phenotypic characteristics and their anatomic locations (Table 1). In 

mice, two types of MCs have been described: “connective tissue-type” MCs (CTMCs) and 

mucosal MCs (MMCs)4, 5, 8. CTMCs are often located around venules and near nerves, and 

reside in serosal cavities, while MMCs occupy the mucosae of the gut and respiratory 

mucosa5. MMCs are found at relatively low numbers in most mucosal tissues (in mice, they 

are normally present in higher numbers in the glandular stomach mucosa than in the 

intestines), but expansion of MMC populations can be induced in a T cell-dependent 

manner5, 32. CTMCs and MMCs often are distinguished based on their protease content 

(Table 1). Mouse intestinal MMCs elicited during parasite infection express the chymase 

mouse MC protease-1 (MCPT1) but not the elastase MCPT5, whereas CTMCs do not 

express MCPT1 but express MCPT5, the chymase MCPT4, and the tryptases MCPT6 and 

MCPT75, 33, 34 (notably, C57BL/6 mice don’t express MCPT7 because of a point mutation 
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in the exon/intron 2 splice of the Mcpt7 gene35). However, the plasticity of MC phenotype 

can make such classification challenging, as features of the cells, including their protease 

content, may vary during the course of immune responses5, 8, 33, 36, 37.

In humans, MCs can be subcategorized into MCT, which express high levels of the MC-

specific protease tryptase but little or no chymase (these therefore are thought to resemble 

rodent MMCs), and MCTC, which express both tryptase and chymase (and in that respect 

resemble rodent CTMCs)38, 39 (Table 1). MCC (which express chymase but little or no 

tryptase) also have been described, but they appear to be infrequent40. Clinical evidence 

suggests that human MCT (like mouse MMCs) may be dependent on T-cells, at least in part, 

to maintain normal numbers in mucosal sites41. The majority of human lung MCs ordinarily 

are MCT (~ 90%), and these cells are found in the bronchial/bronchiolar lamina propria and 

alveoli42. MCTC typically are located beneath the epithelium in the lamina propria and 

submocosa, in close proximity to submucosal glands, and some MCTC are found within and 

around the airway smooth muscle layers of major bronchi43. The lamina propria of the 

human intestinal mucosa normally contains ~1.5–3% MCs44, 45. In the human small 

intestine, MCT represent about 98% of all MCs in the mucosa and ~13% of MCs in the 

submucosa are MCT
42. In naïve mice, relatively low numbers of MCs are found in the lung, 

and these cells are located around the larger airways and blood vessels. As noted above, in 

naïve mice few MCs are found in the mucosa of the gastrointestinal tract except for the 

glandular stomach, and small numbers can be found in the submucosa and muscularis 

propria.

However, MC numbers at mucosal sites can increase in both humans and mice in 

pathological settings such as inflammatory bowel disease (IBD)46, 47, food allergy48, 49, 

parasite infections50, 51, asthma52–56 or various types of lung fibrosis57–60. Such increases in 

MC numbers could reflect, at least in part, the division of mature MCs at mucosal sites. 

Although MCs are often considered terminally differentiated cells which can’t divide, we 

and others have provided evidence that at least certain “mature” mast cells, i.e., those which 

can be identified morphologically based on their abundant cytoplasmic granules, retain some 

proliferative ability61–64. Increased MC numbers in such settings also may reflect the 

maturation of increased numbers of MC progenitors, whose numbers in tissues may increase 

due to their increased recruitment and/or survival in such tissues, and/or via the local 

proliferation of such progenitors5, 65. While it is not yet clear to what extent MC progenitors 

can proliferate in tissues, increased numbers of such progenitors have been observed at 

mucosal sites under various pathological conditions. For example, Arinobu et al. observed a 

four-fold expansion of MC progenitors in the intestine following sensitization and challenge 

of mice with the antigen ovalbumin66. Antigen-dependent expansion of MC progenitors also 

was observed in mouse lung following sensitization and challenge with aerosolized 

ovalbumin, and IL-9 and CD4+ T cells were found to contribute to such expansion67. 

Finally, it has been reported that certain MC progenitors can proliferate in vitro66, however, 

whether they can also proliferate within mucosal tissues remains to be proven.
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Mast cell activation

MCs ordinarily express on their surface large numbers of the high affinity IgE receptor, 

FcεRI. During IgE-dependent immune responses, the antigen-dependent cross-linking of 

antigen-specific IgE bound to FcεRI induces the aggregation of FcεRI, promoting the 

activation of downstream signaling events that lead to the secretion of biologically active 

products implicated in allergic reactions6, 68, 69. The IgE-dependent stimulation of MCs has 

been extensively reviewed6, 69–72. It was recently reported that perivascular MCs can 

“sample” circulating IgE directly in the blood by extending cell processes across the vessel 

wall73. Moreover, MC FcεRI were shown to be able to distinguish between high- or low-

affinity stimuli, permitting the MCs to respond differentially to such signals by releasing 

distinct spectra of secretory products in vitro and by orchestrating distinct in vivo 

outcomes74.

Our group recently reported a beneficial role for IgE, FcεRIα, and FcεRIγ in defense against 

honeybee venom-induced mortality in mice75. Together with evidence that expression of the 

FcεRIα chain is important for full expression of acquired resistance to the hypothermia-

inducing effect of honeybee venom-derived phospholipase A2
76, these findings support the 

hypothesis that IgE, which contributes to allergic disorders, also has an important function in 

protection of the host against noxious substances77, 78.

MCs can respond to many stimuli beside IgE. MCs can respond to various pathogens though 

activation of TLRs, including TLR-2 and TLR-479, 80 and, via GPCRs, to certain peptides 

found in venoms81–83, or can be activated by various complement peptides84, 85 and platelet-

activation factor86. There is evidence that MCs also can be directly or indirectly activated by 

some plant products, including aqueous pollen extracts from birch87, and by products of the 

coagulation system, including Factor Xa88 and thrombin receptor activating peptide 

(TRAP)89. MCs also can respond to certain chemokines and cytokines (including 

IL-3325–27, 90, 91 and TSLP92), or be activated through the aryl hydrocarbon receptor93, 94, 

the CD40 ligand95 or the OX40 ligand96–98 or by immune complexes of IgG99, 100. MC 

activation (e.g., via the FcεRI) can also be modulated by various mechanisms, including 

interactions with other cells such as granulocytes101, regulatory T cells102 and other 

lymphocytes103, via a variety of negative regulatory receptors expressed on their 

surface8, 104–106, or by exposure to certain cytokines, including the KIT ligand 

SCF8, 12–14, 107, 108, IL-3325–27, 109 and IFN-γ56, 110.

Mast cell-derived mediators

MCs store preformed mediators in their granules and can release some of them almost 

instantly upon degranulation. These stored mediators include vasoactive amines such as 

histamine111, 112 (although MCs are considered the main source of histamine outside of the 

CNS, other cells also can produce histamine, including basophils113 and neutrophils114, 115), 

and, in rodents, serotonin112. MC granules also contain many neutral proteases (tryptases, 

chymases, and carboxypeptidase A3 [CPA3])42, 116–122 (Table 1). As noted above, MC 

protease content can vary depending on the cells’ tissue location and microenvironment. 

Only one chymase is expressed in human MCs but there are 13 known mouse chymase 
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genes123. Among those, the β-chymase MC protease 4 (MCPT4) appears to be the most 

functionally similar to human chymase124, 125. MC granules also contain some preformed 

cytokines and growth factors, including TNF in both humans126, 127 and mice128, 129. MCs 

can also synthesize and secrete certain lipid mediators, such as prostaglandins and 

leukotrienes130, 131. Finally, MCs are also able to synthesize and secrete a large number of 

cytokines, chemokines, and growth factors, including TNF128, 132–134, IL-1135–137, 

IL-6135, 138, 139, IL-10140–142, IL-17143–145, VEGF and other vascular growth factors146–148, 

SCF149, 150 and many others. Release of lipid mediators typically occurs within 1–2 hours 

after MC activation and is associated with immediate responses, whereas synthesis and 

secretion of cytokines and chemokines characteristically occurs over a longer time frame, 

associated with the development of late phase or more chronic responses8, 151.

Mouse models to study mast cell functions in vivo

Pharmacological agents thought to target MC activation or MC proteases have been used in 

vivo to assess the functions of MCs. However, none of the drugs or antibodies described to 

date is fully specific for MCs or for particular MC proteases70, 152, 153. Therefore, we favor 

using genetic approaches to gain insights into MCs functions in vivo.

c-kit mutant mast cell-deficient mice and the ‘mast cell knock-in model’

For many years, c-kit mutant MC-deficient mice, such as WBB6F1-KitW/W-v and C57BL/6-

KitW-sh/W-sh mice, have been used to analyze the functions of MCs in vivo7, 8, 141, 154–158. 

These two types of mice are profoundly MC-deficient but also have several other phenotypic 

abnormalities155, 157–163, including a marked reduction in intestinal cells of Cajal (ICCs), 

which results in abnormal electrical pacemaker activity in the small intestine155, 164. 

Abnormalities in biological responses in c-kit mutant mice may reflect their MC deficiency 

and/or one or more of their other phenotypic abnormalities. However, at many anatomical 

sites, the deficiency in MCs can be selectively “repaired” by the adoptive transfer of 

genetically-compatible, in vitro-derived MCs such as bone-marrow-derived cultured MCs 

(BMCMCs), to create so-called ‘MC knock-in mice’8, 10, 60, 155, 156, 165, 166.

c-kit-independent mast cell-deficient mice and mice deficient for mast cell-associated 
products

More recently, several groups have generated new strains of mice permitting the constitutive 

or inducible deletion of MCs independently of mutations affecting c-kit structure or 

expression60, 167–172. Most of these groups used a strategy consisting of generating 

transgenic mice expressing the Cre recombinase under the control of promoters for MC 

proteases, such as those for carboxypeptidase A3 (Cpa3) or MC protease 5 

(Mcpt5)167, 168, 172. Such mice then were crossed with mice in which genes of interest have 

been “floxed” to delete expression of these gene products in the MCs168, 173. Our group 

mated Cpa3-Cre mice with mice expressing the floxed survival factor Mcl-1: the resulting 

Cpa3-Cre; Mcl-1fl/fl mice were severely deficient in MCs but had also markedly reduced 

basophil levels167. Feyerabend et al. reported a severe MC deficiency (and a more modest 

deficiency in basophils) in another line of Cpa3-Cre mice due to Cre-mediated 

cytotoxicity172. Mcpt5-Cre mice, which express Cre in connective tissue-type MCs but not 
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mucosal MCs168, 169, were mated with transgenic mice expressing Cre inducible diphtheria 

toxin A (DT-A) or diphtheria toxin receptor (iDTR) genes to achieve constitutive (in Mcpt5-

Cre; DTA+ mice) or inducible (after DT injection in Mcpt5-Cre; iDTR+ mice) ablation of 

CTMCs168. All of these mice and some additional new types of MC-deficient mice have 

been recently reviewed in detail152, 174, 175.

Several strains of mice that are deficient for one or multiple MC-associated proteases, or are 

unable to synthetize histamine (due to a deficiency in histidine decarboxylase) or heparin 

(due to a deficiency in N-deacetylase/N-sulfotransferase-2) also have been developed. While 

each of these strains of mice can provide important information concerning the roles of 

particular products released by MCs, some of them have a complex phenotype and there are 

a number of considerations that should be kept in mind when interpreting findings obtained 

with these animals, as reviewed in152, 175, 176.

Role of mast cells in the regulation of intestinal epithelial permeability

The intestinal epithelium forms a selectively permeable barrier against the external 

environment177. Disruption or dysregulation of this barrier is associated with many intestinal 

disorders, including bacterial, viral and parasitic infections, inflammatory bowel disease 

(IBD), and food allergies177, 178. Groschwitz et al. demonstrated that naïve c-kit mutant 

MC-deficient KitW-sh/W-sh mice and mice deficient for the chymase MCPT4 have altered 

intestinal barrier structure and function, with decreased intestinal epithelial cell migration 

along the villus/crypt axis of jejunum, increased crypt depth in the jejunum (without 

differences in villus length) and increased intestinal permeability as compared to WT 

mice177. Engraftment of KitW-sh/W-sh mice with WT BMCMCs but not Mcpt4−/− BMCMCs 

restored these features to levels observed in WT mice, evidence that MCs can contribute to 

the homeostatic regulation of the intestinal barrier through MCPT4-dependent 

mechanisms177.

Other studies have provided evidence that MCs can control intestinal epithelial ion transport 

or permeability during effector phases of inflammatory responses179–181, including during 

anaphylaxis179. Isolated intestinal preparations from ovalbumin (OVA)-sensitized WT mice 

displayed increases in short-circuit current (Isc) following ex vivo stimulation with OVA or 

following electrical transmural stimulation of intestinal neurons. Such responses were 

significantly diminished in MC-deficient KitW/W-v or WCB6F1-MgfSl/Sl-d mice (Sl-d is a 

deletion in the transmembrane domain of the Scf gene182 and MgfSl/Sl-d mice don’t express 

the membrane form of SCF183). Moreover, transfer of BM cells from WT mice to KitW/W-v 

mice “normalized” the Isc responses to both antigen and transmural stimulation, indicating a 

role for MCs and/or other BM-derived cell type in this process179. A role for MCs in this 

setting also was suggested by tests of pharmacological agents which antagonize the factions 

of certain MC-derived mediators179.

Infection with the parasite T. spiralis increases paracellular permeability of the jejunum and 

decreases the expression of occludin in the tight junctions of enterocytes181. Treatment of 

WT mice with a c-kit blocking antibody abrogated MC hyperplasia during T. spiralis 

infection and blocked parasite-induced increases in intestinal permeability181. Mice deficient 
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in the chymase MCPT1 also exhibited diminished intestinal permeability during T. spiralis 

infection, even though numbers of intestinal MMCs were higher during infection in 

Mcpt1−/− mice than in WT mice181.

Injection of the neuropeptide substance P induces intestinal ion secretion with increase in Isc 

responses. In intestinal preparations from MC-deficient KitW/W-v mice, substance P-induced 

Isc responses were diminished to about 50% of those observed in WT mice and were 

normalized by the adoptive transfer of WT BM cells, suggesting that MCs can contribute to 

substance P-induced changes in intestinal ion secretion184. By contrast, our group 

demonstrated that MCs can limit the toxicity associated with high concentrations of another 

neuropeptide, vasoactive intestinal polypeptide (VIP)82. In that setting, our evidence 

indicated that VIP induced MC degranulation, releasing the chymase MCPT4 which then 

degraded VIP82.

Roles of mast cells in allergic responses at mucosal sites

Asthma

Asthma is a multifaceted disorder characterized by reversible airway narrowing (in many 

patients in response to particular allergens), immunologically non-specific airway hyper-

responsiveness (AHR), chronic inflammation of the airways, and airway remodeling, 

including fibrosis, goblet cell hyperplasia/metaplasia, increased mucus production, smooth 

muscle thickening and increased vascularity185–187. Early manifestations of the disorder can 

appear in childhood, and both genetic188 and environmental factors189 contribute to the 

development and progression of asthma. Rather than being a single “disease”, the disorder 

called asthma is likely comprised of distinct subphenotypes with different clinical 

characteristics and underlying mechanisms190–192. Analysis of lung epithelial brushes, 

bronchoalveolar lavage (BAL) fluids, lung biopsies, and autopsies have shown increased 

numbers of MCs in the airways of some asthmatic subjects54, 193–195 but not 

others194, 196, 197. One feature more often seen in asthmatic subjects than in those without 

the disease is the presence of MCs within the bronchial epithelium198–200.

In subjects with asthma, B cell class switching to IgE occurs in the lymph nodes201, as well 

as locally in the respiratory mucosa202. IgE binds to FcεRI, highly expressed on MCs and 

basophils, but also, in certain settings by eosinophils and neutrophils; evidence has been 

reported that FcεRI also can be expressed by airway epithelial and smooth muscle cells and 

by certain nerves (reviewed in69). IgE not only permits allergen-dependent MC activation, 

but also enhances the stability of FcεRI on the MC surface, thus increasing the levels of 

receptor expression of FcεRI, contributing to the maintenance of a positive amplification 

loop (reviewed in6).

Several mouse models of allergic airway inflammation have been developed to recapitulate 

many aspects of asthma. Studies using the MC knock-in model in c-kit mutant mice 

sensitized with an antigen in the absence of artificial adjuvant55, 56, 203–206, or employing 

relatively low doses of antigen for sensitization or challenge207, 208, have provided evidence 

that MCs and MC-derived TNF can amplify multiple features of allergic airway 

inflammation, including airway responsiveness, inflammation, and tissue 
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remodeling55, 56, 203–205, 207, 208. However, contributions of MCs to various features of 

allergic asthma are not observed (perhaps because they are redundant) in some models of 

allergic airway inflammation employing strong artificial adjuvants (such as alum) and 

relatively high doses of antigen for sensitization and challenge203, 209–212.

Genetic background also can influence the contribution of MCs to allergic airway 

inflammation. Becker et al. confirmed that KitW-sh/W-sh mice on the C57BL/6 background 

have reduced airway inflammation and AHR in an adjuvant-free model of asthma, but found 

no significant differences between BALB/c-KitW-sh/W-sh and BALB/c-WT mice in their 

model213. These findings clearly indicate that roles of MCs in this asthma model that are 

important in one strain background (the “Th1-biased” C57BL/6 background) may not be 

important (or may be redundant) in the more “Th2-biased” BALB/c background. These 

findings are of substantial interest, given the strong evidence that genetic factors have an 

important role in human asthma.

In a mouse model of chronic allergic airway inflammation, studies in MC knock-in mice 

indicated that MC expression of the IFN-γR contributes to the development of many 

features of the model that also require MCs and FcεRIγ for optimal expression, including 

AHR, neutrophil and eosinophil infiltration in the lung, lung collagen deposition, and 

increased expression of lung IL-6, IL-13, IL-33, multiple chemokines, arginase-1, and the 

acute-phase protein serum amyloid A3. However, expression of IFN-γR also contributes to 

some features of the model which require MCs for optimal expression but that occur 

relatively independently of FcεRIγ, such as elevations of levels of integrin α7 and the 

macrophage receptor with collagenous structure (MARCO) in the affected lungs56. In a 

passive model of OVA-induced allergic airway inflammation, transfer of OVA323–339-

peptide-specific, IFN-γ-producing Th1 cells to naive mice primed them to develop airway 

neutrophilia and AHR that was most prominent in mice challenged with LPS as well as 

antigen214. It also has been reported that co-stimulation of mouse pulmonary macrophages 

with LPS and IFN-γ induces the production of IL-27215, that in turn can enhance production 

of IL-1 and TNF by MCs216. Such studies provide support for the hypothesis that bacterial 

infections can sustain or enhance inflammation driven by Th1 responses in asthma.

Some patients with severe asthma exhibit enhanced sputum neutrophilia (but not 

eosinophilia) and enhanced serum and sputum levels of IL-17217. In diseases with a 

prominent Th17 signature such as atopic dermatitis218, chronic exposure to antigens, such as 

via epicutaneous sensitization219, can enhance airway inflammation and “local” Th17 

inflammation in the lung220. Evidence from our mouse models55, 56 and those of others221 

show that chronic airway exposure to OVA can increase BAL neutrophils and lung levels of 

IL-17 (in addition to Th2 cytokines), and that the presence of MCs is essential for the 

development of such features. Some mouse or human MCs can produce IL-17 upon non-

IgE-dependent stimulation (e.g., with 6-formylindolo(3,2-b)carbazole [FICZ]) or when 

exposed FICZ in combination with IgE/antigen and, based on immunohistochemical 

findings, MCs appear to represent a major in vivo source of IL-17 in the chronically 

inflamed bronchial lamina propria of patients with chronic obstructive pulmonary disease94, 

and in other settings145, 222, 223.
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IL-33 is also thought to contribute to the pathology of asthma100, 224–228. The IL-33 

receptor, ST2, is expressed by MCs and basophils229, but not by airway smooth muscle cells 

or lung fibroblasts230. In mice, IL-33-induced enhanced airway inflammation is partly 

dependent on IL-33-dependent MC production of IL-13231. IL-33 is considered an alarmin 

or a pro-inflammatory cytokine232, but its biology might be more complex since it has been 

reported that chronic exposure of human and mouse MCs to IL-33 in vitro can induce a 

hypo-responsive MC phenotype, raising the intriguing possibility that IL-33 might actually 

have certain protective roles in chronic airway inflammation233.

In summary, evidence from studies of human asthma and mouse models of the disorder 

support the general conclusion that MCs can have critical roles in amplifying acute 

immunological responses to antigen and in helping to orchestrate the later development of 

multiple features of the disorder, but also suggest that the roles of MCs in particular sub-

phenotypes of asthma may vary, in part due to differences in the cytokines present in those 

settings (Figure 1). Moreover, recent data raise the interesting possibility that some 

individual MC mediators may have effects that can restrain the development of certain 

features of the pathology. For example, Waern and collaborators reported that mice deficient 

for the chymase MCPT4 exhibit increased pathology (i.e., airway inflammation, AHR and 

smooth muscle thickening) in two different models of allergic lung inflammation, and that 

such protective effects might reflect, at least in part, degradation of IL-33 by the 

chymase234, 235.

Food allergy and anaphylaxis

Food allergies are caused by adverse acquired immune responses to food components, 

primarily proteins236. Their prevalence has recently increased and food allergies now affect 

~6% of children and 3–4% of adults in developed countries236. The manifestations of food 

allergy can range from mild to severe, with the most severe form being anaphylaxis, an 

acute and potentially life-threatening multisystem reaction to allergen exposure. In the U.S., 

the majority of cases of food-induced fatal or near-fatal anaphylaxis are caused by peanuts 

or tree nuts237, 238. Studies in mice indicate that MCs are critical effector cells of both food-

induced intestinal inflammation and anaphylaxis (Figure 2).

Multiple mouse models of anaphylaxis have been developed to investigate the contribution 

of MCs and other effector cells. Two main pathways of active anaphylaxis have been 

described in mice: a “classical” pathway consisting of antigens, IgE, FcεRI, MCs, and 

histamine, and an “alternative” pathway involving IgG-antigen immune complexes, FcγRIII, 

platelet-activating factor (PAF), and, depending on the exact model used, macrophages, 

basophils and/or neutrophils239–245. Several studies using KitW/W-v and/or KitW-sh/W-sh MC-

deficient mice have provided evidence that MCs can contribute significantly to peanut-

induced active anaphylaxis242, 244, 245. We recently confirmed these findings using c-kit-

independent MC-deficient mice, by showing that selective ablation of CTMCs (induced by 

repeated injections of diphtheria toxin in Mcpt5-Cre; iDTR mice168) significantly 

diminished the hypothermia induced by peanut challenge in mice sensitized orally with 

peanut together with the mucosal adjuvant cholera toxin243. However, antigen challenge 

induced significant hypothermia (albeit less than that in the corresponding WT mice) in 
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Cpa3-Cre+; Mcl-1fl/fl mice, which have a marked MC deficiency and a substantial reduction 

in basophils243. Antigen-induced elevations in serum histamine were abolished in MC- and 

basophil-deficient Cpa3-Cre+; Mcl-1fl/fl mice, whereas small but significant increases in 

PAF levels were still detected in spleen specimens from these mice243. Together, these 

findings implicate the involvement of both the classical and alternative pathways of 

anaphylaxis in this mouse model of peanut-induced active anaphylaxis.

The reaction to peanut in some mouse models might be even more complex, since Khodoun 

et al. found that peanut, but not milk or egg proteins, can induce shock reactions through an 

innate immune mechanism in mice246. The authors found that this response was almost 

absent in mice lacking the complement factor C3 or the receptor C3aR, but developed fully 

in antibody-deficient Rag1 mice (which lack mature T and B cells) and μMT mice (in which 

the development of conventional B cells is arrested at the pro-B cell stage)246. However, 

some reports indicate that μMT mice have B1 B cells and can produce IgE and IgG247–249. 

Macrophages, basophils and PAF contributed to this shock reaction to a greater extent than 

did MCs and histamine246. Therefore, depending on the model used, innate components 

might also participate importantly in peanut-induced anaphylaxis, which perhaps accounts 

for the fact that peanut allergy is more likely than most other forms of food allergy to cause 

lethal anaphylaxis. However, it is important to recognize that Khodoun et al. increased the 

sensitivity of the mice to develop shock reactions in these experiments by pretreating the 

animals i.v. with a long-acting form of IL-4 (consisting on IL-4/anti–IL-4 mAb complexes, 

which slowly dissociate in vivo to release free IL-4) and with the β-adrenergic antagonist 

propranolol246.

Although IgE-dependent activation of MCs is widely thought to contribute importantly to 

anaphylaxis in humans, subjects with food allergy-associated anaphylaxis, unlike those with 

insect venom-induced anaphylaxis, typically exhibit little or no elevations in blood levels of 

the MC-associated protease, tryptase250. By contrast, levels of PAF in the serum have been 

directly correlated with the severity of organ system involvement in patients with acute 

allergic reactions triggered by foods, medications, or insect stings251, 252. Moreover, the 

serum activity of PAF acetylhydrolase (an enzyme that converts PAF to the biologically 

inactive lyso-PAF) was significantly lower in peanut allergic patients with fatal peanut 

anaphylaxis than in those with mild allergic reactions to peanuts or in control groups251. 

Although they do not constitute proof, these results are consistent with the possibility that 

activation of both the “classical” pathway and the “alternative” pathway might be involved 

in at least some examples of anaphylaxis in humans. The existence of IgG-mediated 

anaphylaxis in humans is perhaps best supported by the occurrence of anaphylaxis in 

patients infused with monoclonal antibodies (mAbs), such as the chimeric mouse/human 

anti-TNF mAb infliximab239, 253. One study showed that 11 out of 165 patients with Crohn 

disease treated with infliximab developed signs of anaphylaxis. All these patients had IgG 

antibodies to the mouse immunoglobulin determinants on infliximab. While none of the 

patients had detectably increased serum levels of total IgE, the authors did not report 

whether they attempt to measure levels of infliximab-specific IgE. However, none of these 

patients had increased tryptase levels in blood 20 minutes after the onset of the 

reaction239, 253.
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Anaphylaxis represents the extreme end of a spectrum of responses to food allergens in 

allergic patients. In most patients, reactions are manifested mainly by local signs and 

symptoms, and the skin is affected in ~80% of subjects254. Up to 50% of patients also 

develop gastrointestinal symptoms (abdominal pain, vomiting, diarrhea) and a significant 

portion of patients also experience respiratory symptoms (cough, chest tightness, 

wheezing)255, 256. Multiple lines of evidence suggest that IgE-dependent MC activation can 

play an important role in these local manifestations of food allergy. Cafarelli et al. found 

elevated numbers of IgE-positive cells (plasma cells, and 2.7% MCs) in duodenal biopsies 

from children with food allergies, whereas MCs were virtually absent in the control 

biopsies256, 257. Moreover, when stimulated ex vivo with anti-IgE, intestinal MCs obtained 

from enzymatically dispersed duodenal biopsies from food allergic patients released more 

histamine in comparison to cells from non-allergic individuals256, 258.

Brandt et al. developed a mouse model of allergen-induced gastrointestinal inflammation 

consisting of sensitization with OVA together with alum and repeated oral challenges with 

OVA48. In this model, sensitized and challenged BALB/c mice (but not C57BL/6 mice) 

developed large increases in numbers of MMCs in the jejunum, ileum, and colon and 

increased levels of MCPT1 in the plasma. These mice also exhibited a strong Th2 response 

in the intestine, with signs of allergy such as diarrhea and increased intestinal permeability, 

but without hypothermia48. However, systemic (i.v.) OVA challenge of OVA/alum-

sensitized mice induced hypothermia that was significantly more severe in animals which 

had been previously challenged with OVA intra-gastrically compared with those mock-

challenged with saline. Notably, lethal anaphylactic shock occurred only in mice that 

previously had developed gastrointestinal allergy, suggesting that gastrointestinal allergic 

inflammation can prime mice for more severe anaphylaxis following systemic antigen 

challenge48. The authors showed that treatment with an anti-KIT antibody (ACK2) 

abrogated the diarrhea, diminished intestinal permeability, and eliminated MMCs in the 

jejunum48. These features were also diminished in mice treated with an anti-IgE antibody 

and in mice deficient for the high affinity IgE receptor FcεRI (but not in mice treated with a 

blocking antibody against the IgG receptors FcγRII/III). Finally, they demonstrated that 

treatment with a combination of pharmacological inhibitors of PAF and serotonin blocked 

diarrhea, while blockade of histamine had no effect on diarrhea48. Wang et al. reported that, 

in a model of peanut allergy in BALB/c mice, allergen-induced diarrhea and other features 

of the response were also partially diminished in mice deficient for the FcεRIα chain. 

Adoptive transfer of WT BMCMCs, but not FcεRIα−/− or Il-13−/− BMCMCs, restored 

diarrhea in FcεRIα-deficient mice, suggesting that this feature is dependent on IgE-mediated 

activation of MCs and on the release of IL-13 by MCs259.

Little is known about the mechanism(s) leading to sensitization with food allergens. Forbes 

et al. showed that transgenic mice which overexpress IL-9 have increased numbers of 

intestinal MMCs, associated with increased intestinal permeability which can enhance oral 

sensitization to OVA administered without an adjuvant260. Epidemiologic studies have 

demonstrated that cutaneous inflammation associated with atopic dermatitis (AD) is a 

significant risk factor for the development of food allergies261–263. Recently, Noti et al. 

reported that epicutaneous sensitization of mice to food antigens (OVA or peanut extract) 
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applied to an AD-like skin lesion (which lead to increased levels of TSLP in the skin) 

followed by oral challenge with the antigen promoted intestinal Th2-driven inflammation 

and increased numbers of intestinal MMCs263. Such features are much diminished in mice 

deficient for the TLSP receptor (TSLPR) or IgE, or in mice in which basophils have been 

depleted (but the authors did not assess responses of MC-deficient mice in this model). 

These results indicate that a “TSLP-basophil axis” can contribute to the development of IgE-

mediated intestinal MMCs expansion and food allergy in mice sensitized epicutaneously 

with food allergens263.

Burton et al. recently developed an adjuvant-free model of peanut allergy using mice with a 

disinhibiting mutation in the IL-4 receptor α chain (il4raF709 mice), which results in 

amplified signaling upon interaction of the receptor with the Th2 cytokines IL-4 or IL-13 

but not constitutive activation264. Oral sensitization of il4raF709 mice with peanut, 

followed by oral challenge with peanut, led to expansion and activation of intestinal MMCs, 

and the development of diarrhea, intestinal inflammation and hypothermia. The authors used 

MC-deficient Mcpt5-Cre;DTA mice and IgE-deficient mice to demonstrate that, in this 

model, both MCs and IgE were required for induction of antibody and Th2-cell-mediated 

responses to peanut ingestion, as well as for suppression of expansion of regulatory T (Treg) 

cells. MC-targeted genetic deletion of the FcεRI signaling kinase Syk in Mcpt5-Cre;Sykfl/fl 

mice also prevented peanut sensitization. Therefore, in addition to their key effector role 

during many allergic reactions, under certain circumstances MCs and IgE also appear to be 

able to amplify sensitization to certain food allergens such as peanut, as well as participate 

in the suppression of tolerance.

Roles of mast cells in defense against mucosal pathogens

MCs are located at sites exposed to invading pathogens, such as the skin, the gut, and the 

lung and genitourinary mucosa. MCs are therefore likely to be among the first innate cells 

(together with macrophages and dendritic cells [DCs]) to respond to such pathogens. Studies 

in mice indicate that MCs can contribute to multiple defense strategies against various 

pathogens, including parasites (Figure 2), bacteria, and viruses79, 265–268, but that, in certain 

settings, MCs can contribute to the pathology associated with such infections.

Parasite infections

Parasite infections that involve the intestines and provoke the development of Th2 responses 

are often associated with a large expansion in MMCs in rodents269–271, and with expansion 

of mucosal MC populations in monkeys272 and humans273. Space does not permit a 

comprehensive discussion of the complex innate and adaptive immune mechanisms which 

are thought to contribute to helminth clearance274–277. Instead, we will review briefly some 

of the evidence indicating that MCs can influence aspects of these responses. Woodbury et 

al. demonstrated that, in rats infected with Trichinella spiralis or Nippostrongylus 

brasiliensis, systemic secretion of the rat MC-associated chymase rMCP-2 coincides with 

the immune expulsion of these nematodes269. Many groups have assessed the responses of 

KitW/W-v and/or KitWsh/Wsh mice to primary infection with various parasites, including 

Nippostrongylus brasiliensis278, 279, Strongyloides ratti280, Strongyloides 

venezuelensis51, 281, 282, Trichinella spiralis283, 284, and Trichinella muris285, 286. Most of 
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these studies show that such c-kit mutant MC-deficient mice have a delay in intestinal worm 

clearance during the primary infection. However, due to the inability to engraft intestinal 

MMCs in such c-kit mutant mice by the systemic adoptive transfer of MCs155, 177, 287, 288, it 

is not possible to know to what extent the delays in parasite clearance detected in these MC-

deficient mice reflect their lack of MMCs vs. one or more of their other phenotypic 

abnormalities (including their deficiency on intestinal cells of Cajal, which results in 

abnormal gut motility164).

However, other lines of evidence support an important contribution for MCs in intestinal 

worm clearance. Ha et al. showed that engraftment with total BM cells accelerated 

expulsion of T. spiralis in KitW/W-v mice283. Expulsion of T. spiralis was significantly 

delayed in mice lacking the chymase MCPT1, which suggests an important contribution of 

intestinal MMCs and MCPT1 in the clearance of this infection271. Although the kinetics of 

T. spiralis expulsion from the small intestine were similar between MCPT6-deficient and 

WT mice, the MCPT6-deficient mice had diminished levels of eosinophils in infected 

skeletal muscle289. Recently, Blankenhaus et al. showed that c-kit-independent MC-

deficient BALB/c-Cpa3Cre/+ mice (which, beside their MC deficiency, also have reduced 

basophil numbers172) exhibited increased parasite burden in the small intestine following 

infection with S. ratti290.

While results described above suggest potentially important roles for MMCs and some of 

their associated chymases in worm expulsion, it is possible that in some parasite infections 

effects of MCs might actually favor the parasite. For example, anti-SCF treatment 

diminished intestinal MMC hyperplasia in rats infected with N. brasiliensis or T. spiralis, 

but such anti-SCF treatment decreased parasite egg production during N. brasiliensis 

infection291. Similarly, during a primary infection with N. brasiliensis, c-kit mutant MC-

deficient Ws/Ws rats exhibited reduced numbers of eggs in the feces at day 8 of infection 

than did the corresponding WT rats292. Neither study proved that MCs were responsible for 

the observed effects, but the results are intriguing in suggesting that some parasites may 

have learned how to exploit MC-associated effector mechanisms to their own advantage.

IL-3 can promote expansion of intestinal MMCs in mice51, 283 and treatment with IL-3 

accelerates expulsion of S. ratti283. Both KitW/W-v mice and mice lacking IL-3 exhibited a 

delay in S. venezuelensis expulsion, and this delay was greatly enhanced when these 

deficiencies were combined (i.e., in Il-3−/−; KitW/W-v mice, in which infection provoked little 

or no expansion of basophil or MMC populations)51. These findings indicate that one of the 

functions of IL-3 in this setting is to expand populations of hematopoietic effector cells, and 

are consistent with the possibility that both MCs and basophils contribute to expulsion of S. 

venezuelensis during the primary infection.

IL-9 also plays an important role in expansion of intestinal MMCs during parasite infection 

and transgenic mice which overexpress IL-9 have increased intestinal MMCs and increased 

efficiency of worm expulsion during infection with T. spilaris181. There is evidence that 

IL-9-mediated MC activation is also a key mechanism mediating S. ratti expulsion in 

mice290. This mechanism can’t be generalized to all parasites, since in the case of infection 
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with N. brasiliensis, it appears that neither IL-9 nor MCPT1 influences worm 

expulsion271, 293.

Most studies of the roles of MCs in parasite infection have focused on the primary responses 

to the infection (Figure 2). Many parasites induce strong antibody responses, including high 

levels of antigen non-specific IgE as well as antigen-specific IgE and IgG antibodies, and 

secondary infections are often associated with a more rapid expulsion of the parasites than 

occurs in the primary infection294–296. However, it is not yet clear to what extent 

interactions of such antibodies with MCs importantly contribute to such secondary 

responses. While there have been few studies of secondary parasite infections in genetically 

MC-deficient mice, numbers of MMCs and serum MCPT1 levels were significantly higher 

in BALB/c WT mice at day 3 after secondary vs. primary infections with T. spiralis, and 

worm burden at that time was significantly less in the secondary than in the primary 

infection181. Given that co-engagement of FcγRIIB with FcεRI can diminish antigen-

dependent MC activation297, 298, it will be important to investigate whether this or other 

mechanisms can down-regulate or otherwise alter MC responses during secondary parasite 

infections, as well as to determine whether MCs can confer benefits to the host or the 

parasite in such settings.

Bacterial infections

Several studies have indicated that MCs can have an important role in enhancing survival 

during models of experimental bacterial sepsis in mice. Many of these data were obtained 

using the cecal ligation and puncture (CLP) model in which commensal bacteria are allowed 

to escape from the cecum into the peritoneum, and most of the studies employing MC-

deficient mice have used KitW/W-v and/or KitW-sh/W-sh mice, which have multiple defects in 

immune responses other than their MC deficiency80, 158, 299–305. Experiments assessing 

responses of MC-deficient KitW/W-v mice engrafted with WT or various mutant BMCMCs 

have demonstrated that such MCs are mainly activated through TLR4 (but not TLR2) during 

polymicrobial sepsis80, and that MC-derived IL-12306, as well as MC expression of the 

cysteinyl protease dipeptidyl peptidase I (DPPI)302 and the transcription factor Smad3307, 

are also required for optimal survival during the CLP model.

MCs also can be activated by the endogenous peptide endothelin-1 (ET-1), primarily 

through the ET(A) receptor. Activation by ET-1 promotes MC degranulation and the release 

of proteases which in turn can degrade ET-1. MC protease-dependent degradation of ET-1 

can contribute to optimal survival during CLP, which is associated with markedly elevated 

levels of ET-1301, and carboxypeptidase A3 (CPA3) is the critical protease which mediates 

degradation of ET-181, 83. Other MC-associated proteases also have been implicated in 

defense against bacteria. Studies in Mcpt4−/− mice indicate that the chymase MCPT4 has 

effects that can enhance survival in a moderately severe model of CLP, perhaps in part 

through degradation of TNF305. Orinska et al. reported evidence that intra-cellular IL-15 

expression in MCs can transcriptionally limit the amount of the chymase MCPT2 in the 

cells, resulting in decreased MC antibacterial properties and reduced survival of the mice 

after CLP308.
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MCs can mediate neutrophil recruitment after intraperitoneal injection of Klebsiella 

pneumoniae, probably via multiple mechanisms including the release of TNF133, IL-6304, 

and the tryptase MCPT6309, 310. There is evidence that MCs can enhance resistance to 

pulmonary infection with Mycoplasma pneumonia311. Histamine plays an important role in 

this model, but neutrophils, rather than MCs, were the major source of histamine in the 

lungs of the infected mice115. MCs also can contribute to Clostridium difficile toxin A-

induced intestinal fluid secretion and neutrophil infiltration312. Malaviya et al. reported that, 

during infection with E. coli, neutrophil recruitment and bacterial clearance is controlled by 

JAK3 activation in MCs; this effect was attributed to the diminished ability of Jak3−/− MCs 

to produce TNF313. By contrast, there is evidence from work in MC knock-in mice that MC-

derived TNF can enhance bacterial growth and hasten death after intraperitoneal inoculation 

of Salmonella typhimurium158.

Urinary tract infections (UTIs), mainly caused by uropathogenic E. coli, represent one of the 

most common bacterial infections in humans314. Using the MC knock-in approach in c-kit 

mutant mice, Shelburne and collaborators demonstrated that MCs and MC-derived TNF can 

amplify the protective adaptive immune response to infection with uropathogenic E. coli by 

promoting: 1) recruitment of DCs at the site of infection (in this case the footpad), 2) 

migration of DCs into the draining lymph nodes (DLNs), and 3) production of E. coli-

specific IgG and IgM antibodies315. Increased numbers of surviving bacteria were found in 

the urinary bladder of c-kit mutant MC-deficient KitW/W-v mice as compared to Kit+/+ mice 

following experimental infection with E. coli316. Chan et al. compared the kinetics of E. coli 

clearance in the bladder and kidneys of infected mice and found that, while all bacteria were 

cleared within five days in the kidneys, significant numbers of bacteria were still found in 

the bladder as late as one month after infection317. They demonstrated that this prolonged 

bacterial survival was due to production of IL-10, and the absence of significant levels of E. 

coli specific antibodies, in the bladder317. There is evidence that mouse MCs can represent 

an important source of IL-10 during inflammation141, 317 and that MC-derived IL-10 can: 1) 

limit inflammation during contact hypersensitivity141 (although these findings have been 

recently challenged by Dudeck et al.168), as well as 2) diminish the severity of experimental 

graft-versus-host disease (GVHD)318. In line with these findings, Chan et al. demonstrated 

that MC-derived IL-10 contributed importantly to the suppression of E. coli-specific 

antibody production during experimental UTI in mice and accounted, at least in part, for the 

persistence of E. coli in the bladder317. Therefore, MCs appear to be able to play a dual role 

during E. coli infections in the bladder, first promoting the initial innate response to 

infection and later limiting the antibody response to E. coli by producing IL-10317.

Because c-kit mutant MC-deficient mice have many c-kit-related phenotypic abnormalities 

that may influence the responses of such animals to infection (including those which do or 

do not affect MC numbers or functions)152, 158, 175, it will be of great interest to continue to 

evaluate the roles of MCs in infection models using some of the newer, c-kit-independent, 

models of MC deficiency. For example, Rönnberg et al. recently reported that peritoneal 

MCs are activated by Staphylococcus aureus in vitro, however, the authors used c-kit-

independent MC-deficient Mcpt5-Cre; DTA+ mice to demonstrate that MCs do not 

influence the in vivo manifestations of one model of intraperitoneal S. aureus infection319. 
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Such work will help to clarify which roles of MCs are variably redundant with those of other 

cell types (including neutrophils or macrophages, among others) and which MC roles – 

whether to enhance and/or suppress aspects of these innate or acquired immune responses – 

may be non-redundant.

Viral infections

MCs have been implicated in the defense against certain viruses, although there have been 

relatively few studies in this area79. Sendai virus can induce histamine release from rat 

peritoneal MCs ex vivo320 and infection of rats with Sendai virus results in increased 

numbers of MCs in the lung321, 322. Kulka et al. showed that human peripheral blood-

derived cultured MCs (HCMCs) and two lines of human MCs (LAD and HMC-1), as well 

as mouse BMCMCs, can respond to stimulation with dsRNA (poly[I:C]) by producing type 

I interferon (IFN-α) through TLR3. They also found that HCMCs can produce IFN-α when 

stimulated with live respiratory syncytial virus (RSV), reovirus type 1, or UV-inactivated 

influenza virus323. It has been reported, based on studies in MC knock-in KitW/W-v mice, that 

MCs can promote the recruitment of CD8+ T cells following i.p. injection of poly(I:C)324.

Several reports suggest that MCs can contribute to the pathology induced by some viruses in 

vivo. Both MC-deficient KitW/W-v mice and KitlSl/Sl-d mice exhibited reduced myocardial 

inflammation and necrosis as well as increased survival as compared to the respective 

littermate WT mice after i.p. infection with encephalomyocarditis virus325. Furthermore, 

adoptive transfer of BMCMCs into KitW/W-v mice or repeated subcutaneous treatment of 

KitlSl/Sl-d mice with recombinant SCF (which can induce the appearance of both CTMCs 

and MMCs in these mice63, 326) significantly increased the histopathological severity of the 

myocardial lesions induced by the virus (albeit not to levels observed in WT mice)325. By 

contrast, studies in KitW-sh/W-sh mice, including engraftment of these mice with BMCMCs, 

showed that MCs can participate in host defense against vaccinia virus, and MC production 

of the antimicrobial peptide cathelicidin was implicated as a key defense mechanism against 

this virus327, 328.

In humans, infection with Dengue Virus leads to increased levels of MC chymase in the 

serum329, and chymase levels are significantly higher in patients with severe dengue fever 

(also known as dengue hemorrhagic fever) as compared to patients with dengue 

fever329, 330. Using the MC knock-in model in KitW-sh/W-sh mice, St John and collaborators 

demonstrated that MCs can promote the recruitment of natural killer (NK) and NK T cells 

during Dengue Virus infection in mice329–331. Ebert et al. recently used a similar approach 

to demonstrate that MCs can contribute to clearance of Pulmonary Murine Cytomegalovirus 

in the lung by enhancing the recruitment of CD8+ T cells to the infection site332.

There is evidence that MCs may have roles in HIV infection. In vitro experiments show that 

the HIV gp120 envelope protein can promote production of Th2 cytokines (IL-4 and IL-5) 

in human MCs323. MCs and their progenitors might also serve as a reservoir for latent virus, 

a role which would be detrimental to the host333–336.

In line with the potential of MCs to help to orchestrate protective adaptive responses at 

mucosal sites, McLachlan et al. demonstrated that certain small molecules (‘MC activators’) 
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are potent mucosal adjuvants, and provided evidence that these agents mediate such 

functions in a largely MC-dependent manner337. So-called ‘MC activators’ comprise a 

family of structurally diverse cationic peptides and polymeric compounds that can induce 

strong MC degranulation338, 339; such agents include compound 48/80 (c48/80)340–342, and 

a variety of peptide toxins, such as MC-degranulating peptide (MCD), which is found in 

honeybee and bumblebee venoms343. Using the MC knock-in system in c-kit mutant mice, 

McLachlan et al. demonstrated that compound 48/80 (which promotes MC degranulation, 

but also has other effects) can act as a potent mucosal adjuvant when co-administered in the 

footpad with recombinant anthrax protective antigen, and that this adjuvant effect largely 

depends on MCs and MC-derived TNF. Importantly, vaccination with c48/80 co-

administered with the vaccinia virus antigen B5R intranasally conferred protection against 

intranasal challenge with a normally lethal dose of vaccinia virus337.

Conclusions

We are in the midst of an interesting period in MC research. For many years, an increasing 

understanding of the diversity of MC products, signaling mechanisms, and interactions with 

other cell types has led to the generation of many attractive hypotheses about the diverse 

potential effector and immunoregulatory roles of MCs in the biology and pathology of 

mucosal tissues (and in other settings). Increasingly, these hypotheses are being tested in 

ways that permit us to accrue definitive evidence regarding the nature, and the importance, 

of such proposed MC roles. In addition to long-established mouse model systems, including 

“MC knock-in c-kit mutant mice” and various MC protease-deficient mice, there are now 

many promising new models of constitutive or inducible MC deficiency, as well as many 

new models for achieving the targeted deletion of individual products in MCs. Based on the 

results obtained so far with both the older and newer models for MC research, we think that 

the most robust conclusions about the nature and importance of the roles of MCs in various 

biological responses in vivo, in mucosal tissues and other sites, probably will be derived 

from studies employing multiple informative model systems152. Taken together, such 

approaches offer many opportunities to obtain increasingly solid evidence to support (or 

discard) notions about how MCs might influence the development, physiology, homeostasis, 

immunology and pathology of mucosal tissues.

It hardly needs mentioning that findings in mice do not prove that the same processes occur 

in humans, and there are likely to be multiple differences in the details of immune responses 

and disease pathogenesis in the two species, not just differences in the roles of MCs in such 

settings. However, pre-clinical studies using models in which individual cells or products 

can be manipulated offer the promise of revealing pathways that, with luck, might be 

exploited to provide benefit to those suffering from any of the diverse mucosal pathologies 

in which MCs have been implicated. Time will tell to what extent this hope will be realized.
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Figure 1. Schematic, highly simplified representation of the potential roles of MCs in airway 
chronic allergic inflammation and remodeling
Individuals not yet sensitized to environmental allergens do not have specific IgE to such 

allergens, and few MCs are present within the epithelium (left panel). During allergic 

sensitization, environmental antigens (Ag) are captured by APCs in the airway lumen or in 

the epithelium of the airway mucosa, and Ag-activated APCs mature and migrate to regional 

lymph nodes, where priming of T cells occurs (not shown). The presence of IL-4 or IL-13, 

which may be derived from a variety of potential cellular sources, induces T cells to become 

TH2 cells (right panel). In some cases, allergens also can reach APCs in the submucosa 

through damaged epithelium. Cytokines induced by epithelial damage (such as IL-33 and 

TSLP) can activate ILC2 cells, which secrete type 2 cytokines, such as IL-4 and IL-13. The 

Th2 environment promotes heavy-chain class switching from IgM or IgG to IgE for Ag-

specific IgE production in B cells. IgE binds to FcεRI on MCs (and basophils) and sensitizes 

these cells to respond to subsequent Ag exposures. Ag-induced aggregation of IgE-bound 

FcεRI causes the prompt release of pre-stored MC mediators, including histamine and TNF, 

which can promote bronchoconstriction and, more slowly, fibroblast proliferation. FcεRI 

activation also induces the production and the release of de novo synthesized compounds, 

such as leukotrienes, prostaglandins, and pro-inflammatory cytokines (e.g., IL-5, IL-6, IL-8, 

IL-13, and TNF) and chemokines (not shown), that contribute to the development of local 

inflammation.

Both soluble factors, such as IFN-γ, TSLP, IL-33, S1P, LPS (through PRRs) and cells 

present at the site, such as TH cells and various Treg cells (not shown), which can interact 

with OX40L on MCs, modulating IgE-dependent MC activation, or B cells, which can 

interact with CD40L on MCs, which may enhance B cell IgE production. At least one MC-

secreted product, MCPT4 (not shown), can negatively regulate the inflammatory 

environment, in part through the degradation of IL-33.

Repetitive exposure to specific Ag favors persistent inflammation (with large numbers of 

eosinophils, and with MCs appearing within the epithelium), goblet cell hyperplasia and 
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increased mucus secretion, smooth muscle cell proliferation, increased vascular permeability 

(and increased numbers of blood vessels) and airway edema, thickening and remodeling. In 

some asthma subtypes, genetic or environmental factors, including pathogen-derived 

products, tissue damage, airway pollutants, and oxidative stress, may confer strong TH1 

and/or TH17 signatures associated with large numbers of neutrophils at the site of 

inflammation. Studies in MC–knockin mice have indicated that some actions of MCs, such 

as increasing the number of epithelial goblet cells, can occur in a model of chronic allergic 

inflammation by MC–dependent mechanisms that do not require MC signaling through the 

FcεRIγ chain, whereas MCs must express both the FcεRIγ chain and the IFN-γ receptor 1 

(IFN-γR1) to mediate substantial increases in lung eosinophils and neutrophils. Note: down-

regulatory mechanisms that can be engaged in this setting, such as co-engagement by 

multivalent Ag of both FcεRI and FcγRIIb, or effects of regulatory T cell populations, are 

not shown.

AhR, Aryl hydrocarbon receptor; Baso, basophils; Eos, eosinophils; FcεRI, high affinity 

receptor for IgE; ILC2, innate lymphoid cells type 2; Neu, neutrophils; PRR, pattern 

recognition receptor; TH, T helper; TSLP, thymic stromal lymphopoietin.
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Figure 2. Schematic, highly simplified representation of the potential roles of MCs in food 
allergy and parasite infections
In the normal intestine, MCs can contribute to the homeostatic regulation of the epithelial 

barrier through chymase- (MCPT4-) dependent mechanisms and few MCs are present within 

the epithelium (left panel). During sensitization with food allergens (middle panel) or 

primary infections with parasites (right panel), antigens (Ag) are captured by APCs and Ag-

activated APCs mature and migrate to regional lymph nodes, where priming of T cells 

occurs (not shown). The presence of IL-4 or IL-13, which may be derived from a variety of 

potential cellular sources, induces T cells to become TH2 cells. TH2 cells and ILC2 cells 

release IL-3 and IL-9 which promote expansion of mucosal MCs (MMCs), and some of 

these MMCs are found in the intestinal epithelium. IgE binds to FcεRI on MCs (and 

basophils) and sensitizes these cells to respond to subsequent Ag exposures. Ag-induced 

aggregation of IgE-bound FcεRI causes the prompt release of pre-stored MC mediators, 

including histamine which can promote vasodilatation and increased vascular permeability. 

FcεRI activation also induces the production and release of de novo synthesized compounds, 

such as leukotrienes, prostaglandins, and pro-inflammatory cytokines (such as IL-13) and 

chemokines (not shown). Such MC-derived products contribute to intestinal inflammation 

(including the recruitment and activation of neutrophils, basophils and eosinophils and other 

leukocytes), increased intestinal permeability and motility, and, in the case of parasite 

infections, worm expulsion. During food allergy, the activation of MCs also can promote 
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diarrhea and, in some unfortunate individuals, anaphylaxis (not shown). IgG-Ag immune 

complexes can potentially modulate MC activation through Fcγ receptors (MCs express the 

activating receptor FcγRIII and the inhibitory receptor FcγRIIb). Macrophages, basophils 

and neutrophils are also activated by IgG-Ag immune complexes and release PAF, which is 

thought to contribute to diarrhea and anaphylaxis in food allergy. Note: down-regulatory 

mechanisms that can be engaged in these settings, such as co-engagement by multivalent Ag 

of both FcεRI and FcγRIIb, or effects of regulatory T cell populations, are not shown.

Baso, basophils; Eos, eosinophils; FcεRI, high affinity receptor for IgE; FcγRs: receptors for 

IgGs; ILC2, innate lymphoid cells type 2; Neu, neutrophils; PAF, platelet-activating factor; 

PRR, pattern recognition receptor; TH2, T helper 2.
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