Fibrinolytic response to moderate exercise in young male diabetics and non-diabetics

J. D. CASH AND R. C. McGILL

From the South-east Scotland Regional Blood Transfusion Research Laboratories and the Diabetic Department, Royal Infirmary, Edinburgh

SYNOPSIS The euglobulin lysis time was measured in 25 young male insulin-dependent diabetics and 25 age- and sex-matched healthy controls before and after a standardized moderate treadmill exercise procedure. There was a statistically significant mean shorter resting euglobulin lysis time in the diabetic group but their ability to respond to the exercise procedure was significantly impaired. It is suggested that this impaired fibrinolytic reactivity may be related to the diminished vaso-active reactivity previously reported in young diabetics.

Earlier studies, reported from this laboratory, on the fibrinolytic response to such stimulants as exercise and intravenous adrenaline demonstrated that in normal subjects it was possible to isolate a subgroup whose ability to generate plasminogen activator to these short stimuli appeared to be impaired (Cash, 1966; Cash and Allan, 1967). It was proposed that these individuals might be at risk to conditions such as atherosclerosis, thrombosis, and shock in which defective fibrinolysis has been considered to be an aetiological factor (Astrup, 1956; McKay, 1965; Hardaway, 1966). Atheroma is particularly common in diabetes, in which condition its consequences are responsible for much of the morbidity and mortality. Thus the following communication is a logical extension of our earlier studies in which the fibrinolytic response to exercise is compared between a group of young male insulindependent diabetics and age- and sex-matched controls.

SUBJECTS AND METHODS

Table I gives the clinical data of 25 insulin-dependent diabetics aged 19 to 30 years (mean: $25 \cdot 0 \pm 3 \cdot 8$), who were willing to participate in the study. The 25 healthy male control subjects were undergraduates and colleagues aged 18 to 30 years (mean: $26 \cdot 2 \pm 2 \cdot 9$).

Experiments were performed in a procedure room at a temperature of 19 to 20°C between 9.00 am and 12 noon. The diabetic patients were requested to take their usual breakfast and morning dose of insulin. All subjects

Received for publication 31 May 1968.

abstained from smoking and excessive exercise on the morning of the procedure and a pre-exercise rest for 30 minutes was obligatory. The exercise consisted of walking on a treadmill moving at 3.4 mph at 5° elevation for eight minutes. Cubital venous blood samples were withdrawn, with the minimum of venous occlusion, immediately before and after the exercise and the level of circulating plasminogen activator was assayed by the euglobulin lysis time (Cash, 1966). All subjects were studied on more than one occasion and the interval between each visit was at least one week. The percentage fibrinolytic response was calculated as $A-B/_A \times 100$ where A and B represented the resting and post-exercise euglobulin lysis times, respectively.

RESULTS

Details of the results of all subjects are shown in Table II and the frequency distribution of the fibrinolytic responses in Figure 1. The mean resting euglobulin lysis time in the diabetic and non-diabetic population was 119 \pm 104 minutes and 203 \pm 158 minutes, respectively. The difference between these values was highly significant (t = 3.601, P < 0.001). Although there was a higher resting level of circulating plasminogen activator in the diabetic patients, it was possible to isolate a subgroup of poor responders (< 20%) and their mean percentage response (31.7 ± 8.3) was significantly less than the normal controls (39.7 \pm 11.5) (t = 2.786, 0.005 < P < 0.01). In both populations there was no correlation between the fibrinolytic responses to the exercise procedure and the resting levels of plasminogen activator as measured by the euglobulin lysis time.

TABLE I											
CLINICAL	DETAILS	OF	DIABETIC	SUBJECTS							

Insulin Requirement (Units) Subject Age (yr) Duration of Diabetic Diabetes (yr) Morning Afternoon **Complications** No. 1 14 16 sol, 28 PZI None 26 24 29 30 30 22 26 30 30 20 20 29 2 4 28 sol. 48 PZI None 3 12 8 sol, 40 PZI 6 sol Albuminuria 34 44 sol, 56 PZI 4 5 6 7 None 32 sol, 56 PZI None 40 sol, 40 PZI 16 sol, 24 PZI 8 3 3 7 Diabetic retinopathy 20 sol None 8 9 30 sol, 40 PZI None 18 sol 16 sol, 32 PZI None 10 16 12 sol, 36 PZI Diabetic retinopathy 11 4 24 sol, 40 PZI 16 sol None 15 3 5 3 32 sol, 32 SL 121 32 sol, 32 SL Diabetic retinopathy 13 14 15 16 17² 18 19 20 21 22 20 8 sol, 36 PZI Diabetic retinopathy 28 21 20 24 28 27 22 23 19 12 sol, 16 PZI ____ None 24 sol. 40 PZI None 6 10 sol, 24 PZI None 1 24 sol, 32 PZI None 17 24 sol. 40 PZI Albuminuria 20 sol, 40 PZI 20 sol, 36 PZI 11 24 sol Diabetic retinopathy 3 Diabetic retinopathy 16 sol. 16 PZI 1 None 13 56 sol 44 P71 Albuminuria 23 28 10 20 sol, 80 PZI Diabetic retinopathy and albuminuria 22 24 1 12 sol, 12 PZI None 24 Q 25 8 sol, 40 PZI None

¹ Insulin resistance treated with prednisolone 5 mg bd

² Epileptic: well controlled by phenobarbitone 30 mg tds

³ The numbers represent the units of either soluble (sol), zinc protamine (PZI) or semi lente (SL) insuin.

DISCUSSION

There is little agreement between the results of previous studies on the resting level of spontaneous fibrinolysis in diabetic patients. This may be due to the heterogeneity of the fibrinolytic assays employed and the populations of diabetics studied. Hathorn, Gillman, and Campbell (1961) and Fearnley, Chakrabarti, and Avis (1963) demonstrated lower spontaneous fibrinolysis compared with age-matched controls, whereas Denborough and Patterson (1962), MacKay and Hume (1964), and Tanser (1967) obser-

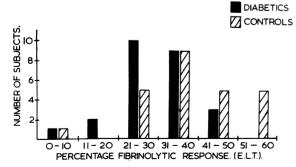


FIG. 1. The frequency distribution of percentage fibrinolytic response to moderate exercise in young diabetic subjects and controls.

ved no difference between their diabetic patients and normal controls. Our finding of a significantly higher level of circulating plasminogen activator in these young male diabetic patients compared with the ageand sex-matched controls is difficult to explain. It may be of some significance that the group of diabetics we studied was more homogeneous in terms of age, sex, and insulin-dependence than in earlier studies, although MacKay and Hume (1964) found no significant difference between diabetics aged more or less than 45 years of age. The euglobulin lysis time is perhaps the best method readily available for the assay of circulating plasminogen activator (Fearnley, 1965), and the assays employed in other studies were less specific. However, as we are uncertain whether all antifibrinolytic substances are absent from precipitated euglobulin, the finding of Sandberg, Muller, Bellet, Feinberg, Gagnon, and Gelber (1963) of a markedly diminished plasma antifibrinolytic activity in diabetics receiving insulin may have contributed to our findings.

The biological significance of an increased resting level of plasminogen activator is not clear but Egeberg (1963), in a study of 30 diabetics, 24 of whom were on insulin therapy, demonstrated a relative hypercoagulability *in vitro* in terms of a shorter average plasma cephalin time and an average increase of antihaemophilic globulin of 70%,

TABLE II

EUGLOBULIN LYSIS TIME BEFORE AND AFTER MODERATE EXERCISE IN 25 YOUNG MALE DIABETICS AND 25 YOUNG MALE CONTROLS

Subject No.	Diabetics				Controls					Diabet	Diabetics				Controls			
	Euglobi	Euglobulin Lysis Time			Euglobulin Lysis Time			Subject	Euglob	Euglobulin Lysis Time			Euglobulin Lysis Time					
	Before 88 81	<i>After</i> 55 54	Inc. (%)	crease ()	<i>Before</i> 140 660	<i>After</i> 71 332	Increase (%)		No.	Before	After	Increase (%)		Before	After	Increase (%)		
			38 33	35			49 50	49	12	635	494	22		272	192	29	26	
	69	45	35	33	500	257	- 50 - 49	49						151	106	30		
2	101	65	36		240	110	54							245	185	24		
2	117	92	21	28	304	136	55	55	13	105	70			132	98	26		
	110	80	27	20	304	150	55		13	105	70 52	33 28	30	494	211	57		
3	69	47	32		195	120	48			72	52	28		720	370	48	52	
5	80	59	26	27	105	58	45		14	72	52	20		274	137	50		
	133	101	24	21	135	80	40		14	72	52 45	28 40	33	100	54	46	=0	
	155	101	24		77	45	42	43		15	45	40		113	56	50	50	
					83	51	39		15	212	145	22		110	52	53		
					148	92	38		15	146	104	32 29	30	112 223	52	54	~ ^	
4	93	53	44		620	440	29			140	104	29			104	53	54	
-	78	44	44	40	84	60	29		16	62	36	42		180	80	56		
	141	50	33	40	270	200	26	29	10		56 56	42	20	257	143	44	20	
	1.41	50	55		318	213	33	29		68		18	30	120	80	33	38	
					210	156	26		17	60 69	55	31		140	90	36		
5	61	41	20		61	35	43		17		46	33 33	33	72	65	10		
-	62	52	16	20	75	42	44			70	47	33		108	86	20	10	
	66	50	24	20	57	35	39	37						200	184	8		
	00	50	24		65	45	31	57	18	91		26		320	310	3		
					81	50	38		18		58	36	~~	189	99	48	49	
6	138	71	49		115	70	39			93 05	73	22	33	270	137	49		
v	165	71	57	49	146	96	34	37	19	95	55	42						
	83	50	40	49	140	90	54		19	80 80	47	42 32	37	65	51	22	•••	
7	75	50	33		105	60	43			80	54	32		84	56	33	29	
'	81	45	44	38	131	78	41		20	63	39	20		94	64	32		
	65	40	39	50	77	47	39	39	20	63 64	39 39	38 39	25	250	160	36	36	
	0.5	40	57		76	50	34			64 70	39 50	39 29	35	230	150	35		
8	108	57	48		550	440	20		21	70 79	58	29 27		116	07	25		
0	114	66	34	41	211	172	19	24	21	81	38 48	41	34	108	87 82	25 24	24	
	147	84	43	••	745	505	32	- 1		01	-10	41		110	82 85	24	27	
9	83	64	23		143	60	58		22	104	73	30		120	83 75	23 38		
	90	63	30	27	150	65	57	58	~~	88	60	30	27	500	300	38 40	39	
					150	62	59	50		73	60	18	21	500	300	40		
5	79	50	37		105	63	40		23	97	85	12		174	89	49		
-	117	74	31	36	95	59	38	40	23	97 98	8 <i>3</i> 93	5	9	135	89 77	49	44	
	91	55	40	50	103	60	42			20	75	5		100	60	43 40	44	
1	95	61	36		255	124	51		24	305	240	21		539	324	40		
-	126	81	36	33	315	153	51	51	27	400	325	19	20	269	324 162	40	40	
	86	62	28		262	129	51	51	25	91	525	42		107		40		
2	508	398	22		120	95	21		25	75	33 46	42 39	41	76	63 45	42 41	40	
-	340	278	19	21	159	116	27			15	40	37					40	
	340	278	19	21	159	116	27							95	60	37		

proaccelerin of 23%, and fibrinogen of 44% above the average controls. It is possible that the high level of plasminogen activator is a physiological response to this relative hypercoagulability.

Although the mean resting levels of plasminogen activator in the diabetic population appeared to be higher than those of the controls, their ability to generate plasminogen activator to the exercise was diminished. This finding is contrary to that of Tanser (1967), who studied a group of 30 diabetics and observed no significant difference in their fibrinolytic response with an age-matched control group following a subcutaneous injection of adrenaline. However, only 10% of Tanser's patients were below 30 years of age and it is possible that many of the others were not insulin-dependent. Furthermore, the many variable factors known to govern adsorption of subcutaneously administered drugs (Goodman and Gilman, 1965) may have contributed to this finding. It is also possible that the relatively short duration of the fibrinolytic stimuli in our experiments may be relevant, for we have demonstrated in healthy subjects that some poor fibrinolytic responders to a short period of exercise will respond normally to a more prolonged procedure (Cash and Woodfield, 1967). Although adrenaline is probably responsible, in part, for the fibrinolytic response to exercise, there is no evidence that

diabetics are less able to release catecholamines following exercise (Larsson, Persson, Sterky, and Thoren, 1964). It is generally assumed that the mechanism by which adrenaline causes the release of plasminogen activator is a passive one (Holemans, 1965), that is to say, the result of anoxia (subsequent to vasoconstriction) or minute trauma (following vasodilatation) of the vascular endothelial units which are believed to be the source of plasminogen activator in the circulation (Todd, 1959). If this is so then the work of West, Sawrey, Bird, Wilson, and Hatcher (1965) may be of interest, for these authors demonstrated a significantly diminished vasoactive response, in terms of calf and foot blood flow, in a group of young diabetics with no clinical evidence of atherosclerosis, following intravenous adrenaline.

In view of the small number of diabetic subjects in this study no attempt has been made to correlate the results with their dosage of insulin, duration of diabetes, and complications. However, our findings emphasize that the study of this aspect of fibrinolysis in diabetic patients may prove to be useful.

We wish to thank all the volunteers; Dr R. A. Cumming, Director of the South-east Scotland Regional Blood Transfusion Centre, for his invaluable help; Dr L, J, P. Duncan, physician in charge of the Diabetic Department.

REFERENCES

- Astrup, T. (1956). Lancet, 2, 565.
- Cash, J. D. (1966). Brit. med. J., 2, 502.
- -, and Allan, A. G. E. (1967). Brit. J. Haemat., 13, 376.
- and Woodfield, D. G. (1967). Nature (Lond.), 215, 628.
- Denborough, M. A., and Patterson, B. (1962). Clin. Sci., 33, 485.
- Egeberg, D. (1963). Scand. J. clin. Lab. Invest., 15, 533. Fearnley, G. R. (1965). Fibrinolysis. Arnold, London.
- Chakrabarti, R., and Avis, P. R. D. (1963). Brit. med. J., 1, 921. Goodman, L. S., and Gilman, A. (1965). The Pharmacological Basis of Therapeutics, 3rd ed. p. 7. Macmillan, New York.
- Hardaway, R. M. (1966). Syndromes of Disseminated Intravascular Coagulation. Thomas, Springfield, Ill.
- Hathorn, M., Gillman, T., and Campbell, G. D. (1961). Lancet, 1. 1314.
- Holemans, R. (1965). Amer. J. Physiol., 20, 511.
- Larsson, Y., Persson, B., Sterky, G., and Thoren, C. (1964). Lancet, 1, 350.
- MacKay, N., and Hume, R. (1964). Scot. med. J., 9, 359.
- McKay, D. G. (1965). Disseminated Intravascular Coagulation. Hoeber, Harper and Row, New York.
- Sandberg, H., Muller, O., Bellet, S., Feinberg, L. J., Gagnon, F., and Gelber, L. (1963). Amer. J. med. Sci., 245, 153.
- Tanser, A. R. (1967). J. clin. Path., 20, 231.
- Todd, A. S. (1959). J. Path. Bact., 78, 281.
- West, R. O., Sawrey, K. R., Bird, G. S., Wilson, D. L., and Hatcher, J. D. (1965). Clin. Sci., 29, 41.